
Narrow scope for resolution-free community
detection
V.A. Traag ∗, P. Van Dooren ∗ and Y. Nesterov †
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Detecting communities in large networks has drawn much atten-
tion over the years. While modularity remains one of the more
popular methods of community detection, the so-called resolution
limit remains a significant drawback. To overcome this issue, it
was recently suggested that instead of comparing the network to
a random null model, as is done in modularity, it should be com-
pared to a constant factor. However, it is unclear what is meant
exactly by ‘resolution-free’, i.e. not suffering from the resolution
limit. Furthermore, the question remains what other methods could
be classified as resolution-free. In this paper we suggest a rigorous
definition and derive some basic properties of resolution-free meth-
ods. More importantly, we are able to prove exactly which class of
community detection methods are resolution-free. Furthermore, we
analyze which methods are not resolution-free, suggesting there is
only a limited scope for resolution-free community detection meth-
ods. Finally, we provide such a natural formulation, and show it
performs superbly.

complex networks | community detection | modularity | resolution limit |
resolution-free

Introduction

The last decade has seen an incredible rise in network stud-
ies, and will likely continue to rise [1, 2]. Besides the

study of properties such as degree distributions, clustering
coefficients, average path length and other network charac-
teristics [3], many complex networks exhibit some modular
structure [4, 5]. These communities might represent different
functions represented by the nodes (e.g. metabolic functions)
or sociological communities, and have been successfully stud-
ied on a wide variety of networks, ranging from metabolic
networks [6] to mobile phone networks [7] and airline trans-
portation networks [8].

One of the most popular methods for community detec-
tion is that of modularity, introduced by Newman and Gir-
van [9]. The past few years suggestions have been made to
extend or alter the original definition, for example, allowing
detection in bipartite networks [10], networks with negative
links [11], and dynamical networks [12]. Although modular-
ity optimization seems to be able to accurately identify known
community structures [13, 14], it suffers from an inherent diffi-
culty, namely a resolution limit [15], which affects the practice
of community detection [16]. This resolution limit prevents
detection of smaller communities in large networks, although
this effect is mitigated somewhat by the presence of a so called
resolution parameter [17], which can be related to time scales
of random walks on the network [18]. One example of dealing
with this problem is looking at how ‘stable’ partitions are at
various resolutions [19, 20] although the resolution problem
remains intrinsic to the formulation of modularity.

Recently, a new method has been suggested that would not
suffer from this resolution limit, by Ronhovde and Nussinov
(RN) [20], using a reasoning similar to that of Reichardt and
Bornholdt (RB) [21]. The initial claim that a method suffers
from a resolution limit can be clearly demonstrated on a few
cases (e.g. counterintuitive merging of weakly linked cliques),
but the opposite seems more difficult to argue. That is, al-

though there does not seem to be any dependence on global
variables in the cases analyzed, perhaps more complex cases
will show some issues not yet considered. Hence, a proper
definition of what it means to be resolution-free is required,
which we will develop in this paper. Furthermore, the ques-
tion remains what type of community detection methods will
exactly suffer from this resolution limit and which not. In-
tuitively, this is related to the method being ‘local’, whereas
modularity is often denoted as a ‘global’ method, but these
concepts remain ill-defined until now.

We will analyze the question of which community detec-
tion methods are resolution-free within the framework of the
first principle Potts model as developed by Reichardt and
Bornholdt [21]. Various methods can be derived from this first
principle Potts model, among them modularity, and we will
briefly examine them. We will suggest a very simple model,
which we term the Constant Potts model (CPM), that resem-
bles both the RB model and the RN model. It can be easily
shown that the CPM is resolution-free in our definition, but
it will follow immediately from the more general theorem we
will prove. Arguably, the CPM is the simplest formulation
of any (non-trivial) resolution-free method, and can be well
interpreted.

In the next section, we will briefly examine this first prin-
ciple Potts model, briefly review some models that can be
derived from it, and introduce the CPM. We will then briefly
explain the problem of the resolution-limit when using mod-
ularity. After having introduced the resolution-limit, we will
provide the rigorous definition of resolution-free (i.e. not suf-
fering from a resolution-limit), and show some general prop-
erties of these type of methods. We will then prove exactly
which methods are resolution-free and which are not. Finally,
we show the CPM method has superb performance.

Potts Model for Community Detection
First, let us introduce the notation. We consider a graph
G = (V, E) with n = |V | nodes and m = |E| edges. The adja-
cency matrix Aij = 1 if there is an (ij) edge, and 0 otherwise.
For weighted graphs the weight of a link is denoted by wij ,
while for an unweighted graph we can consider wij = 1. We
denote the community of a node i by σi.

