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Correspondence

Periodic Descriptor Systems: Solvability (1), and these can be written out in block matrix form as
and Conditionability
—Ag Eq
Zo
J. Sreedhar and Paul Van Dooren -4 B 1
—An—2 En_2 TN—1
Abstract—The authors consider discrete-time linear periodic descrip- N
tor systems and study the concepts obolvability and conditionability, —AN—1 En_y
introduced by Luenberger. They prove that solvability is equivalent to wo
conditionability, just as in the time-invariant case. We give a characteri- "
zation of solvability/conditionability in terms of a cyclic matrix pencil and, _ _1 )

furthermore, propose a simple test via the periodic Schur decomposition
to check for either property. This could lead to further systematic study

of these systems. UN—1

showing that the dynamic system can be regarded as one (large)
system of linear equations. Two fundamental concepts associated
with such systems, which characterize their “well behavedness,” are
|. INTRODUCTION solvability and conditionability. Theolvability matrixof (1), which

oNE shall denote by5(0; V), is the coefficient matrix in (2). It can

tionary phenomena and are often the product of problem formulatiBf regarfjed as ah x (N + D block matrix or, |n_ord|nary terms,

in system theory, especially when the variables used are the nat§®@n"y x n(N + 1) matrix. System (1) is said to beolvable
describing variables of the underlying process. This topic has recei\}BdS(O; N) is of full ra_mk. Notice _that solvability is the standard
a lot of attention over the last 20 years; see, in particular, [5] amndeg'enera_cy condlt!on for (2); '_t means that_ (1) possesses an
[6]. Within the general class of linear descriptor systems, perio me_n_smna! .Ilnear v_arlety of solutions for any mput sequence. The
systems form an important subclass—they are suitable models ?BPd't'on?b'"ty matrlxof @), d_enoted 'F“C(O; N), is the submatrix
many natural and man-made phenomena and are finding increa_ﬂfwgq(o; N) obtained by del_etlng_ the T'rSt and Ia§t bEOCk c?lumns. It
use in control theory as well [1]. In this paper, we restrict attention Shown e_nclosed by ver_tlcalnllnes in (2)_ _and IS z_&nx (N . 1_)
solvability and conditionability of periodic linear descriptor systems.bIOCk matrix. Syst_e_m (1)_ s §a|d to_ tEonditionableif C(0; V) is
Throughout, we adopt the basic framework and concepts defin%fdfu” rank. Conditionability is equivalent to the property that any

by Luenberger [5], [6] and present new results which extend tholko distinct solutions to (2) must differ at (at least) one end-point,

obtained by him for the time-invariant (Tl) case zero or N. If the system is solvable, then conditionability implies

We begin by briefly recalling some definitions and prior Worﬁhat a unique solution (within the-dimensional linear variety) can

(see [5] for details). A linear discrete-time descriptor variable systepﬁ specified by appending a totalmboundary conditions involv_ing
defined on the time intervdD, N] has the form the valueszo and zn only. In general, these boundary conditions

cannot all be specified at one end.
Itis clear that solvability and conditionability of (1) depend only on
Brtipr = Ay +up,  k=0,1,---,N—1. (1) the homogeneous systefzjt1 = Apxy, k=0,1,---, N~ 1.
Later in the paper, we shall look at descriptor systems defined over
[0, N], where N is an arbitrary positive integer. Furthermore, even

For eachk, z, is ann-dimensional vector of descriptor variables andf IV is fixed, while studying the set of equations in (2) it is often
uy is anm-dimensional vector of input variables. The matridés convenient to consider a subset obtained by dropping some of the
and 4, aren x n with complex entries, and possibly singular. Thdirst and/or last (block) equations. This corresponds to restricting to
|ength of the time interval isV; likewise there areV equations in a subinterval the full time interval over which the original system
is defined. Of course, solvability and conditionability are preserved
under such a time restriction. In other words, if either of these
properties holds for the intervdl, V], then it also holds for any
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We shall denote the solvability matrix and conditionability matrix of ~ Proof—Only If: SupposeX is not conditionable. Then there
the subdual set b§,,(0; N) andC,(0; N), respectively; although, exists anN > 0 such thatC'(0; ) is not of full rank. It follows
strictly speaking, (3) is defined over the interf&l N — 1] only! On  from the inheritance property that(0; V) is not of full rank for any
writing out (3) in block matrix form like (2), we see that N > N. Let us choose the smallest > N such thatV — 1 is an
integer multiple of the periody, sayN — 1 = sK. Then
Sp(0; N) = C(0; N (4a) "9 P period., say: o
Cp(0; Ny =8(1; N —2)%, (4b) r Eo
—-A, E
Thus, a primal set of dynamic equations is conditionable iff its P ' . '
subdual is solvable; and, if a primal is solvable, then its subdual c(0; N)
is conditionable. This concludes our review. By,
Next we turn to the periodically time-varying (PTV) descriptor L -Ag
variable system r Ep

