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Abstract

This paper explores the implications of assuming
a system to be smoothly time-varying for least
squares based system identification, as well as
conditions under which least squares solutions are
smoothly time-varying. By requiring persistent
excitation and that the order of the model be cho-
sen appropriately, using a standard singular value
based scheme, it is shown that the subspace track-
ing, least squares and total least squares prob-
lems all yield smooth solutions. Specific tracking
bounds are given, which show that any smooth
system which realizes the input/output relation
with small error must be close to the least squares
solution. This indicates that if smoothness is
desired, the least squares estimate is a reason-
able choice. The underlying matrix problem has
Toeplitz structure which can be exploited in the
algorithmic implementation.

1. Introduction

There are many applications of system identifi-
cation in the fields of adaptive control and sig-
nal processing. When on-line estimates of chang-
ing system parameters are desired, it is usu-
ally assumed that these parameters change slowly
enough for the identification algorithm to track
them with a small, bounded error. This paper
considers significance of smoothness from a some-
what broader perspective. Three issues are in-
volved. The first is the ability of the identifica-
tion algorithm to track a smooth model when the
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order is estimated appropriately. The second is
to find circumstances under which the estimates
themselves will be smooth. The third is to find
circumstances under which a smooth model of a
given order can be fit to a set of input/output
data.

Before the identification algorithm can even be
applied, it is necessary to have an estimate of
the system order. However, a unique order for
a time-varying system is not a well defined con-
cept. In fact, any pair of input and output se-
quences, u; and y; can be realized by a zero order
time-varying system

Yt = Eﬁut = oo(t)’ut,

Uy :
and if |6o(t) — 6o(t — 1)} < A for some small
A, then this would seem to be a reasonable
model. Even data taken from a higher order time-
invariant model will have such a zero order time-
varying representation. It seems that it is nec-
essary to choose the order appropriately to fit
a smooth model to the data. This paper sug-
gests that choosing the order to give a smooth
model is a reasonable approach to order estima-
tion and shows that this can be achieved for mod-
els derived from least squares problems by using
a standard singular value based order estimation
scheme.

Given the scalar input and output sequences u;

and y; we define the vector
¢T: [ Y Uz Yi—nt1 Uten4l ],

where n is the presumed system order, and the



block Toeplitz matrix

4
¢
A=W | )
o7
where
W, = diag(A*,A*"1,...,1)

for 0 < X < 1is a weighting matrix. A, has the
structure of a block Toeplitz matrix multiplied by
the diagonal weighting matrix W;. Such a matrix
allows fast updating of the least squares solution
as rows are added. We also define

A? = [ ¢’tr Yi+d Yt4d-1 Ye41 ]

and

Ya Yd-1 o
Yd+1 Yd e Yo
By =W, . . .
Ydpt  Ydyt-1 Y141
Generally for system identification d = 1, but for
much of this paper, the more general case will be
considered.

In a least squares scheme we are interested in find-
ing X; to minimize

PEY

This is a standard approach for system identifi-
cation and can be easily implemented recursively.
Because of the block Toeplitz structure of the
data matrix A, the problem of finding X, recur-
sively from X,_; can be done quickly, in O(n)
time. The algorithms to do this take several
forms. Examples are the fast transversal filters
algorithm, [1], the RLS lattice algorithm, [4], and
the QR-based fast least squares algorithm, [5].
Some of these algorithms do not explicitly com-
pute the least squares solution, but instead com-
pute residuals. This sometimes limits the range
of applicability of the algorithm to adaptive fil-
tering rather than system identification, where an
explicit solution is needed.

2
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For total least squares we wish to find X; so that

[ A+A B +B ]{_XI‘d]=o
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where A; and B, are chosen to satisfy
. PP

min A: B .

range(B.+B.)Crange(A,+4:) It 4 5 ]"F

Both the LS and TLS approaches give explicit

estimates of the system. In the case d = 1, they

can be viewed as an attempt to estimate a vector
v; for which

Y = ¢’¢T_1Ut-

The subspace tracking problem involves finding a
basis for the right singular vectors associated with
the d smallest singular values, g2p41,...,0m44d.
In the case d = 1, the (2n + 1) right singular
vector provides an estimate of an implicit form of
the system with norm one. An implicit form of
the system is a vector v, for which

&?vt =0.

