
Exponential Ranking: taking into account

negative links⋆

V.A. Traag1, Y. Nesterov2, and P. Van Dooren1

1 Department of Mathematical Engineering, 4 Avenue G. Lemâıtre, 1348
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Abstract. Networks have attracted a great deal of attention the last
decade, and play an important role in various scientific disciplines. Rank-
ing nodes in such networks, based on for example PageRank or eigenvec-
tor centrality, remains a hot topic. Not only does this have applications
in ranking web pages, it also allows peer-to-peer systems to have effective
notions of trust and reputation and enables analyses of various (social)
networks. Negative links however, confer distrust or dislike as opposed
to positive links, and are usually not taken into account. In this paper
we propose a ranking method we call exponential ranking, which allows
for negative links in the network. We show convergence of the method,
and demonstrate that it takes into account negative links effectively.

1 Introduction

The ranking of nodes, or assigning some ‘importance’ or ‘trust’ scores to nodes,
has attracted a great deal of attention when networks are being studied. Al-
ready in the 1970s, various researchers from the social sciences have introduced
concepts such as betweenness [1], closeness [2] and eigenvector centrality [3,4]
to measure how central or important a node in the network was. For example,
centrality-like measures are shown to have an influence on spreading processes
on networks, such as failing cascades [5], or the infection process of sexually
transmitted diseases [6,7]. Furthermore, it helps to identify different roles nodes
might play in a network [8].

In the 1990s several alternative ranking measures were added, notably Klein-
bergs HITS-algorithm [9], and Googles PageRank [10]. When filesharing and
especially peer-to-peer applications grew, these measures, and variants thereof,
became popular to keep ‘good’ peers in the sharing network, and exclude ‘bad’
peers [11,12]. Reputation and trust also plays a vital role in online markets such
as eBay [13].
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Negative links however, are usually not taken into account by these ranking
measures, or worse, they break down when negative entries appear as weights of
the links. However, the signs of links (positive or negative) should not be ignored,
since they may bear important consequences for the structure of the network, not
in the least for the ranking of nodes. Proposals have been made to include such
semantic information in hyperlinks on the World Wide Web [14]. Negative links
are also present in various other settings such as reputation networks [15], sharing
networks [11], social networks [16] and international networks [17], and play a
key, if not vital, role in these networks. Studying how negative links influence
the ‘importance’ of nodes may help the understanding of such systems, and such
a concept of ‘importance’ might facilitate the analyses of such networks again.

Recently there has been more attention to negative links in ranking measures,
for example PageTrust [18]. The difference between PageTrust and PageRank is
that in the random walk in PageTrust nodes that are negatively pointed to during
the random walk are blacklisted, and are visited less often, thereby lowering their
PageTrust score. Another suggestion was to first calculate some ranking using
only the positive links (e.g. using PageRank), and then apply one step of distrust,
so that the negative links are taken into account [19,14].

It was also suggested to introduce a propagation of distrust [19], implying
that if i distrusts j, and j distrusts k, then i should trust k (the adagium that
the enemy of my enemy is my friend). The authors noted that this could lead
to situations in which a node is its own enemy (if one considers a cycle of three
negative links). This phenomenon is studied in the social sciences under the
denominator of ‘social balance theory’ [20,21]. A network is considered as bal-
anced, if all triads (a cycle of three nodes) in the network are either completely
positive, or have only one positive link, and more recently some models have
tried to capture dynamics based on social balance [22]. Already in 1953 it was
shown that a network is balanced in this sense if and only if it divides neatly
in two clusters with negative links appearing only between the two clusters [20].
Later, this idea was extended to include the possibility to cluster nodes in more
than one cluster, by only demanding there is not exactly one negative link in any
cycle [21], although for practical clustering in networks with negative links other
methods have been devised [23]. The triad with only negative links is found to
appear more often than expected by social balance theory [16,17], so that they
(potentially) divide in more than two clusters.

