An Updating Algorithm for On-line MIMO System Identification
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ABSTRACT. This paper describes the application of a generalized URV decomposition
to an on-line system identification algorithm. The algorithm updates estimates of a state
space model with O(n?) complexity.
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Introduction

Identification of a state space model for a MIMO system from input/output data is a
computationally intensive problem. A reliable algorithm was given in [1], but as presented
it depends on the SVD to make crucial rank decisions and identify subspaces. Unfortunately,
there have been no exact algorithms proposed for updating the SVD when input/output
measurements are added which are faster than O(n?). An approximate approach to SVD
updating which might be considered for use here was developed in [2]. However the problem
is really more difficult than just updating one SVD. What is desired is the intersection of
the range spaces of two matrices. In [1] this is computed using two SVD’s; and they both
must be updated simultaneously.

The URV decomposition, [4], is an easily updated decomposition which, in some appli-
cations, may be used to replace the SVD. The fact that an intersection of the range spaces



of two matrices is required suggests that a generalization of the URV decomposition along
the lines of [3] might be helpful. Such a decomposition was introduced in [5] along with an
O(n?) updating algorithm. This paper will give a brief description of the decomposition
and show how it can be used as part of an on-line identification algorithm.

Given a sequence of m X 1 input vectors, u(k), we assume that the sequence of [ x 1
output vectors, y(k), are generated from the state space equations,

z(k+4+ 1) = Ara(k) + Bru(k) (1)
y(k) = Cya(k) + Dyu(k).
Assuming we have observations of the input and output vectors, the identification problem
is to find an order, n, and time-varying matrices, {Ay, Bx, Cy, Dy}, which satisfy (1) for

some n X 1 state sequence, z(k). Generally it is assumed that the state space model is
slowly time-varying. We then wish to provide an algorithm which will track the model.

The algorithm uses the same basic approach developed in [1]. Tt can be summarized in
two steps: find an estimate of the state sequence and then obtain the system matrices from
the least squares problem
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where W; is a diagonal weighting matrix defined by

1 0
Wj_ [ 0 OéWj_l ]

for || < 1 and W; = 1. The index k is the time at which observations begin and k+i+j—1
is the time at which the latest observations have been made. Indices k£ and 7 are fixed, but
j grows as observations are made. To keep the notation compact, the indexing of the
system matrices will show only the dependence on j, though {A;, B;,C}, D;} will depend
on observations up to u(k+i+4+j—1) and y(k+i+4+j— 1)

An appropriate exponentially weighted state vector sequence can be determined from
the intersection of the row space of two Toeplitz matrices. Define the (m + [)i x 7 block
Toeplitz matrix

wlk+j—1) wk+j-2) - u(k)
yk+j-1) yk+j-2) - y(k)
T(k) = : : :
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If T, =T(k) and Ty, = T(k + ¢) then in the time invariant case, the intersection of the row
spaces of T} and T, generically has dimension n, the order of the model (1) generating y(k)
from wu(k). [1]

If the rows of some X form a basis for the intersection then the columns of X are a



sequence of state vectors for a time invariant model generating y(k) from u(k). A proof of
this fact can be found in [1].

If we compute the intersection of the row spaces of T:W; and T,W; and let X denote the
basis for this space, then we use X as the exponentially weighted state vector sequence,

X=[ak+iti—1) alb+iti=—2) - alk+i) | W, (3)

The decomposition of [5] can be used to track the intersection of the row spaces. The
contribution of this paper is to show how the system matrices can be obtained efficiently
at the same time.

1 The Decomposition

This section will deal with the T" matrices in transposed form so that the problem becomes
one of tracking column spaces as rows are added.

The decomposition has the form
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where Ry;, Rs3 and Ry, are upper triangular and full rank. R;; and R.3 are square.

Each F block is an upper triangular matrix with norm less than the tolerance. Each F
block is an arbitrary matrix with norm less than the tolerance. The .S block is an arbitrary
matrix. If this is the case, then the decomposition gives estimates of the range spaces of
W, TE and W, TS. In fact, it can be shown that if the £ and F blocks are zero, then the
first columns, Uy, of U corresponding to the number of columns in R, are a basis for the
intersection of the range space of W,;TT and W;TJ. Details concerning decompositions of
this type can be found in [3].

If we partition V5 in a manner which matches the decomposition
Vo= Vs Vo Vs |
and assume that the F/ and F blocks are zero then
U1R14 - WszTVM

and the full rank property of Ry imply that W,; TS Vs, is also a basis for the intersection.
This fact makes it possible to avoid storing U and will avoid the problem of growing memory
storage as rows are added to W,;T{ and W,T¥.

Details on updating the decomposition can be found in [5]. A brief summary of relevant
features will be given here. We assume that the decomposition has already been computed
and we are interested in having the decomposition for the same matrices, but with an
added row. The process can be initialized by setting U and V to the identity and letting



the decomposition equal zero.

