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ABSTRACT

We sketch an algorithm for the computation of the real Hurwitz-
stability radius, based on a formula recently obtained by Qiu

et al. (Automatica, vol. 31, pp. 879-890, 1995). Numerical

evidence suggests that the rate of convergence is quadratic.

1. Preliminaries

Let us denote the singular values of a p X m matrix, ordered
nonincreasingly, by ox(-), ¥ = 1,2,...,min{p,m}. The real
structured Hurwitz-stability radius of (A4,B,C) € R™*™ x
R™ ™ x RP*™, with A Hurwitz-stable, is defined [1] as

rp(4, B, C) :=inf{r1(A) : A+ BAC is not Hurwitz-stable}.

Qiu et al. [2] proved that

rR(A,B,C) = {L“éﬁ? #R[C(ij—A)'IB]}_ . W

where, for any M € C™>?,

. Re M —~vIm M
HR(M) _7é%£1] 72 ([ ¥ mM ReM ]) - @

In this note, we propose an efficient algorithm for the compu-
tation of rp(A, B, C) via (1) and (2). Let a transfer function
matrix be given through G(s) = C(sI — A)™'B and let A be
Hurwitz-stable. For £ > 0, define the Hamiltonian matrix

A BB™/¢ ] .

H(¢, A B,C) = [ _CTCle AT (3)

The following result is well-known:

Proposition 1 For all w € R, ¢ is a singular value of G(jw)
iff jw is an eigenvalue of H(¢, A, B,C).

We seek to adapt this result to compute rpp(A, B,C). For
v € (0, 1], let us use G to define a new transfer function matrix

ReG  +jImG ]

PG =1 ~1mG ReG

(4)

This paper presents research results of the Belgian Programme
on Inter-university Poles of Attraction, initiated by the Belgian
State, Prime Minister’s Office for Science, Technology and Culture.
The first two authors were supported by a UCL Research Grant
FDS 729040 and by NSF, grant CCR 9209349; the third author was
partially supported by NSF, grant DMI-93-13286, and was on sab-
batical leave at Université Catholique de Louvain when this research
was initiated.

0-7803-2685-7/95 $4.00 © 1995 IEEE

Paul Van Dooren

CESAME, Batiment Euler,
Univ. Catholique de Louvain,
1348 Louvain-la-Neuve,
Belgium.
e-mail: vandooren@anma.ucl.ac.be

André L. Tits

Dept. of Electrical Engineering
and Inst. for Systems Research,
University of Maryland,
College Park, MD 20742, USA.
e-mail: andre@src.umd.edu

which is unitarily equivalent to the matrix in (2) with M =
G(jw), so the two have the same singular values and we can
limit our attention to P(v,G). Using

1 1 ~I
TV.—%[‘Y—II ——I]’ (5)

it is easy to verify that

G 0

P(‘y,G):T.,[ 0 _G‘}T’rv (6)

where the left and right T, matrices are of dimensions 2p X
2p and 2m X 2m, respectively. This leads to the promised
adaptation of Proposition 1:

Theorem 1 Let v € (0,1] and ¢ > 0 be given. Then, for
all w € R, ¢ is a singular value of P(v,G(jw)) iff jw is an
eigenvalue of H(§, A, By, C,), where

< Ta o] 5 _ ., B +B
A“[o -A]’B7_75[—7"‘B B]’

Proof In view of Proposition 1, it is sufficient to verify that
P(7,G(jw)) = Cy(jwl — A B,,

which follows, after some algebraic manipulations, from (6). B

2. Outline of iterative algorithm

The Hamiltonian matrix H(¢, A, B,, C,), which we shall de-

note by H (€,+) to save space, plays an important role in our

algorithm. Define
E:=max pp[G(iw)] and Q:=argmax pp[G(iw)],
WGIR wE]R

assuming that such a unique maximizer exists. Suppose that
at each iteration, k = 0,1,..., we are given wg, the current
trial frequency, and a “maximizing set”, Sk, containing 2. We
maintain two quantities Zx and 2k, our best approximations
thus far of = and Q, respectively, with Zx = pp[G(iQ%)].
(We can begin with an arbitrary wo, and S = (—00, 00), (o =
wo.) We perform the following sequence of steps at iteration k.
First, determine pR[G(jwk)]; assume that the inf is achieved
at v = 7:% and call it &x:

£k 1= m‘;n o2(P(7, G(jwk))) = 02(P (75, » G(iws)))-

126



If §k > Zk-1, take Zp = €k, Ok = wi, otherwise keep the old
estimates, i.e., Zf = Zg_1, x = Qx—1. Next, find the “level
set” Rk = {w : 02(P(v,,G(jw))) > Zx}. By Theorem 1, the
pure imaginary eigenvalues of H(Zx, v, k) are exactly those w
for which some singular value of P(y;k,G(jw)) equals Zg; the
endpoints of the frequency intervals where o2(P(v;, , G(jw)))
exceeds Zx must be among these and can be identified using
the signs of their derivatives’ with respect to ¢. As illustrated
in Fig. 1, the derivative-signs allow us to indez the singular
values equal to Zj; and also to identify the intervals where
02(+) > E. Since any frequency point & not in Ry satisfies
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Figure 1: Using derivatives of imaginary Hamiltonian eigen-
values to find Ry == (—8;1,—82) U (=83, +83) U (82,681).

