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Correspondence

Periodic Descriptor Systems: Solvability
and Conditionability

J. Sreedhar and Paul Van Dooren

Abstract—The authors consider discrete-time linear periodic descrip-
tor systems and study the concepts ofsolvability and conditionability,
introduced by Luenberger. They prove that solvability is equivalent to
conditionability, just as in the time-invariant case. We give a characteri-
zation of solvability/conditionability in terms of a cyclic matrix pencil and,
furthermore, propose a simple test via the periodic Schur decomposition
to check for either property. This could lead to further systematic study
of these systems.

Index Terms—Descriptor systems, periodic systems.

I. INTRODUCTION

Linear descriptor systems represent a broad class of time evolu-
tionary phenomena and are often the product of problem formulation
in system theory, especially when the variables used are the natural
describing variables of the underlying process. This topic has received
a lot of attention over the last 20 years; see, in particular, [5] and
[6]. Within the general class of linear descriptor systems, periodic
systems form an important subclass—they are suitable models for
many natural and man-made phenomena and are finding increasing
use in control theory as well [1]. In this paper, we restrict attention to
solvability andconditionabilityof periodic linear descriptor systems.
Throughout, we adopt the basic framework and concepts defined
by Luenberger [5], [6] and present new results which extend those
obtained by him for the time-invariant (TI) case.

We begin by briefly recalling some definitions and prior work
(see [5] for details). A linear discrete-time descriptor variable system
defined on the time interval[0; N ] has the form

Ekxk+1 = Akxk + uk; k = 0; 1; � � � ; N � 1: (1)

For eachk, xk is ann-dimensional vector of descriptor variables and
uk is anm-dimensional vector of input variables. The matricesEk
andAk aren � n with complex entries, and possibly singular. The
length of the time interval isN ; likewise there areN equations in
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(1), and these can be written out in block matrix form as

�A0 E0

�A1 E1

. . .
. . .

�AN�2 EN�2

�AN�1 EN�1

x0
x1
...

xN�1
xN

=

u0
u1
...

uN�1

(2)

showing that the dynamic system can be regarded as one (large)
system of linear equations. Two fundamental concepts associated
with such systems, which characterize their “well behavedness,” are
solvability and conditionability. Thesolvability matrixof (1), which
we shall denote byS(0; N), is the coefficient matrix in (2). It can
be regarded as anN � (N + 1) block matrix or, in ordinary terms,
as annN � n(N + 1) matrix. System (1) is said to besolvable
if S(0; N) is of full rank. Notice that solvability is the standard
nondegeneracy condition for (2); it means that (1) possesses ann-
dimensional linear variety of solutions for any input sequence. The
conditionability matrixof (1), denoted byC(0; N), is the submatrix
of S(0; N) obtained by deleting the first and last block columns. It
is shown enclosed by vertical lines in (2) and is anN � (N � 1)
block matrix. System (1) is said to beconditionableif C(0; N) is
of full rank. Conditionability is equivalent to the property that any
two distinct solutions to (2) must differ at (at least) one end-point,
zero orN . If the system is solvable, then conditionability implies
that a unique solution (within then-dimensional linear variety) can
be specified by appending a total ofn boundary conditions involving
the valuesx0 and xN only. In general, these boundary conditions
cannot all be specified at one end.

It is clear that solvability and conditionability of (1) depend only on
the homogeneous systemEkxk+1 = Akxk; k = 0; 1; � � � ; N � 1:
Later in the paper, we shall look at descriptor systems defined over
[0; N ], whereN is an arbitrary positive integer. Furthermore, even
if N is fixed, while studying the set of equations in (2) it is often
convenient to consider a subset obtained by dropping some of the
first and/or last (block) equations. This corresponds to restricting to
a subinterval the full time interval over which the original system
is defined. Of course, solvability and conditionability are preserved
under such a time restriction. In other words, if either of these
properties holds for the interval[0; N ], then it also holds for any
subinterval[k; l]; 0 � k < l � N ; we term this theinheritance
property. In our notation for solvability and conditionability matrices,
the first argument denotes the left end-point, and the second argument
the length of the time interval under consideration. For instance, the
“boxed” submatrix in (2) isS(1; N � 2), the solvability matrix over
the interval [1; N � 1].

