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Abstract

We study the I%-induced norm, or Heo-norm, of discrete-
time periodically time varying (PTV) systems and pro-
pose a quadratically convergent algorithm to compute
it. Our method involves numerically stable computations
(periodic Schur decomposition) and works even for the de-
scriptor case. This work has connections to stability radii
problems. Among other things, we clarify the relationship
between various TI representations of a PTV system.

1 Introduction

We consider the periodically time varying (PTV) system

keZ,

E =A Bruy,
o { kTh+1 kT + Drug (1)

yr = Crp + Dyuy,

where 7 is the set of integers, 2y is an n-dimensional vector
of descriptor variables, u; 1s an m-dimensional vector of
input variables, y; 1s a p-dimensional vector of output
variables, and K is the smallest positive integer for which
By = Eryk, A = Apyr, By = Bryr, Cr = Cryr, Dy =
Dyyk, Vk € 7Z. The matrices Fi, Ak, Br, Cr and Dy
are real, with sizes n X n,n x n,n x m, p x n and p X m,
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respectively. Throughout, we shall represent vectors by
lower case characters, and matrices by upper case. Our
aim in this note i1s to compute the H. ,-norm of X.

First of all, what do we mean by the H.,-norm of X7
The answer is that, as long as the map from the inputs
uy to the outputs yi in (1) is well defined and [?-stable, %
has a finite {2-induced norm—this is what we call its Hoo-
norm. We remind the reader that, for any integer multiple
M of K, the M-lifting [1, 2] of ¥ has the same [?>-induced
norm as X—lifting is an isometry. Moreover, because the
lifted system is time invariant ('TT), the usual definition
of H.o,-norm holds for it. Thus, one way to think about
the Ho,-norm of ¥ is to go through its lifted system.

2 Lifting and Stacked-forms

The foregoing discussion seems to suggest that, before we
start, we need a suitable realization of the lifted system.
Towards this end, we introduce some notation. Given
re,Qe, £ € 7, and two integers k,h, let ri(h) and Qg
denote, respectively, a concatenated vector and a block-
diagonal matrix:

r,f(h) = [rg+hK7 rg+hK+1v S rg—th—l—K—l]ﬂ

Qr = diag{Qr, Qrt1, - - -, Qryr—-1}-

‘We reserve bold face characters for vectors and matrices
of ‘big’” dimension (a multiple of K). Using this, we can
rewrite (1) as

3

{ Ekxk+1(h) = Akxk(h) + Bkuk(h), (2)

Vi (h) = Crxp(h) + Dyug(h),



one of k, h € Z held constant. If h = hg is held constant,
is still PTV in k& with period K in fact, (2) is nothing but
K copies of (1) running in parallel. On the other hand,
if & = kg 1s held constant, ¥ becomes time-invariant in h
since Ei, Ay, etc., do not depend on h. For each fixed
k = ko, (2) is a non-minimal realization (involving polyno-
mial matrices, as we shall see soon) of the corresponding
K-lifting of ¥ and 1s termed the stacked form at kq; we de-
note it by X} to emphasize that kg is constant. Because
¥ 1s periodic, it has only K different K-liftings and hence
stacked forms, corresponding to kg = 0,1,..., K —1. The
stacked form representation was first proposed by Gras-
selli and Longhi [3] in the context of standard state space
systems (Ex = I, in (1)).

The various stacked forms Xj, ~are related to one an-
other in an interesting manner. Before we can state this
result (Lemma 1), however, we must introduce the trans-
fer function of X} . Let A be the one-step forward shift
operator in k, defined by

/\l‘k = Tk+41, Vk S Z,

and let z := XX, Thus zz;, = Tk+k, Vk € Z. We can think
of z as the one-step forward shift operator in h for the
big vector xy,(h), because zxg,(h) = xp,(h + 1), Vh € Z.
Define the jK x jK matrix

Ry(z) = [;}] I<K0‘1>f] , i>0:eC

where C is the set of complex numbers. Tt is easily verified
that

Kyt 1(h) = R (2)xi, (B).

Therefore, taking z-transforms in (2), we obtain the trans-
fer function of X as

Wku(z) = Cku(EkuR”ﬂ(Z) - Aku)_lBku + Dku' (3)

Lemma 1. Let ko be a fixed but arbitrary integer. All
TI systems X}, have the same Ho,-norm. In other words,
if Wy, (z) denotes the transfer function of X, , then

||Wk0(2) ||Oo = eéﬁfﬁ] Omax (Wk‘u (619))

is independent of kg.

Proof. Since

Epo41 = Rn(Z)EkuRr_Lll(Z)v
Agorr = Ro(2)Ag R (2),
Bio41 = Rn(Z)BkOR_l &

Dyo41 = Ry(2)Di By, (2),
for all kg € Z, z € C, we have the following simple relation
between the transfer functions of ; and X}, ;.