The total least squares and subspace tracking ap-
proaches are not as commonly used in system
identification and cannot be implemented as con-
veniently in recursive form as the least squares ap-
proach. Their presence in this paper is primarily
to provide intermediate results which can be used
to derive smoothness properties for least squares.
The order estimation scheme considered here uses
singular values of the matrix [ A, B, ] The
subspace tracking and total least squares prob-
lems are characterized in terms of the singular
vectors of the data matrix. This makes it easy to
derive smoothness results for these two schemes
using constraints imposed through order estima-
tion. The results are then extended to the least
squares approach.

We make the following assumptions about the sin- k
gular values of various matrices

1. o2n(4;) > p and od(B;) > pfori=1tt-1.
2. o1(A;)<Pand oy(B;)<pfori=t,t—1.
3. oant1 ([ Ai Bi])Svfori=ti—1.

4. o ([ Ai Bi])2ofori=ti-1.

The first two assumptions are persistency of ex-
citation conditions and are equivalent to assump-
tions on the conditioning of the least squares
problem. These conditions are common in the
system identification literature. Since the squared
singular values of A; correspond to the eigenval-
ues of AT A;, the inequalities applied to A; are



equivalent to

PPI<Y XNig;6T <PI

j=0

The existence of such p and 7 is implied if there
exists s, @ and 3 such that

48 ’
al <Y ;6] < B

j=t

for all . This a standard persistence of excitation
condition, and the proof that this implies the ex-
ponentially weighted condition can be found in
[3]. Similar conditions can be stated for B;.

The third and fourth assumptions are the ones
which determine the fitness of the order of the
model. Taking d = 1, if v/o, the noise-to-signal
ratio in a subspace tracking context, is small, then
the data can be closely approximated by a time-
invariant system of order n over the time period
of interest (defined by the exponential window).
This approach without exponential weighting is
standard for estimating the order of a time invari-
ant system. In the exponentially windowed case,
if the same sort of gap holds for all time, then
it seems reasonable to assume that the data can
be well approximated by a slowly time varying
system. This is in fact the case; and such sys-
tems can be generated by standard least squares
system identification schemes.

The assumptions on the singular values will
be used to prove smoothness for the identifica-
tion approaches discussed previously, as well as
bounds on the errors each algorithm achieves in
reconstructing the data. In a practical scheme,
the bounds on the singular values, and hence the
smoothness -bounds, would hold only for suffi-
ciently large ¢t. The derivations will make no men-
tion of this because to derive a maximum change
in going from time ¢t — 1 to time ¢, it will only
be necessary to assume that the singular value
bounds hold at ¢t — 1 and ¢.

The results proceed in stages with each depending
on the previous one. The first is for subspace
tracking. The result for that algorithm is used to
derive smoothness for total least squares. Finally,
the total least squares result is used to derive a
bound for the least squares solution.
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2. Smoothness for Subspace Tracking

We wish to find smoothness bounds for the right
singular subspace of [ A; B: | associated with
the singular values o2,41,...,02n44- Let the
SVDof [ Ar B: | be

PYTIEENE

where $,(t) is d x d and £,(t) is 2n x 2n.

We wish to find a bound on the distance between
the small singular subspaces, and hence the pro-
jectors, from one time step to the next:

d(e) = |IVva()V5 () = Valt — D)V (¢ = D).

The matrix norm used here is the one induced by
the Euclidean norm.

The process starts off by  showing
that [ Ae-1  Bi—1 ] Va(t) is small. The bound
is
14
Il A B w0, <%

The next step is to use (1) to bound the com-
ponent of the columns of Va(t) which is in
range(Vi(t — 1)). To do this, let

Va(t)=C+ D

where V,F(t — 1)D = 0. Every column of C is
in range(V2(t — 1)) and every column of D is
in its orthogonal complement. This implies that
CTD =0 and I = CTC + DTD. The inequal-
ity (1) can be used to show

d(t) = IDll2 < 1 )

The result shows that when the gap between the
singular values is large, the right singular sub-
space associated with the small singular values
changes slowly. Here neither of the persistence of
excitation conditions were used. Since they are
equivalent to assumptions about the conditioning
of the least squares problem, they will be useful
in translating the bound in (2) to a bound for the
least squares and total least squares problems.