Solvability and conditionability are in a very natural sense dual
concepts. Corresponding to aprimal set of dynamic equations (1),
there exists thesubdualset

E
H
k�1�k�1 = A

H
k �k + vk; k = 1; 2; � � � ; N � 1: (3)
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We shall denote the solvability matrix and conditionability matrix of
the subdual set bySD(0; N) andCD(0; N), respectively; although,
strictly speaking, (3) is defined over the interval[0; N�1] only.1 On
writing out (3) in block matrix form like (2), we see that

SD(0; N) =C(0; N)H (4a)

CD(0; N) =S(1; N � 2)H: (4b)

Thus, a primal set of dynamic equations is conditionable iff its
subdual is solvable; and, if a primal is solvable, then its subdual
is conditionable. This concludes our review.

Next we turn to the periodically time-varying (PTV) descriptor
variable system

�: Ekxk+1 = Akxk; k = 0; 1; 2; � � � (5)

of fundamental periodK, i.e.,K is the smallest positive integer for
which Ek = Ek+K ; Ak = Ak+K , 8k � 0. According to our basic
definition (1), a set of dynamic equations is defined with respect to a
specific time interval of finite length. Systems of infinite duration are
considered [5] to be solvable or conditionable if the corresponding
finite sets of equations, terminating at a fixedN , are solvable or
conditionable, respectively, for every value ofN .

Definition 1: A PTV descriptor system� given by (5) is said to
be solvable if its solvability matrixS(0; N) is of full rank for every
N > 0. It is said to be conditionable if its conditionability matrix
C(0; N) is of full rank for everyN > 0.

This is analogous to the TI situation, whereEk and Ak are
independent ofk. Just as in the TI case, the presence here of
additional structure has interesting implications. For instance, due
to periodicity and the inheritance property, we notice straightaway
that, for �

S(0; N) is of full rank for all N > 0
m

For anyi > 0; S(i; N) is of full rank for all N > 0:

(6a)

(6b)

Hence solvability of� is also equivalent to (6b).
Since� is of infinite duration it has a truedual, �D, given by

EH
k�1�k�1 = AH

k �k, k = 1; 2; � � �. For eachN > 0, identities (4)
continue to hold, so it is straightforward that

� is conditionable()�D is solvable (7a)

� is solvable =)�D is conditionable. (7b)

In addition

CD(0; N) is of full (column) rank for allN > 0

() S(1; N � 2) is of full (row) rank for allN > 0;

by (4b);

() S(0; N) is of full (row) rank for allN > 0; by (6)

which proves the reverse implication in (7b) as well.
Lemma 1: A PTV descriptor system� is solvable (conditionable)

iff its dual �D is conditionable (solvable).

II. SOLVABILITY AND CONDITIONABILITY

Luenberger [5], [6] showed that solvability and conditionability are
identical concepts in the TI case. It turns out that this is true in the
periodic case also. We prove this first using simple rank arguments.
An indirect proof will be given later.

Theorem 1: A PTV descriptor system� given by (5) is solvable
iff it is conditionable.

1This is the reason why the termsubdualrather thandual is employed for
(3).