Y Eppyr = Aprp, k=0,1,2,--- (5) —A E

of fundamental periody, i.e., K is the smallest positive integer for .
which B, = Er4r, Ar = Aryx, Yk > 0. According to our basic - Bk
definition (1), a set of dynamic equations is defined with respect to a L —Asx
specific time interval of finite length. Systems of infinite duration are Ey
considered [5] to be solvable or conditionable if the corresponding -A Ey
finite sets of equations, terminating at a fix&d are solvable or _ 8)
conditionable, respectively, for every value &t. )
Definition 1: A PTV descriptor systent given by (5) is said to o ER—
be solvable if its solvability matrixs(0; V) is of full rank for every —4o
N > 0. It is said to be conditionable if its conditionability matrix % block rows 51 block columns
C'(0; N) is of full rank for everyN > 0.

This is analogous to the TI situation, wherg, and A4, are has rank no greater than N — 1) — 1, since it containg: (N — 1)

inde_pendent ofk. Just as in th_e Tl_ case, _the presence here Ohjumns. Observe that a matrix identical@@0; K + 1) is repeated
additional structure has interesting implications. For instance, dgetimes in (8) and forms a “building block” forC(()~ &r) In

to periodicity and the inheritance property, we notice straightawgy, <ame way, we can run together many copiesC6b; ) to

that, for & form conditionability matrices whose columns number even bigger
S(0; N) is of full rank for all N > 0 (6a) multiples of K. (Like C'(0; N’), none of these matrices will have full
rank.) For our purpose, let us define
For any: > 0, S(¢; V) is of full rank for all N > 0. (6b)

Hence solvability ofE is also equivalent to (6b). M=+ DIV -1 +1.

Since X is of infinite duration it has a trudual, ¥p, given by . . . ) —
EN Aoy = A\, k= 1,2, ---. For eachV > 0, identities (4) The solvability matrix over the time intervf), N] has the structure

continue to hold, so it is straightforward that -~ 1 -

¥ is conditionablee= ¥, is solvable (7a) —Ao ]
T is solvable => T, is conditionable. (7b) C(0; N) 2

In addition x
C(0; N)

Cn(0; N) is of full (column) rank for allN > 0
< S(1; N — 2) is of full (row) rank for all ¥ > 0,
by (4b)
<= 5(0; N) is of full (row) rank for all ¥ > 0, by (6)

S(0; N) =

n+1

which proves the reverse implication in (7b) as well. C(0; NV)
Lemma 1: A PTV descriptor systen is solvable (conditionable) L Eo |
iff its dual ¥p is conditionable (solvable).

where we have marked (with boxes) and numbered the repeating
patterns. Some simple algebra now shows that this matrix cannot be

. . . of full rank, proving that¥ is not solvable. Indeed, the submatrix
Luenberger [5], [6] showed that solvability and conditionability ar%omposed of the boxes, which is nothing I6it0; ), has rank no
identical concepts in the Tl case. It turns out that this is true in trg‘; ' o

Il. SoLvABILITY AND CONDITIONABILITY

iodi 50, Wi this first usi imol K eater tharin +1)[n(V — 1) —1]; therefore, the maximum rank that
perl_o '.C case also. . © prqve IS first using Simple rank argumen 0; N) can have, with it2n additional columns in- 4 and Ey, is
An indirect proof will be given later.

_ , , , (n+1)[n(N=1)—1]+2n = n(n+1)(N—1)+n—L This is less than
i Th_eoremdl_._A P;V descriptor systen given by (5) is solvable o numper of rows it contains, whichisV = n(n+1)(N —1)+n.
It it is conditionable. If: The foregoing discussion shows that if a PTV descriptor system
1This is the reason why the tersubdualrather thardual is employed for IS solvable, then it is also conditionable. One can prove the reverse
(3). implication using similar arguments; it is easiest to see this by
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invoking duality. Thus
¥ is conditionable

—> ¥ p is solvable,

—> ¥, is conditionable,

—> ¥ is solvable,

by Lemma 1,
just proved,

by Lemma 1 again.
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in [3]. Luenberger [6] was the first to relate regularity of — A
to solvability and conditionability of the TI matrix paif&, A}, a
connection made clear by (9) and (10).