In this short paper we introduce a ranking measure based on discrete choice
theory, that can also be used when negative links are present in the network. The
goal is to infer some global ranking of nodes, based on a particular given network
(with possibly some negative links present). We do so in terms of reputation and
trust, but the application of the measure need not be restricted to the domain
of trust management. It might find also applications in collaborative or iterative
filtering, where items such as movies or products need to be recommended3 [24],

3 Often recommendation is personalized based on existing preferences or purchases
of movies or products. We do not currently consider such a personalization in this
short paper, but there seem to be some possibilities for doing so.



or somewhat related, predict the sign of links [25]. However, such a measure
might also be of interest for characterizing nodes in various networks, such as
the international network of conflict and alliances [17], or in an online social
network [16].

Given the considerations of social balance provided above—that indeed the
enemy of your enemy need not be your friend—it would be undesirable to assume
so in any ranking scheme. That is, if a node were to have a negative reputation,
his links should not be distrusted, only trusted less. In other words, we should
not assume a node with a negative reputation is not trustworthy (if he points
negatively towards someone, we should not interpret it as positive, and vice
versa), we should only trust his judgements less. This will actually follow from
the derivation of the measure based on a discrete choice argument, which we will
present in the following section. Most of the existing algorithms dealing with
negative links do not apply distrust in such a recursive manner, thereby limiting
their effect. Furthermore, none of the algorithms can actually deal with negative
reputations, while this negativity can actually provide additional insight. For
example, a negative reputation would signal that such a node should be blocked
from the network.

The reputation of nodes is based on judgments by other nodes, which is
detailed in Sec. 3. Convergence and uniqueness of the proposed measure is proven
in Sec. 4. We give some conclusion and indications of further research in the final
section.

2 Discrete choice

Let G = (V,E) be a directed graph with n = |V | nodes and m = |E| edges. Each
edge (ij) has an associated weight wij which can possibly be negative. By A we
denote the n×n adjacency matrix associated to the graph, such that Aij = wij if
there is an (ij) edge and zero otherwise. Furthermore, let ki be some reputation
of node i (we will make this explicit in the next section). We consider the links
to indicate a certain trust: if node i points positively (negatively) to node j, this
indicates that i trusts (distrusts) j. The goal is to infer some global trust values
from the local trust links.

Suppose we are asked which node to trust, if we were to choose one. We
assume that a higher reputation indicates some degree of trust, so we should
preferably choose nodes which have a high reputation ki. However, there might
be some errors in choosing the one with the highest reputation. This is where
the framework of discrete choice theory comes in.

The usual background for discrete choice theory is the following [26]. Suppose
there are n different choices (in our case, nodes), which have a different associated
utility ui. We observe the utility oi and have some error term ǫi such that

ui = oi + ǫi. (1)

We would like to choose the object with the maximum utility. However, since
we only observe oi, it is uncertain which item actually has the maximum real



utility. So, the question becomes: what is the probability we will select a certain
object? That is, what is the probability that ui ≥ uj for all i 6= j, or

Pr(ui = max
j

uj), (2)

depending on the observed utility oi and the error term ǫi. In our case, we equate
the observed utility oi with some reputation ki. We assume the real reputation
is then ui = ki + ǫi, where ǫi is the error made in observing the reputation.

The probability of choosing the node with the highest reputation depends
on the distribution of the error term ǫi. Using the following assumption for the
error term, we arrive at the well known multinomial logit model [26]. Suppose
the ǫi are i.i.d. double exponentially distributed4 according to

Pr(ǫi ≤ x) = exp−

[

exp−

(

x

µ
+ γ

)]

, (3)

where γ ≈ 0.5772 is Euler’s constant. The mean of (3) equals zero, and the
variance equals 1/6π2µ2. With this error distribution it can be proven [26] that
the probability node i has the highest real reputation becomes

pi =
exp ki

µ
∑

j exp
kj

µ

. (4)

The probability a node i has the highest reputation, increases with higher
reputation ki, depending on the amount of noise characterized by µ. There are
two extreme scenarios depending on µ. If µ → ∞ the variance goes to infinity,
and the contribution of the observed reputation in ui = ki+ǫi becomes negligibly
small. In that case, the probability a node has the highest real reputation be-
comes uniform, or pi = 1/n. In the other extreme, µ → 0, there is essentially no
error, and we will always be correct in choosing nodes with a maximum ki. That
is, if there is a set of nodes M with ki = maxj kj for i ∈ M , then pi = 1/|M | for
i ∈ M , and zero otherwise.