1
(2),

Wku-l-l(z) = RP(Z)W/% (Z)R;z ko€ Z,z€ C.

At first glance, this does not seem to have led us anywhere,
but notice that z is restricted to the unit circle when com-
puting H..-norms. And, because R, (eje) and Rn(ée) are
unitary matrices, Wy, 41 (e/?) and Wy, (¢/?) have the same
singular values! Tt then follows trivially that Wy, 41(2)
and Wy, (z) have the same Ho,-norm. This holds for all

ko € Z, proving the claim. |

Lemma 1 shows that we can use any EZD to compute
the Hoo-norm of . We shall now examine X3, given by
putting & = 1in (2), a bit more closely for later reference.
Using E; - x2(h) = Ei - R,(X)x1(h), we arrive at the
following detailed equations for 37:

E1 Al
Xl(h) = : Xl(h)
' K—1 Ar—1
X< Eo Ao
B
+ ul(h)v
Br_1
By
Ch
yl(h) = . Xl(h)
Cr_1
Co
D
+ i (h). (4)
Dy
Do

To give additional insight into our approach to com-
puting the H.,-norm of X, we mention the following: for
standard state space systems, it can be proved [3, 4] that
EZD has the same transfer function as the well known as-
sociated system at ko [2], viz., the minimal TT representa-
tion of ¥ involving the monodromy matrix. This is hardly
surprising because both X} ~and the associated system re-
alize the same input-output map—the K-lifting at kg of
¥.. One could in fact start with EZD and, by strict system
equivalence transformations, obtain a minimal realization
similar to the associated system at ky. The advantage
of this method [5] is increased numerical accuracy—only
unitary operations and linear system solves are used, and
explicit formation of matrix products is avoided. Recall
that the associated systems require computation of the
monodromy matrices.

When Fj, are singular, the associated systems do not
even exist and we must deal with the stacked forms.
Unfortunately, it turns out that it is not easy to com-
pute the H.,-norm of stacked forms. An intuitive rea-
son for this 1s that stacked forms involve matriz polyno-
mials rather than matriz pencils—as (3) and (4) clearly
show—and this makes them harder to handle. One could,
of course, proceed along the lines of [5] and construct a



minimal descriptor realization from EZD by strict system
equivalence transformations—this work is currently under
progress [15]—but such methods to arrive at a TT matrix
pencil representation of ¥ involve a lot of computation
and can be cumbersome. We shall see that the extended
form, to be introduced next, ameliorates this difficulty and
fits our requirements perfectly. It is the representation we
will use to compute the H.,-norm of X. It involves matrix
pencils only and, moreover, can be written down directly
(without any computation).

3 H.-norm and extended form

We now leave stacked forms and introduce another TI
representation of X, using a method due to Park and Ver-
riest [7]. Once again we start with X given by (2), but
this time treat 1t as a PTV system in k. We fix h = 0,
and refer to r(0) as simply ry. Equation (2) then reads

(ha)
(5b)

Erxp41 = Arpxy + Bruyg,
yr = Cpxy 4+ Dyug,

k € Z, and is merely K copies of ¥ running in parallel,
successively offset in time-index by one. Next, we define
M; to be the jK x jK generator of a cyclic group of order
K:

|0 Ik -1y :
M; = [Ij 0 , 3>0,

and perform the following transformations:

1. X = Mrgk_l)ﬁk,
2. premultiply (5a) by Mn_k7
3. u, = M,l;ﬁk, and

4. premultiply (5b) by Mp_k.
Due to the identities

M, E;M; ' = By,
M,A M = Apyi, MBM,,' = By,
M,C;M; ' = Cyy1, M,DM,;" = Dy,

this yields, rather pleasantly, a TT system

F . {5f<k+1 = Axy, + Bii, ke,

where

£ .= M;*E,M}F = E,,
A= M7*AME ™Y = M7'Ay, B := M7*B,M”", = By,
C:= M;*C, M = M;'C,, D= M;*D, M}, = D,.

Let W()) := C(A€ — A)~1 B+ D denote its transfer func-
tion. We call this new TI representation the extended form
(of ¥) and write it in detail below to facilitate comparison
with 23 in (4):

/\Eo AO
/\E1 Al
f(k = jZk
AEr 1 A
By
B
+ Uz,
B
L ©
o
Ch
Ve = Xk
Cr_1
Do
D,
+ Uy
D1

Remark 1. All the four transformations involved in go-
ing from (5) to (6) are K-periodic and reversible—we can
switch back and forth between the two systems. While
transformations 1 & 2 affect only internal book-keeping
and don’t change the inputs or outputs, 3 & 4 permute
the inputs and outputs themselves. Together, they con-
spire to produce a TI system from a PTV one.