3. Smoothness for Total Least Squares

For the case of d = 1, the right singular vector
v(t) associated with o3,41(t) provides an esti-
mate of an implicit system giving y; from u;, in



the sense that N

$7 va(t)
is small. One approach to finding an explicit
model is to divide the first 2n components of v,(t)
by the last component. For the more general case
when d # 1, if the matrix of right singular vectors
is further partitioned as

Vii(t) Vit
[ v v l= [ ‘/2,8 sz&g ]

where Viy(t) is d X d. The total least squares
solution is given by —V;5(t)Vy3'(t). To insure in-
vertibility of Va3(t) we assume that p > v. [2]

In fact, more than invertibility of Voa(t) will be
required. Since can be shown that

drrs(t) < IV (L + (|Vaz[13)-
IVa@®)V5" (2) — Va(t — 1)V (t = 1)||2

we derive a bound on [|V;3}(t)||

V'Ol < 575

For simplicity the bound on ||V,3}(t)|| will be rep-
resented by a single constant

Va2 (Ol < K,
giving a final form to the bound of
drrs <K2(1+K)-—V—. (3)
- Ao

There are no projections involved in the expres-
sion. Unlike the subspace tracking problem, this
result does not show a bound for the subspace
spanned by the solution, but for the solution it-
self. It is the first result in this paper which ap-
plies to an explicit solution. The second is the
least squares solution and it will be shown to be
smooth through the use of (3).

4. Smoothness for Least Squares

The least squares solution is given by choosing X,
to minimize

min ”A:X; - Bt“%‘-
X

The approach to proving its smoothness is to
show that it is close to the total least squares
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solution. If v is small then it follows that the set
of equations A;X: = B; is nearly consistent, in
the sense that,
X~ Bll, < ||[ 4 B: | Va(®)(Vaz' @)
< K.

If the equations have an exact solution, then the
total least squares and least squares solutions will
both equal the exact solution. It seems plausi-
ble that if it is possible to solve the equations
with small residual, then the two solutions will
be close. This is in fact the approach that is
used here. For additional discussion of closeness
of least squares and total least squares residuals,
see [6]. As in the proof of smoothness for the
small right singular subspace, we decompose the
solution into its components in range(V;(t)) and

range(Va(t)),
[ X ] = Va(t)C + Vi(t)D.

It can be shown that

Kv
D < —,
" ”2 ="

Using this fact we find that,

Xt + Vi @)(Vaz @), < gi%l)‘lﬁ

Putting together the bound for the difference be-
tween least squares and total least squares and
the smoothness result for total least squares gives

K
X=Xl s ka4 ) (24 5) 2 @)

Since the bound has v/o as a factor, it goes
to zero as v becomes small compared to ¢. In
the case » = 0, the data can be modeled by a
time-invariant system, and this result shows that
the identification algorithm will produce a time-
invariant solution.

5. Tracking Error for the Implicit
Solution

In this section we are concerned with the special
case d = 1. Given a sequence of vectors 9; for
which

¢To(t)=0 (5)



for all ¢, where in this case,

éf = [ o) ée-1],

We are interested in determining how good an
estimate va(?) is of ©,. We make a smoothness
assumption about 9;, requiring that

6067 — 9e-19{_4]| < &,

for allt. We also require that {|9,)] = 1 for all ¢, so
that the matrices in the smoothness assumption
are projections.

Using arguments similar to those in preceeding
sections (bounding an component to show that
one vector is almost in the range of another), it
can be shown that that

2A7520%(1 + A?)
a?(1 — X2)3

It follows from this that any smooth, implicitly

defined system which realizes the input/output re-

lation (5), must be close to the singular vector
corresponding to Gany1 ([ A b |).

668" — va(t)og @)1 = [ld]|? <

6. Tracking Error for the Explicit Least
Squares Solution

This section shows that any model ; with output
J¢ which achieves the input/output relation with
a bounded error

(5 — yel £ K,
where §; is defined by the recursion
9t = 61_10:.
and
¢ = [ % wir Trontr Uien41 |-

must be close to the least squares estimate. Here
0 is taken to be the regular least squares estimate
for the data y; and u;. Assume that 6, is bounded

[16:]] < Ko
and that it is smooth

[16: = be-1]l < A.

Using the triangle inequality results in a tracking
error bound of,

AN
A= N2

Ki(nKs+1)p
(1= 2A)p?

116: = 0l <
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Clearly, if A and K; are both small, then this
error will be small. From this it follows that any
smooth system with bounded parameters which re-
alizes the input/output data with bounded (small)
error must be close to the least squares solution.

It should be noted that unlike bounds in previ-
ous sections, the bounds given here require that
llAill2 < 7 for all 0 < i < t. Previous results
only required assumptions on the singular values
to hold at times ¢ and ¢ — 1.

7. Concluding Remarks

The results given in this paper show that look-
ing for a gap in the singular values is a reason-
able approach to the order estimation problem
for smoothly time varying systems. This is a
fact which is accepted implicitly in many recur-
sive identification schemes, and this paper gives
a quantitative justification by proving rigorous
bounds.
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