The probabilities p shows how much we should trust nodes. Nodes with a
higher reputation are more trustworthy than nodes with a lower reputation.
The difference in trust becomes more pronounced with decreasing µ, up to the
point where we only trust nodes with the highest reputation. We shall call these
probabilities the trust probabilities.

3 Reputation and judges

The trust probabilities defined in the previous section depend on the reputa-
tion ki, which we will define now. We will ask a certain node j to provide the
reputation values of the other nodes. That is, we ask node j to be the judge of
his peers. Since we consider Aji to be the trust placed by node j in node i, we

4 This distribution is also known as the Gumbel distribution



A Adjacency matrix of given network
ki Reputation of node i
ǫi Error term in reputation
µ Parameter influencing variance of error
pi Trust probability of node i
k∗

i Final (fixed point) reputation
p∗

i Final (fixed point) trust

Table 1. Overview of variables used in this paper.

will assume that if node j is the judge, he would simply say that ki = Aji. The
general idea is that the probability to be a judge depends on the reputation,
which then influences that probability again.

To choose a judge, we will again consider a discrete choice argument. We
would like to select a judge j for which kj + ǫj is maximal, where ǫj is again
distributed according to (3). Obviously, the probability to select a judge will
then be the same as in (4).

Using those probabilities pi, we select a judge at random, and let him give
his opinion on the reputation of his peers. We thus allow trustworthy nodes a
higher probability to judge their peers. The expected reputation can then be
written as

ki =
∑

j

Ajipj , (5)

or in matrix notation, the column vector k can be expressed as

k = ATp, (6)

where AT is the transpose of A and p is a column probability vector (i.e. ‖p‖1 = 1
and pi ≥ 0). If we plug this formulation of the reputation into (4) we obtain a
recursive formulation of trust probabilities

p(t + 1) =
exp 1

µATp(t)

‖ exp 1
µATp(t)‖1

, (7)

for some initial condition p(0), with exp(·) the elementwise exponential. We will
prove in the next section that this iteration actually converges to a unique fixed
point p∗, i.e. independent of the initial conditions, for some range of values for
µ. The final values of the trust probabilities can thus be defined as the limiting
vector p∗ = limt→∞ p(t) or, equivalently, the fixed point p∗ for which

p∗ =
exp 1

µATp∗

‖ exp 1
µATp∗‖1

, (8)

and the final reputation values as

k∗ = ATp∗. (9)



Table 2. Trust probabilities for the example network in Fig. 1. Decreasing µ also
decreases the trust for d and e, but as µ → 0 we obtain cyclic behavior. We also
provide the ordinary PageRank (PR) with a zapping factor of 0.85 for comparison. We
removed the negative link for the calculation of the PageRank.

(a) Trust for various values of µ

PR µ = 1 µ = 1/5 µ = 1/8

a 0.183 0.223 0.384 0.424
b 0.184 0.213 0.179 0.142
c 0.263 0.223 0.384 0.424
d 0.184 0.171 0.026 0.005
e 0.186 0.171 0.026 0.005

(b) Cyclic behavior for µ = 0

t = 0 t = 1 t = 2 t = 3

a 0.20 0.50 0.3 0.5
b 0.20 – 0.3 –
c 0.20 0.50 0.3 0.5
d 0.20 – – –
e 0.20 – – –

Fig. 1. A small example with one neg-
ative link (the dashed one), showing
trust values for various values of µ. The
weights for the positive links are +1
and for the negative link −1.

c

a

b

d e

Notice that these reputation values are also a fixed point of the equation

k∗ = AT
exp 1

µk∗

‖ exp 1
µk∗‖1

(10)

and that the trust probabilities are related to the reputation values as

p∗ =
exp 1

µk∗

‖ exp 1
µk∗‖1

. (11)

In this sense, the trust probabilities and the reputation values can be seen as a
dual formulation of each other.