We justify our introduction of the extended form X
through the following lemma which clarifies its connection
to lifting.

Lemma 2. The TI system X, described by (6), has the
same H.,-norm as any of the TI systems X, , and thus
the same H.,-norm as X.

Proof. Tt is well known that the transfer function W(X)
of the extended form XF is the Schur complement of its
system matrix [6],

A—XE|B
c |D|

Similarly, for the stacked form X3, the transfer function
W; (M) is the Schur complement of its system matrix,

[A1 —Ean()\K)|B1]
C; D, |



It can be verified that

MY A — ElR.n(/\K))|Mn_1B1] _

<, [ D,
r I, -
/\—(I\'—l)[_ﬂ
A2,
A,
/\—(K—l)[p
A2,
A1,
L Iy _
[A - \E|B
— ¢ D
-/\I\"—ll_n b
NI,
ALy,
In
I,
/\I\"—l[_m
NI,
| Aoy, ]

Taking Schur complements, we can therefore relate

Wi (XY and W()):

A (K=1p,

W, (/\K) =

It now follows, by an argument similar to that used to
prove Lemma 1, that W, (e/) and W(e/?) have the same
singular values; hence Xf and 37 have the same H..-
norm. Lemma 2 then follows trivially from Lemma 1. O

4 Main result

We shall derive our result for the H,,-norm of the periodic
system ¥ by making use of the TI system X°. Computa-
tion of the H,-norm, or its reciprocal the complex stabil-
ity radius, for TT systems has been well studied, in both
the discrete-time [8] and continuous-time [9, 10, 11, 12]
cases.

First, we need the following TT result.

Proposition 1. Consider (E,A,B,C,D) € " x
O x O x CPX? x CP*™ and assume that AF — A
has no eigenvalues on the unit circle A = &% 6 € [0, 27].
Let W(A) = C(AE — A)™'B + D. For ¢ not a singular

value of D,

E ¢BR™'BH
0 A"+ CHDR'BH
has eigenvalue el?

)

W (e)?) has singular value ¢,

\ ] _ [A—BR—lDHC 0

—¢cts-1c —pH

where R := DUD — ¢2] and S := DD" — ¢?].

Proof. We prove the if part first. Let u and v be singular
vectors of W (e?) corresponding to the singular value ¢,

[C(e*E - 0)7" B+ Dlu=¢v,
B (¥ B — A™) T e 4 DP o = "
Define
r:=(*E— 4)" Bu,
5= eI (eI EH — AT) T OMy,
Equation (7) then becomes

Cr+ Du = &v,
' BHg 4+ pHy = Eu,

b= [ 5] [Fat []

_ —R'DHC —E’R_lej?BH r
T | —=¢S7'C —DR™ ' BH| |s|-

or

)

The required inverses exist because of our choice of ¢, 1.e.,
it is not a singular value of D. Plugging (9) into (8), we
get
(¢®F—A)r=B-u=—-BR'D"Cr — ¢ BR™' BYs,
(e_jeEH - AH)S =
e e .y = —¢e s Cr — CHDR™' BY,

which, on rearranging, is nothing but the eigen-equation

A—BR'DAC 0 ] [r
—echsTie —pH] |s
W[F  ¢BR'BY "
= [0 _AM CHDR—lBH] [5] - (10)

This concludes the proof of the if part. For the only if
part, we can essentially reverse the above steps and go
from (10), (9) to (8), (7). In that case, u,v would be
defined by (9), and (8) would follow from (10) because
of (9). O



For the special case of £ = I, D = 0, Proposition 1
appeared in [8] in the context of complex stability radius
of TT systems. Tt was also used in [13] for the special case
of D = 0 to find the real stability radius of TI systems.

The usual SVD enables us to find the singular values of
a transfer function matrix at a given frequency point el
Proposition 1, on the other hand, enables us to find the
frequencies corresponding to a certain singular value (or
level) &. This, alongwith knowledge of “level sets” on the
unit circle leads to quadratically convergent algorithms for
the Hoo-norm. We can expect a similar convergence rate
when using these ideas for H,,-norm of the TT system X°.

Our main result in this paper is the periodic version of
Proposition 1.