If two rows, a” and b" are added to W;T! and W,;TJ respectively and each row of the
old matrix is weighted by 0 < o < 1 then we wish to restore the form of (4) to

L0 a” b" Vi 0
T T T . (5)

0 U aW; Ty || aW;T, 0 VW
This looks much like (4), but with an additional row along the top. The problem is to
update the orthogonal matrices U and V to restore the structure of the decomposition and
to deal with possible rank changes in the R matrices. The key feature of the algorithm
as presented in [5] which has a bearing on the system identification algorithm is that the

structure of (5) can be restored by applying plane rotations from the left which operate on
adjacent rows and plane rotations from the right which operate on adjacent columns.

The approach is similar to that of URV updating as given in [4]. The algorithm can be
broken into two stages. The first updates the overall structure of the decomposition when
new rows are added to W, T and W,T; . After the update, the decomposition has the same
general form, but the triangular R matrices are possibly larger and might no longer have
full rank. The second stage looks for small singular values of the R blocks and recursively
deflates these blocks using the scheme described in [4] until they have full rank.

2 Updating the System Matrices

As mentioned earlier, the intersection of the range spaces of W;T! and W,TJ is given by
W;T] Vs which also gives an estimate of the exponentially weighted state vectors, (3).

Thus the least squares problem can be written as
(L[ wirTves W) |) @1 4) l éj? gz; ] _
([ WiTS Vo WY (5= 1) D (1:5-1)
where
UG) = [ulk+iti=1) ulk+iti=2) - ulk+i) ]
and
YU)I[y%+i+j—® ylk+i+j—3) --- Mk+i—m}T.

We will give an updating scheme for the QR decomposition associated with the least
squares problem which can carried out in conjunction with the decomposition updating to
provide a solution to the system identification problem. It would be nice if the updating
could be performed in O(n?), and in a sense this is possible. Unfortunately there is a
problem: The system matrices will be updated through several intermediate stages during
the process of updating the decomposition of W;T{ and W, TS . If at one of these stages R4
is ill conditioned, as would be expected prior to a deflation, then the least squares problem
will also be ill conditioned. The connection between the conditioning of Ry, and that of
the least squares problem is obvious since Ry, is, neglecting the small elements, the n x n



principle submatrix of the QR decomposition for (6). This temporary ill conditioning can
introduce large errors in the system matrices as updating is carried out.

Thus there are two possible approaches to updating the system matrices presented in
this paper. The first is the numerically safe approach of updating the QR decomposition
for (6) and then do a back substitution to get {A;, B;,C}, D;}. This avoids large errors
due to a temporarily ill conditioned R4, but it is, unfortunately, an O(n®) process. The
other possibility is an O(n?) algorithm which updates {A;, B;,C}, D;} as the generalized
URV decomposition is updated.

Both approaches require the QR factorization of
1 ) .
<E [ WiT Vaoy WU (j) D (2:7)
so that will be dealt with first. As the generalized URV decomposition is updated, the size

of W, T V44 can change due to changes in the size of R,, during the updating. This can be
dealt with by computing the QR decomposition of the expanded matrix,

1 . .
We then obtain the required R factor as the (n+ m) x (n+ m) principal submatrix of the

expanded R.

Suppose a row is added to W,;T] and W;Ty. This corresponds to a row being added to
P,

1 oT o p’

SR !
where

Q=@ Q]

is a square orthogonal matrix and ¢); has the same number of columns as P. If P has full
column rank, then (), is an orthogonal basis for the range space of P. Otherwise, range of
P is contained in the range of ).

To deal with the right hand side, we define
S= ([ WiTIvas WY (j) WiTTVas WiTIVas |) (12— 1),

and keep track of the matrix @7.S. When a row is added we get

1 0 s s
[ ar o] =des ] ®

Before any updating is done on the generalized URV decomposition, we can apply a
standard QR updating to (7). The rotations which accomplish this are applied to (8) at
the same time. Since it is not necessary to store (), the memory required by this approach
does not grow with time.

Once the QR decomposition has been updated, the generalized URV updating can be



performed. Fach time a right rotation is performed and V5, is updated, a corresponding
right rotation is performed on P and S. The rotation performed on P destroys the QR
decomposition of P. Since all of the right rotations which are used to update the generalized
URYV decomposition operate on adjacent columns, there are clearly three ways in which the
QR decomposition can be damaged. The simplest is when the update to V5 only affects one
of the matrices Vis, Vo4, or Vos. In this case the rotation operates on two adjacent columns
of P and hence merely creates a single nonzero element on the subdiagonal of the R factor
of P. To zero this element requires just one left rotation which is applied to both P and S.