Upon closer examination of (10), a certain node j might indeed get a negative
reputation, but his judgements are taken less into account, they are not reversed.
That is, as soon as a node has a negative reputation, we do not assume he his
completely untrustworthy, and that his negative judgements should be taken
positive, but only that he is less trustworthy. This means we indeed do not
assume that the enemy of my enemy is my friend. A node could get a negative
reputation for example if he is negatively pointed to by trustworthy nodes. This
approach can be summarized in the idea that the reputation of a node depends
on the reputation of the nodes pointing to him, or stated differently, a node is
only as trustworthy as the nodes that trust him. Notice that this idea is similar
to that of eigenvector centrality [4] namely that nodes are as central as the
neighbours pointing to him, a recursive notion also present in PageRank [10].



Let us take a look at a small example to see what the effect is of negative
links in the network as shown in Fig. 2. There is only one negative link, from a to
d. The effect of the negative link becomes more penalizing when µ is decreased,
as shown in Table 2(a). That has also consequences for node e, who is only
pointed to by d, who receives little trust, which then also leads to little trust for
e. The PageRank for these nodes (for which we did not take into account the
negative link, and used a zapping factor of 0.85) are provided as comparison,
which assigns nodes d and e actually higher rankings.

We will now show that indeed this limit converges (for some range of µ) and
is unique, i.e. does not depend on the actual initial condition p(0).

4 Convergence and uniqueness

More formally, let us define the map V : Sn → Sn, which maps

V (p) =
exp 1

µATp

‖ exp 1
µATp‖1

, (12)

where Sn = {y ∈ Rn
+ : ‖y‖1 = 1}, the n-dimensional unit simplex. For the proof

of convergence we rely on mixed matrix norms, or subordinate norms, which are
defined as

‖A‖p,q = max
‖x‖q=1

‖Ax‖p. (13)

Denoting by ‖A‖max = maxij |Aij |, we have the following useful inequality

‖Ax‖∞ = max
i

‖eT

i Ax‖ ≤ ‖A‖max · ‖x‖1, (14)

hence
‖A‖∞,1 ≤ ‖A‖max (15)

where ei is the i-th coordinate vector. Let us now take a look at the Jacobian of
V , which can be expressed as

∂V (p)i

∂pj
=

exp( 1
µATp)i

1
µAji

∑

l exp( 1
µATp)l

−
exp( 1

µATp)i

∑

l exp( 1
µATp)l

1
µAjl

(

∑

l exp( 1
µATp)l

)2 . (16)

Now let u = exp( 1
µATp), and q = ‖u‖1. Then V (p) = u/q, and ∂V (p)i

∂pj
can be

simplified to

∂V (p)i

∂pj
=

1

µ

(

ui

q
Aji −

1

q2

∑

l

uiulAjl

)

(17)

or in matrix notation

V ′(p) =
1

µ

(

1

q
diag(u) −

1

q2
uuT

)

AT (18)

at which point the following lemma is useful.



Lemma 1. Denote by M(p) the matrix M(p) = diag(p) − ppT where p ∈ Sn,

then ‖M(p)‖1,∞ ≤ 1.

Proof. Note that ‖M(p)x‖1 =
∑n

i=1 pi|xi − pTx|. We need to find the maximum
of this function on the unit box (that is, where ‖x‖∞ = 1). Clearly this is
attained at some vector σ ∈ Rn with coordinates ±1. Denoting by I+ = {i :
σi = 1} the set of positive entries, and by S1 =

∑

i∈I+
pi and S2 = 1−S1. Then

pTσ = S1 − S2, and we have

‖M(p)σ‖1 =
n
∑

i=1

pi|σi − S1 + S2| =
∑

i∈I+

pi|1 − S1 + S2| +
∑

i/∈I+

pi|1 + S1 − S2|

= S1(1 − S1 + S2) + S2(1 + S1 − S2) = 1 − (S1 − S2)
2.