HR(G(i@)) < o2(P(7.,, G(i@))) < Ex,

the global maximizer Q of up(G(jw)) cannot lie outside Ry,
if Rk # 0. Thus, by setting Sk+1 = Rk N Sk, we can bracket
Q at every iteration. As for the next trial frequency wg+1,
if Sk4+1 contains more than one interval we set wiy1 equal to
the midpoint of the largest such interval; otherwise we follow a
more complicated rule which sometimes involves cubic-fit (two
function values and two derivatives) of pp. A more detailed
description of the algorithm can be found in [3]. In our numer-
ical tests we have observed that, eventually, Sk always reduces
to a single interval and that the cubic-fit rule appears to lead
to quadratic convergence (of Zx to ).

3. Numerical example

Let us take the example given in [2],
n=4m=2,p=2,

79 20 -30 -20 0.2190 0.9347

A= -41 12 17 13 B=| 0.0470 0.3835
- 167 40 -60 -38 |'T 0.6789 0.5194
33.5 9 -14.5 -11 0.6793 0.8310

0.0346 0.5297 0.0077
0.0535 0.6711 0.3834

0.0668

¢= [ 0.4175

and choose wo = 0 (v = 1). In Fig. 2, the solid curve de-
notes pp[G(jw)] and the horizontal (dotted) line the level
Zo = p]R(G(jwo)) = 0.932. The first two steps (k = 0, 1) of our
algorithm can be understood by studying the dashed curves in
Fig. 2 which represent o2(P(7},,, G(jw))) and o2 (P(75,, G(iw)))-
For the first step, Ro = (6 x 107%,12.05) = S; and the next
trial frequency, marked with an ‘x’, is w; = 6.02 (midpoint of
S1). Optimizing with respect to ¥ at w; yields v;, = 0.1365
and R; is found to be the union of two “oe-intervals”. Inter-
secting Ry with S; gives S» = (0.131,2.037) U (9.255, 12.05);
the next trial frequency w2 is 10.65 {(midpoint of the larger in-
terval in Sz, marked with an ‘0’) and so on. Some quantities of
interest at each iteration are shown in Table 1. As can be seen,
the number of significant digits of = doubles at each step for
k = 2,...,5, suggesting that the algorithm is quadratically
convergent. The maximum (1.9450) of up(G(jw)) occurs at
w = 1.38 and rp(A, B, C) = 0.5141.

! More precisely, the imaginary part of their derivatives.

[

- sigma2 curve throug'h (0, 0.93). Gammax=1.

S_1=(60-8 12.05), w_1 = 6.02
2.5} —.-. sigma2 curve through (6.02, 0.4325). Gamm,ﬁx\ses,
S 2 = (0.131 2.037) U (9.255 12.05), w_2 = 10.65 N
1
1

15

Figure 2: Iterations 1 and 2 for Example, with wo = 0.

Table 1: Convergence of Skt for Example with wo = 0.

Sk size of
k Wi Qk Sk+1
[digits] Sk41
0 0 0 0.932 [0] | (6e—8,12.05) | 12.05
1| 6.02 0 0.932 [0] | (0.131, 2.037), | 2.79
(9.255, 12.05)
2 | 1065 | 10.65 | 1.177 {1] | (0.699, 1.922), | 1.224
(10.65, 10.66)
3 | 1.311 [ 1.311 | 1.919[2] | (1.311, 1.440) | 0.13
4 {1376 | 1.376 | 1.945[6] | (1.376, 1.378) | 0.002
5 | 1.377 | 1.377 | 1.945 [11} | (1.377, 1.377) | le-7
4. Conclusion

We have sketched an algorithm for the computation of the
real Hurwitz-stability radius. Preliminary computational ev-
idence suggests that its local convergence rate is quadratic.
The discrete-time version of this problem can be solved in
much the same way by considering symplectic pencils rather
than Hamiltonian matrices and using level sets on the unit cir-
cle rather than on the jw axis [3]. Finally, a related algorithm
can be used for the computation of an upper bound to the
p-norm of a transfer matrix. This is discussed in [4] where a
proof of global convergence is also given.
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