Periodic Schur DecompositionWe quote a well-known result [2],
[4]. For a proof, and arO( K »?)-algorithm implementation, please
refer to [2].

Proposition 1: Let H;,G;, i = 0,1,..., K —1, ben xn complex
matrices. Then there exist x n unitary matrices@;, Z,

it =

| 0,1,

, I — 1, such that

Remark 1: For K = 1, our proof of Theorem 1 reduces essentially ~ Gy =z - Gy - O4
to Luenberger’s proof for the Tl case [5]. The only subtlety for the Gi=2". GO
K > 1 case is thatV — 1 must be chosen to be a multiple &f, T TR
So as to get a repeatable block. G =23 G2 Qs

Since the lengthV of the time interval in question is irrelevant
for solvability (or conditionability) ofY, it is to be expected that this
property depends only on the periodic matrix sequdrce A }. We G -Gr_1- Qo “Qr—1
will see that a useful characterization of solvability/conditionability
is that a particular cyclic matrix pencil begular. Furthermore, this all are upper-triangular. O
condition can be recast in terms of the periodic Schur decompositioNOW we come to the main result of this paper.
of {Ex, Ax}. We state our findings as Theorem 2. First, we recall Theorem 2: The following statements are equivalent.

a couple of facts. 1) The PTV descriptor systeri given by (5) is solvable (or

Regular Matrix Pencils: A matrix pencil is a polynomial matrix conditionable).
of the form z€ — A, wherez is a complex variable. It is said to 2) The Tl descriptor system
be regular if€ and A are square andet(z€ — A) does not vanish

Ho =27 Ho - Qo
ffl :Z1H~H1-Q1
Hy =27 Hs Qo

o . "
K-1=ZK_1 Hg 1=Zyg_-Hrg—1

B, o — .
identically [3]. In other words, a square penef — A is regular iff 25 e = Ay, k=0,1,2,., (11a)
it is of full rank with respect to all polynomial combinations of its is solvable (or conditionable), where
rows (or columns). Lep(z) 1= po + p1z + ...+ pe_12"~' be a E 0 .- 0
row vector of dimensiom. By equating coefficients of powers of OO E 0 . 0
we can check that . ! . .
| oy
p(2) [~ A =0 = [o0 s pei] 0
—A £ . . . FErx_» 0
A € LO O 0 Ex_y
ro 0 .- 0 A
E A 0 0 0
-A £ . . .
—A £ A=11 A (11b)
¢block rowsy+1 block columns : . 0 0
—0. ) L O 0 A1 0

3) The cyclic matrix pencit€ — A defined by (11b) is regular.

4) There are no “zero by zero divides on the diagonal” in the

periodic Schur decomposition ¢, A }. More precisely, if
anda( ) denote the'th diagonal elements of the triangular

matncesE and A;, respectively, in Proposition 1 applied to

{Ek, Ak}, then

(K—=1) |

Therefore, a square peneif — A is regular iff the block matrix in (9)
is of full row rank for any? > 0. It is appropriate to remark here that
these full-rank conditions are equivalent to absence of left Kronecker
indexes ofz& — A. In exactly the same way, by considering the
column vector(z) :=vo + v1z + - + v 2 * of dimensionn,

we can verify that

AOME)

< Js J Ay %5

A € KD o JThZem (12)
o _ 7,3 VAV IV
(& - A)w(s) =0 = E is well defined (can be zero droc, but not indeterminate).
—A _‘C’A Proof1) < 2): Over an interval of lengttY, the solvability
matrix of =F is
¢+1 block rows‘,; block columns -A £
Ve—1 —.A £
Vi—2 ¢ block rows (13)
: =0. (20) -A €&
v A &
Yo Modulo row and column permutations, it is identical to
Therefore a square pencif — A is regular iff the block matrix in diag{S(0; £), S(1; £), -+, S(K —1; 1)} (14)

(10) is of full column rank for any > 0, the full-rank conditions
being equivalent to absence of right Kronecker indices®f— A. where theS(i; ¢) refer to solvability matrices of the PTV system
These observations are well known and can be found, for instanZe, To convince ourselves that this is indeed the case, we need only
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to look at the arrangement, relative to one another, of the periodlis jth diagonal block
matricesEy, Ay in (13) and (14). In each block row Ay, is followed o0
by E, (same index), while in each block colump, is followed B
by —Ax11 (one index higher). By beginning at the top of (13) with _(1511
one of—A4gy, —Aq, ---, —Ak_1 and descending the “steps,” we can
form K chains each of length+ 1; these are precisely the diagonal
blocks in (14). This shows that (13) is of full row rank iff (14) is.
Since this holds for all > 0, we conclude that" is solvable iffS is.