Since (S1 − S2)
2 ≥ 0, ‖M(p)σ‖1 ≤ 1. ⊓⊔

This immediately leads to the following proof that the map V converges.

Theorem 1. For µ > 1
2 (maxij Aij − minij Aij) the map V has a unique fixed

point p ∈ Sn.

Proof. By the Banach fixed point theorem, this map has a unique fixed point if
it is contractive. That is, there should be a c ≤ 1 such that

‖V (p) − V (u)‖1

‖p − u‖1
< c, (19)

for p, u ∈ Sn. That is, if ‖V ′(p)‖1,1 < c. Since we can write V ′(p) = 1
µM(V (p))A,

using the lemma and (15) we arrive at

‖V ′(p)‖1,1 =
1

µ
‖M(V (p))A‖1,1 ≤

1

µ
‖M(V (p))‖1,∞‖A‖∞,1 ≤

1

µ
‖A‖max.

Since adding a constant to our matrix A does not change the vector V (p), we
can subtract 1

2 (minij Aij + maxij Aij), and arrive at

‖V ′(p)‖1,1 ≤
1

2µ
(max

ij
Aij − min

ij
Aij).

Hence, if

µ >
1

2
(max

ij
Aij − min

ij
Aij),

the map V is contractive and by the Banach fixed point theorem, it will have a
unique fixed point, and iterates will converge to that point. ⊓⊔

For this lower bound on µ, we can guarantee convergence of the iteration.
Below this lower bound, we choose nodes with more and more certainty. As we
said in Sec. 2, when µ → 0 the probabilities pi = 1/|M | for i in some set M
of nodes with maximal reputation ki. In the iteration this means only nodes



with the highest reputation can become judges. Since we completely trust his
judgments, to whatever node(s) he assigns the highest reputation will be the next
judge. Unless everyone always agrees on the node with the highest reputation,
cycles of judges pointing to the next judge will emerge.

For example, if we take µ → 0 for the example network given in Fig. 1, we
cycle as follows. We start out with p(0) = 1/n, and the average reputation will
be highest for nodes a and c, and they will be chosen as judge with probability
1/2. In the next iteration the average reputation will be 1/2 for nodes a, b and
c and zero for d and e. Hence, one of the nodes a, b and c will be selected as
judge, and the average reputation is 2/3 for a and c, and 1/3 for b. Now we are
back where we were after the first iteration, since a and c both have the same
maximal reputation, and they are chosen as judge each with probability 1/2, as
summarized in Table 2(b).

5 Conclusions and further work

In this short paper we have suggested a new measure to compute global trust
values and reputation, which can be used on networks that have negative links.
We have shown that it converges linearly for some parameter range. The mea-
sure takes into account negative links effectively, penalizing nodes which are
negatively pointed to, thereby decreasing their trust value. This might have ap-
plications in peer-to-peer systems [11], but also in online markets such as eBay.
Furthermore, it might be used to analyze networks where negative links are
present, such as social networks [16] and international networks [17]. In that
sense, it is an alternative to measures such as betweenness [1] and eigenvector
centrality [3].

The analysis offered here is rudimentary, and further experiments are need
to investigate the performance of exponential ranking. We would for example
need to compare its performance with other ranking methods [18,11,19]. One
possible way to test performance is to create test networks with both good
and bad nodes, where the methods would need to predict whether the nodes
are good or bad based on some positive and negative link topology. A short
preliminary analysis shows that the suggested method ought to perform well.
Extending this method by including some personalization could possibly allow
for prediction of signs of links, and we could thus test performance by replicating
earlier experiments [19,25].