Proof—Only If: Suppose� is not conditionable. Then there
exists anN̂ > 0 such thatC(0; N̂) is not of full rank. It follows
from the inheritance property thatC(0; N) is not of full rank for any
N � N̂ . Let us choose the smallest~N � N̂ such that ~N � 1 is an
integer multiple of the periodK, say ~N � 1 = sK. Then

C(0; ~N) =

E0

�A1 E1

. . .
. . .
. . . E ~N�2

�A ~N�1

=

E0

�A1 E1

. . .
. . .
. . . EsK�1

�AsK

=

E0

�A1 E1

. . .
. . .
. . . EK�1

�A0

~N block rows,~N�1block columns

(8)

has rank no greater thann( ~N � 1)� 1, since it containsn( ~N � 1)
columns. Observe that a matrix identical toC(0; K +1) is repeated
s times in (8) and forms a “building block” forC(0; ~N). In
the same way, we can run together many copies ofC(0; ~N) to
form conditionability matrices whose columns number even bigger
multiples ofK. (Like C(0; ~N), none of these matrices will have full
rank.) For our purpose, let us define

N := (n+ 1)( ~N � 1) + 1:

The solvability matrix over the time interval[0; N ] has the structure

S(0; N) =

�A0

1

C(0; ~N) 2

C(0; ~N)

. . .
n+ 1

C(0; ~N)

E0

where we have marked (with boxes) and numbered the repeating
patterns. Some simple algebra now shows that this matrix cannot be
of full rank, proving that� is not solvable. Indeed, the submatrix
composed of the boxes, which is nothing butC(0; N), has rank no
greater than(n+1)[n( ~N�1)�1]; therefore, the maximum rank that
S(0; N) can have, with its2n additional columns in�A0 andE0, is
(n+1)[n( ~N�1)�1]+2n = n(n+1)( ~N�1)+n�1: This is less than
the number of rows it contains, which isnN = n(n+1)( ~N�1)+n.

If: The foregoing discussion shows that if a PTV descriptor system
is solvable, then it is also conditionable. One can prove the reverse
implication using similar arguments; it is easiest to see this by
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invoking duality. Thus

� is conditionable

=) �D is solvable,

=) �D is conditionable,

=) � is solvable,

by Lemma 1,

just proved,

by Lemma 1 again.

Remark 1: ForK = 1, our proof of Theorem 1 reduces essentially
to Luenberger’s proof for the TI case [5]. The only subtlety for the
K > 1 case is that~N � 1 must be chosen to be a multiple ofK,
so as to get a repeatable block.

Since the lengthN of the time interval in question is irrelevant
for solvability (or conditionability) of�, it is to be expected that this
property depends only on the periodic matrix sequencefEk; Akg. We
will see that a useful characterization of solvability/conditionability
is that a particular cyclic matrix pencil beregular. Furthermore, this
condition can be recast in terms of the periodic Schur decomposition
of fEk; Akg. We state our findings as Theorem 2. First, we recall
a couple of facts.

Regular Matrix Pencils: A matrix pencil is a polynomial matrix
of the form zE � A, wherez is a complex variable. It is said to
be regular ifE andA are square anddet(zE � A) does not vanish
identically [3]. In other words, a square pencilzE �A is regular iff
it is of full rank with respect to all polynomial combinations of its
rows (or columns). Let�(z) := �0 + �1z + . . . + �`�1z

`�1 be a
row vector of dimensionn. By equating coefficients of powers ofz,
we can check that

�(z) � [zE � A] = 0() [�0 �1 � � � �`�1]

�

�A E
�A E

. . .
. . .
�A E

�A E

`block rows,̀+1block columns
=0: (9)

Therefore, a square pencilzE�A is regular iff the block matrix in (9)
is of full row rank for any` > 0. It is appropriate to remark here that
these full-rank conditions are equivalent to absence of left Kronecker
indexes ofzE � A. In exactly the same way, by considering the
column vector�(z) := �0 + �1z + � � � + �`�1z

`�1 of dimensionn,
we can verify that

(zE � A) � �(s) = 0 ()

E
�A E

. . .
. . .
�A E

�A

`+1block rows,̀ block columns

�

�`�1
�`�2

...
�1
�0

= 0: (10)

Therefore a square pencilzE � A is regular iff the block matrix in
(10) is of full column rank for anỳ > 0, the full-rank conditions
being equivalent to absence of right Kronecker indices ofzE � A.
These observations are well known and can be found, for instance,

in [3]. Luenberger [6] was the first to relate regularity ofzE � A
to solvability and conditionability of the TI matrix pairfE ;Ag, a
connection made clear by (9) and (10).