The other possibilities are when the update to V5 affects the last column of V5, and the
first column of V55 or the first column of V5, and the last column of V,3. Since they do not
correspond to adjacent columns of P, they create more nonzeros than the first case. To
restore the @ R decomposition after one such right rotation is an O(n?) process. Fortunately,
the number of these rotations is bounded independently of n, so that the overall process is
still O(n?). Tt can easily be shown that it is possible to deal with changes in the block sizes
of P and S due to changes in the sizes of Ry, and Ro3 in O(n?) by using similar techniques.

Once the URV updating has been completed and the QR decomposition of P has been
maintained, we have the R factor for the least squares problem in the form of the (n +
m) X (n 4+ m) principal submatrix of the R factor of P. Similarly if we take as the right
hand side the (n+ m) x (n+ ) principal submatrix of Q7.5, then we can do a triangular
backsolve to find the system matrices.

There are three sorts of updates which must be performed on the least squares solution.
The first is to deal with a new row which is added to the problem. If we look at the
submatrix of P,

1 ) .
= ([ wirrv wog) ]) e
and the submatrix of S
Si= ([ Wi vee Wy (G) ) (ei-1)
that define the least squares problem
AT (T
Pl [ BjT D:Z?T ‘| - 517

then when a row is added, we would like to find the solution to the least squares problem
pl A]T CjT st
aP, BjT D]T T alSy |

The normal equations are

AT CT

(pp" + o’ Pl Py) [ BT pT ] = (ps" 4+ a’P['Sy).
i i

Using the Sherman-Morrison-Woodbury formula, the solution can be written as

AT CT T 1T T pTx T T pT
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where z = (PT'P;)~'p. The new least squares solution is just a rank one modification of
the old solution. This modification can be computed in O(n?) flops using the R factor for
P, the updating of which was described earlier.

Once the new row has been incorporated into the least squares solution, the QR decom-
position for P with the new row added can be computed as described earlier. When that
has been done, the generalized URV updating can commence with the Q R decomposition
being updated as V5 is changed. The final part of the identification problem is to update
{A;, B;,C;, D;} as V5 is changed and the partitioning is changed.

Rotations which only affect V53 and Vg will not affect the least squares solution. The
simplest case in which something actually has to be done is one in which the rotation affects
only Vs,. Suppose some rotation V' is applied to the state estimate portions of P, and .5;.
Then the normal equations become

(v oo ] v oo ][ar cr vool] Vo0
T I T T
0 Im] Plpllo ImHBjT D]T]_[o Im] Plsllo Il]

so the new solution is
AT T ] _ l Vo0

Bl DI 0 I, 0 7

T
] (P P~ P's, [ boo ] .

The same rotation which is applied to P, and S; can be applied to the right and left of the
old solution to get the new system matrices.

Because the right rotations involved in updating the generalized URV decomposition
always act on adjacent columns, we need only make special consideration of the case in
which a rotation acts at the boundaries of one of the blocks of V5. It turns out that such
rotations always occur when there is a change in the size of the Ry, block. They can be
dealt with by viewing the process as adding either the last column of V,3 or the first column
of Va5 to Vs and then performing a rotation which acts purely within V5,.

All that we need to deal with are rotations which act solely within one of the blocks
Vas, Vay or Vs, which has already been covered, and the process of adding or deleting a
column from the least squares problem. Each time R, grows, we must bring a column from
the W, TS Vos or W;TT Vos into the W, TS Vo block of P. Since the W;T] Vo, and the U(j)
blocks of P define, the least squares problem, this amounts to adding a column to the least
squares problem. The same thing applies to S. Similarly, whenever a column is removed
from R4, the least squares problem shrinks by a column.

Suppose we have the QR decomposition of P, with the column p appended,

R
{P1 P}:{Q1 G2 Q3} 011 :Z )
0 0

and we have a solution to the least squares problem

RIS R
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Then the solution satisfies
[ Ryi 1o ] [ X1 79 ] _ [ Qfsl Qfs ]
0 ro E 2 @GS qs |
;From this we get four equations which can be used to update the solution
Rii(X11 + Ry'risxl)) = Q7 Sy
Ri1219 4 112%90 = Qfs
7‘221‘51 = f]zTS1
and

T
T9a%a2 = {5 -

;From the first of these equations, it is clear that if we wish to delete a column, we get
a solution to the new least squares problem P, X =S, of

X=X+ Rl_llrlzll‘gl (9)
This can easily be computed in O(n?).

The reverse process, that of going from a solution, X, of the smaller problem, to the
solution of the larger problem makes use of all four of the equations. First x5 can be
computed from the last equation, z5; from the third, 2,5 from the second, and Xy, using
(9). The necessary products Q7s, ¢2.S; and ¢ s will be available from the part of the
identification algorithm which updates the QR decomposition and the transformed right
hand side. Again, the whole process can be carried out in O(n?) flops.
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