Similar reasoning can be used to prove thatis conditionable iff has determinant
¥ is. As a matter of fact, solvability and conditionability are one and (eF-1 L.
the same concept for both PTV and Tl systems; therefore, we do not EAE

actually need to repeat the argument here. We do so only to illustrgrarly, (17) must not vanish identically for the pencil in (16), and

(0),

a5

o)
/.ﬁj, g

LR (K=

4y, 353

(1, ).

Y (0))21{ - (agfi’il) %%

€5,i%.5

7

how the conditionability matrices 6 andS" are related. Over an hence-& — A, to be regular. Thus€ — A is regular iff [ 1 e”.
interval of length¢, the conditionability matrix o is the submatrix and

=0
are not simultaneously zero fgr=1, 2, - - -,

33

K140 n; in

i=0 455

of (13) enclosed by vertical lines, which on rearranging rows andy« \words. iff (12) is determinate.

columns as before becomelag{C(0; (), C(1; ¢), ---, C(K —
1; ¢)}, where theC'(i; ¢) refer to conditionability matrices oE.
One is of full column rank iff the other is, for all > 0.

Remark 2: Theorem 2 shows that solvability and conditionability
of the PTV system® can be directly linked to the corresponding
properties of a particular TI system, namé&ly’ given by (11). This

2) & 3): This follows from the facts about regular matrix pencilsr) gystem is the so-calleektended fornit arises naturally in a variety

mentioned earlier; see (9) and (10) and also [6].

of contexts in periodic systems and control theory. Other important

3) & 4): Perform a periodic Schur decomposition on, i.e., applyonerties oft such as stability anés-induced norm are intimately

Proposition 1 to,{Ex, Ax}. Using the unitary matrice§);, Z; so
obtained, defineZ := diag{Zo, Z1, ---, Zx—2, Zx—1}, Q =
diag{Q1, Q2, -+, Qrx_1, Qo }. Update the cyclic matrix pencil
z€ — A given by (11b) as followsz& — A «— 2% (2€ — A)Q,
so that it has the following block structure:

U

DT
U

K block rows and columns

(15)

related to those oE"™ as well [2], [8].

Remark 3: For K = 1, i.e., whenE;, = F, A; = A, the extended
form ©F is identical toX, and Theorem 2 states thEtis solvable
(or conditionable) iffz£ — A = zE — A is regular. Thus we recover
Luenberger’s result [6] for the Tl case. Furthermore, since a Tl system
can be thought of as being PTV with period equal to any integer
K > 1, Theorem 2 shows thatE' — A is regular iff the K'-cyclic
matrix pencil

E A

E A

v
|

E A

is regular (for arbitraryk).

Remark 4: Statements 3) and 4) of Theorem 2 generalize, for
K > 1, the corresponding statements in the classigdl-algorithm
theory [7]. Also notice that the generalized eigenvalues of the cyclic

whereU is an upper triangular matrix. Since this updating involveg,5irix pencil=€ — A in (11b), which are given by the zeros of (17),

unitary transformations only, it does not change (=€ — .A) except
by a factor of modulus one. Hence regularity:6f—.A is not affected.
Next, do aperfect shuffleon (15) with the permutation vector

p=[lin:1+(K-1)n,2:n:24+ (K- n, -, n:n:nkK]

to get (using Matlab notation)

zE[p. p] — Alp, p]
D D D
D D
D
Cc C C
C C
— : n block rows and columns
C

(16)

where D is diagonal andC' is circulant, and where théi, j)th
element of (16) is thep(i), p(j))th element of (15). Again, this

does not affect regularity. Now, (16) is block upper-triangular, and

are theK'th roots of (12). Of course, (12) gives the eigenvalues of
the monodromy matrif1] (Exz'Ax) --- (Ey ' A2)(E;7" A1) when
it exists, i.e., when the&; matrices are invertible [2].
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