Periodic Schur Decomposition:We quote a well-known result [2],
[4]. For a proof, and anO(Kn3)-algorithm implementation, please
refer to [2].

Proposition 1: LetHi; Gi; i = 0; 1; . . . ; K�1, ben�n complex
matrices. Then there existn � n unitary matricesQi; Zi; i =
0; 1; � � � ; K � 1, such that

Ĝ0 =Z
H
0 �G0 �Q1

Ĝ1 =Z
H
1 �G1 �Q2

Ĝ2 =Z
H
2 �G2 �Q3

...

ĜK�1 =Z
H
K�1 �GK�1 �Q0

Ĥ0 =Z
H
0 �H0 �Q0

Ĥ1 =Z
H
1 �H1 �Q1

Ĥ2 =Z
H
2 �H2 �Q2

...

ĤK�1 =Z
H
K�1 �HK�1 �QK�1

all are upper-triangular.
Now we come to the main result of this paper.
Theorem 2: The following statements are equivalent.

1) The PTV descriptor system� given by (5) is solvable (or
conditionable).

2) The TI descriptor system

�E: Eyk+1 = Ayk; k = 0; 1; 2; . . . ; (11a)

is solvable (or conditionable), where

E :=

E0 0 � � � � � � 0
0 E1 0 � � � 0
... 0

. . .
. . .

...
...

...
. . . EK�2 0

0 0 � � � 0 EK�1

A :=

0 0 � � � 0 A0

A1 0 0 � � � 0
... A2

. . .
. . .

...
...

...
. . . 0 0

0 0 � � � AK�1 0

: (11b)

3) The cyclic matrix pencilzE � A defined by (11b) is regular.
4) There are no “zero by zero divides on the diagonal” in the

periodic Schur decomposition offEk; Akg. More precisely, if
e
(i)
j; j anda(i)j; j denote thejth diagonal elements of the triangular

matricesÊi and Âi, respectively, in Proposition 1 applied to
fEk; Akg, then

a
(K�1)
j; j � � � a

(1)
j; ja

(0)
j; j

e
(K�1)
j; j � � � e

(1)
j;j e

(0)
j;j

; j = 1; 2; � � � ; n (12)

is well defined (can be zero or�1, but not indeterminate).

Proof 1), 2): Over an interval of length̀ , the solvability
matrix of �E is

�A E
�A E

. . .
. . .
�A E

�A E

` block rows: (13)

Modulo row and column permutations, it is identical to

diagfS(0; `); S(1; `); � � � ; S(K � 1; `)g (14)

where theS(i; `) refer to solvability matrices of the PTV system
�. To convince ourselves that this is indeed the case, we need only
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to look at the arrangement, relative to one another, of the periodic
matricesEk,Ak in (13) and (14). In each block row,�Ak is followed
by Ek (same index), while in each block column,Ek is followed
by �Ak+1 (one index higher). By beginning at the top of (13) with
one of�A0; �A1; � � � ; �AK�1 and descending the “steps,” we can
form K chains each of length̀+1; these are precisely the diagonal
blocks in (14). This shows that (13) is of full row rank iff (14) is.
Since this holds for all̀ > 0, we conclude that�E is solvable iff� is.

Similar reasoning can be used to prove that�E is conditionable iff
� is. As a matter of fact, solvability and conditionability are one and
the same concept for both PTV and TI systems; therefore, we do not
actually need to repeat the argument here. We do so only to illustrate
how the conditionability matrices of� and�E are related. Over an
interval of length̀ , the conditionability matrix of�E is the submatrix
of (13) enclosed by vertical lines, which on rearranging rows and
columns as before becomesdiagfC(0; `); C(1; `); � � � ; C(K �
1; `)g, where theC(i; `) refer to conditionability matrices of�.
One is of full column rank iff the other is, for all̀ > 0.