References

1. Freeman, L.: A set of measures of centrality based on betweenness. Sociometry
40(1) (1977) 35–41

2. Freeman, L.: Centrality in social networks conceptual clarification. Soc. Networks
1 (1979) 215–239

3. Bonacich, P.: Some unique properties of eigenvector centrality. Soc. Networks 29
(2007) 555–564



4. Bonacich, P.: Factoring and weighting approaches to status scores and clique iden-
tification. J. Math. Sociol. 2 (1972) 113–120

5. Watts, D.J.: A simple model of global cascades on random networks. Proc. Nat.
Acad. Sci. USA, 99(9) (2002) 5766–5771

6. De, P., A. Singh, T. Wong, and W. Yacoub: Sexual network analysis of a gonorrhoea
outbreak. Sex Transm. Infect., 80 (2004) 280–285

7. Christley R., G. Pinchbeck, and R. Bowers: Infection in social networks: using
network analysis to identify high-risk individuals. Am. J. Epidemiol., 162(10)
(2005) 1024–1031

8. Perra, N. and S. Fortunato. Spectral centrality measures in complex networks.
Phys. Rev. E, 78(3) (2008) 036107+

9. Kleinberg, J.: Authoritative sources in a hyperlinked environment. J. ACM, 46(5)
(1999) 604–632

10. Brin, S. and Page, L.: The anatomy of a large-scale hypertextual web search engine.
Comput. Networks ISDN 30 (1998) 107–117

11. Kamvar, SD., Schlosser, MT., and Garcia-Molina, H.: The eigentrust algorithm for
reputation management in p2p networks. Proc. 12th Int. Conf. on WWW (2003)
640–651

12. Abrams, Z., McGrew, R., and Plotkin, S.: Keeping peers honest in eigentrust. 2nd
Workshop on Eco. of P2P Syst. (2004)

13. Resnick, P., Zeckhauser, R., Swanson, J., and Lockwood, K.: The value of reputa-
tion on ebay: A controlled experiment. Exp. Econ. 9(2) (2006) 79–101

14. Massa, P. and Hayes, C.: Page-reRank: using trusted links to re-rank authority
Proc. IEEE/WIC/ACM Int. Conf. on Web Int. (2005) 614–617

15. Massa, P. and Avesani, P.: Controversial users demand local trust metrics: An
experimental study on epinions.com community. Proc. of the Nat. Conf. on Artif.
Int., 20(1) (2005) 121–126

16. Szell, M., Lambiotte, R., and Thurner, S.: Trade, conflict and sentiments: Multi-
relational organization of large-scale social networks. arXiv:1003.5137 (2010)

17. Maoz, Z., Terris, LG., Kuperman, RD., and Talmud, I.: What is the enemy of my
enemy? causes and consequences of imbalanced international relations, 1816–2001.
J. Polit., 69(1) (2008) 100–115

18. De Kerchove C. and P. Van Dooren: The PageTrust algorithm: how to rank web
pages when negative links are allowed. Proc. SIAM Int. Conf. on Data Mining
(2008) 346–352

19. Guha, R., Kumar, R., Raghavan, P., and Tomkins, A.: Propagation of trust and
distrust. Proc. 13th Int. Conf. on WWW (2004) 403–412

20. Harary, F.: On the notion of balance of a signed graph. Michigan Math J., 2 (1953)
143–146

21. Cartwright, D. and F. Harary: On the coloring of signed graphs. Elemente der
Mathematik, 23:85–89, 1968.

22. Antal, T., P. L. Krapivsky, and S. Redner: Dynamics of social balance on networks.
Phys. Rev. E, 72(3) (2005) 036121+

23. Traag, V.A. and J. Bruggeman. Community detection in networks with positive
and negative links. Phys. Rev. E, 80(3) (2009) 36115

24. B Sarwar, G Karypis, and J Konstan: Item-based collaborative filtering recom-
mendation algorithms. Proc. 10th Int. Conf. on WWW (2001) 285–295

25. Leskovec, J., D. Huttenlocher and J.M. Kleinberg. Predicting positive and negative
links in online social networks. Proc. 19th Int. Conf. on WWW (2010)

26. Anderson, S.P., De Palma, A., and Thisse, J-C.: Discrete choice theory of product
differentiation. MIT (1992)


	Exponential Ranking: taking into account negative links