Theorem 1. Consider a set of K-periodic matrices
(Fr, Ak, B, Cr, Di) as in (1) and assume that \é — A
has no eigenvalues when X\ = e 0 € [0,2x]. Then, for ¢
not a singular value of D, k=0,1,..., K — 1,

the periodic pencil A\Gy, — Hy,
has eigenvalue ¢’ <= W(e)) has singular value ¢,

where
o | B ¢By R ' B!
Tl o —AF 4+ CPDLRIBY
_[Ax = BxR;'DEC, 0
Hi "[ —¢chslo,  —EH| (11)

Ry = DjIDy, — €21, Sy := Dy D} — €71,

Proof. As explained previously, for the purpose of com-
puting the H.,-norm, we can work with X instead of X.
Invoking Proposition 1 for the TT system X, we see that
the pencil of interest is

\ [5 ¢B(DUD - ¢21) ' B
0 —A" 4 cHD(DHD — ¢21)” ' B
A-B(D"D -2 'Dle 0
—ecH(DDY —¢2r)T'e —gR|’

Through simple block-row and block-column permu-
tation operations, specifically, premultiplication with
diag(I, e, M, ") followed by a perfect shuffle, this becomes

Go HO
G1 Hl
(12)

Gr_1 Hrs

where Gj and Hy are as given in (11). This completes
the proof because the above pencil is equivalent to the
periodic pencil AGy — Hy, [14]. O

We conclude this paper with a cautionary remark on im-
plementing Theorem 1: the use of X is chiefly for con-
ceptual purposes; in practice, one would solve the peri-
odic eigenvalue problem which arises at each step by us-
ing the periodic Schur algorithm [14] on the periodic pencil

MGy — Hy, and not the usual @ Z-algorithm on the pencil
in (12).

References

[1] P. P. Khargonekar, K. Poolla, and A. R. Tannenbaum,
“Robust control of linear time-invariant plants using pe-
riodic compensation,” TFEFE Transactions on Automatic
Control, vol. AC-30, pp. 1088-1096, November 1985.

[2] R. A. Meyer and C. S. Burrus, “A unified analysis of mul-
tirate and periodically time-varying digital filters,” ITEFFE
Trans. Circuits and Systems, vol. 22, pp. 162-168, 1975.

[3] O. M. Grasselli and S. Longhi, “Finite zero structure of
linear periodic discrete-time systems,” Int. J. of Systems
Science, vol. 22, no. 10, pp. 1785-1806, 1991.

[4] O.M. Grasselli, S. Longhi, and A. Tornambe. On the com-
putation of the time-invariant associated system of a pe-
riodic system. In Proc. Amer. Contr. Conf., Seattle, WA,
1995.

[5] P. Misra, “Time invariant representation of discrete pe-
riodic systems,” Automatica, vol. 32, no. 2, pp. 267-272,
1996.

[6] H.H. Rosenbrock. State Space and Multivariable Theory.
John Wiley, New York, 1970.

[7] B. Park and E.I. Verriest. Canonical forms on discrete
linear periodically time-varying systems and a control ap-
plication. In Proc. 28th IEEF Conf. on Decision and Con-
trol, (Tampa, FL), pp. 1220-1225, Dec. 1989.

[8] D. Hinrichsen and N. K. Son, “The complex stability ra-
dius of discrete-time systems and symplectic pencils,” in
Proc. TEFFE 28th Conference on Decision and Control,
(Tampa, FL), pp. 2265-2270, 1989.

[9] D. Hinrichsen, B. Kelb, and A. Linnemann, “An algorithm
for the computation of the complex stability radius,” Au-
tomatica, vol. 25, pp. 771-775, 1989.

S. Boyd, V. Balakrishnan, and P. Kabamba. A bisection
method for computing the H., norm of a transfer matr ix
and related problems. Mathematics of Control, Signals,
and Systems, 2:207-219, 1989.

[10]

[11] S. Boyd and V. Balakrishnan. A regularity result for the
singular values of a transfer matrix and a quadratically
convergent algorithm for computing its L., norm. Systems

and Control Letters, 15:1-7, 1990.

[12] N. A. Bruinsma and M. Steinbuch, “A fast algorithm to
compute the H. norm of a transfer function matrix,”

Systems & Control Letters, vol. 14, pp. 287-293, 1990.
J. Sreedhar, P. Van Dooren, and A. L. Tits, “A fast

algorithm to compute the real structured stability ra-
dius,” in Stability Theory: Proceedings of Hurwitz Cente-
nary Conference, Ticino, Switzerland, May 21-26, 1995,
Birkhauser Verlag AG, 1996.

A. Bojanczyk, G. Golub, and P. Van Dooren. The periodic
Schur decomposition. Algorithms and Applications. In
Proceedings of SPIE, volume 1770, pages 31-42, 19-21
July, San Diego, CA, 1992, USA.

(13]

[14]



[15] J. Sreedhar, P. Van Dooren and P. Misra, “Minimal order
time invariant representation of periodic descriptor sys-
tems,” TEEFE Intnl. Sympo. Computer-Aided Cntrl Syst.
Design, Dearborn, MI, USA, Sept 15-18, 1996.