2), 3): This follows from the facts about regular matrix pencils
mentioned earlier; see (9) and (10) and also [6].

3), 4): Perform a periodic Schur decomposition on, i.e., apply
Proposition 1 to,fEk; Akg. Using the unitary matricesQi; Zi so
obtained, defineZ := diagfZ0; Z1; � � � ; ZK�2; ZK�1g, Q :=
diagfQ1; Q2; � � � ; QK�1; Q0g. Update the cyclic matrix pencil
zE � A given by (11b) as follows:zE � A  � ZH(zE � A)Q,
so that it has the following block structure:

zE � A = z

U

U
. . .

U

�

U

U
. . .

U

K block rows and columns

(15)

whereU is an upper triangular matrix. Since this updating involves
unitary transformations only, it does not changedet(zE �A) except
by a factor of modulus one. Hence regularity ofzE�A is not affected.
Next, do aperfect shuffleon (15) with the permutation vector

p = [1 : n : 1 + (K � 1)n; 2 : n : 2 + (K � 1)n; � � � ; n : n : nK]

to get (using Matlab notation)

zE[p; p]�A[p; p]

= z

D D � � � D

D � � � D
. . .

...
D

�

C C � � � C

C � � � C
. . .

...
C

n block rows and columns

(16)

where D is diagonal andC is circulant, and where the(i; j)th
element of (16) is the(p(i); p(j))th element of (15). Again, this
does not affect regularity. Now, (16) is block upper-triangular, and

its jth diagonal block

ze
(0)
j; j �a

(0)
j; j

�a
(1)
j; j ze

(1)
j; j

. . .
. . .

�a
(K�1)
j; j ze

(K�1)
j; j

has determinant

(e
(K�1)
j; j � � � e

(1)
j; je

(0)
j;j )z

K � (a
(K�1)
j; j � � � a

(1)
j; ja

(0)
j; j): (17)

Clearly, (17) must not vanish identically for the pencil in (16), and
hencezE �A, to be regular. ThuszE �A is regular iff K�1

i=0 e
(i)
j; j

and K�1
i=0 a

(i)
j; j are not simultaneously zero forj = 1; 2; � � � ; n; in

other words, iff (12) is determinate.
Remark 2: Theorem 2 shows that solvability and conditionability

of the PTV system� can be directly linked to the corresponding
properties of a particular TI system, namely�E given by (11). This
TI system is the so-calledextended form; it arises naturally in a variety
of contexts in periodic systems and control theory. Other important
properties of� such as stability andl2-induced norm are intimately
related to those of�E as well [2], [8].

Remark 3: ForK = 1, i.e., whenEi � E; Ai � A, the extended
form �E is identical to�, and Theorem 2 states that� is solvable
(or conditionable) iffzE �A = zE�A is regular. Thus we recover
Luenberger’s result [6] for the TI case. Furthermore, since a TI system
can be thought of as being PTV with period equal to any integer
K > 1, Theorem 2 shows thatzE � A is regular iff theK-cyclic
matrix pencil

z

E

E
. . .

E

�

A

A
. . .

A

is regular (for arbitraryK).
Remark 4: Statements 3) and 4) of Theorem 2 generalize, for

K > 1, the corresponding statements in the classicalQZ-algorithm
theory [7]. Also notice that the generalized eigenvalues of the cyclic
matrix pencilzE �A in (11b), which are given by the zeros of (17),
are theKth roots of (12). Of course, (12) gives the eigenvalues of
the monodromy matrix[1] (E�1K AK) � � � (E�12 A2)(E

�1
1 A1) when

it exists, i.e., when theEi matrices are invertible [2].
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