In principle, links within communities should be relatively
frequent, while those between communities should be rela-
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tively rare. Building on this idea, as done by Reichardt and
Bornholdt [21], one should (i) reward internal links and ex-
ternal missing links; and (ii) penalize internal missing links
and external links. If we consider internal (missing) links and
external (missing) links to be of equal importance, we can
disregard the distinction between internal and external, and
focus only on the internal (missing) links. In general, this can
then be written as

H = −
X

ij

(aijAij − bij(1 − Aij))δ(σi, σj), [1]

where δ(σi, σj) = 1 if σi = σj and zero otherwise, and with
some weights aij , bij ≥ 0. Minimal H will then correspond
to desirable partitions, although there is not necessarily one
unique minimum. The choice of the weights aij and bij are
important, and have a definite impact on what type of com-
munities are detected. In the current literature, at least three
different choices exist (and presumably some other methods
may be rewritten as such), leading to three different methods
for detecting communities:

Reichardt-Bornholdt (RB) aij = wij − bij and bij =
γRBpij with pij the probability of a link between i and
j, and γRB a resolution parameter [21].

Ronhovde-Nussinov (RN) aij = wij and bij = γRN with
γRN a resolution parameter [20].

Label Propagation (LP) aij = wij and bij = 0 without
any resolution parameter, basically disregarding missing
links [22].

We will briefly explicate these three different approaches.

Previous methods. Reichardt and Bornholdt introduce a new
variable pij that represents the probability of a link between
i and j. This is the so-called random null model used to
compare to the actual network. Working out their choice of
parameters, we arrive at

HRB = −
X

ij

(Aijwij − γRBpij)δ(σi, σj). [2]

One of the most used null models is the so-called configu-
ration model, which for unweighted (undirected) graphs is
pij = kikj/2m, where ki =

P

j Aji is the degree of node i.

By using the configuration model pij = kikj/2m as the ran-
dom null model, and setting γRB = 1 we recover the original
definition of modularity [9] for unweighted graphs

Q =
1

2m

X

ij

„

Aij −
kikj

2m

«

δ(σi, σj) [3]

such that Q = − 1

2m
HRB . This comparison with a random

null model introduces a problem with the so-called resolution
limit, which prohibits finding small communities in relatively
large graphs [15]. Although this effect is mitigated to some
extent by the presence of the resolution parameter γRB , the
problem remains inherent to the method [17]. We will come
back to this issue later.

Ronhovde and Nussinov do not include such a random null
model, in order to avoid issues with the resolution limit. In
practice, they set aij = wij and bij = γRN . Working this out
we obtain

HRN = −
X

ij

(Aij(wij + γRN ) − γRN )δ(σi, σj). [4]

For unweighted graphs (i.e. where wij = 1) this reduces to

HRN = −(1 + γRN )
X

ij

„

Aij −
γRN

1 + γRN

«

δ(σi, σj). [5]

Finally, the label propagation method [22] can be shown
to be equivalent to the Potts model −P

ij Aijwijδ(σi, σj) [23].

It can obviously be deduced from equation [1] by using the
weights aij = wij and bij = 0. This is the least interesting
formulation, since there is only one global optimum, namely
all nodes in a single community, which is trivial. However, the
local minima could be of some interest.

It is not surprising then that these three different formu-
lations share certain characteristics for some choice of param-
eters. The RB model is equivalent to the RN model up to
a multiplicative constant by using an Erdös-Renỳı (ER) null
model, i.e. pij = p and by setting γRN = γRBp/(1 − γRBp).
For γRN = 0 the RN model obviously reduces to the label
propagation method.

Constant Potts model.Let us introduce an alternative
method, that uses slightly different weights. By defining
aij = wij − bij and bij = γ, we obtain a version that is similar
to both the RB and the RN model, but is simpler and more
intuitive to work with. If we work this out, we obtain the
rather simple expression

H = −
X

ij

(Aijwij − γ)δ(σi, σj). [6]

Let us call this the Constant Potts model (CPM), with the
‘constant’ here referring to the comparison of Aij to the con-
stant term γ. It is clear that this is equivalent to the RN
model for unweighted graphs by setting γ = γRN

1+γRN
and ig-

noring the multiplicative constant. Furthermore, it is equal to
the RB model when setting γ = γRBp for the ER null model.
By setting γ = 0 we retrieve the label propagation method.
Also, it is highly similar to an earlier Potts model suggested
by Reichardt and Bornholdt [24].

Rephrasing it in terms of communities gives some intu-
ition as to how it works. If we denote the number of edges1

inside community c by ec =
P

ij Aijwijδ(σi, c)δ(σj , c), and by

nc =
P

i δ(σi, c) the number of nodes in community c, we can
rewrite equation [6] as

H = −
X

c

ec − γn2
c . [7]

In other words, the model tries to maximize the number of
internal edges while at the same time keeping relatively small
communities. The parameter γ balances these two imper-
atives. Moreover, for a fixed number of communities q, it
favours a balanced partition, one where community sizes are
as equal as possible. Hence, this suggests some connection
to balanced graph partitioning, although this is not further
investigated here.

In fact, the parameter γ acts as the inner and outer edge
density limit. That is, suppose there is a community c with
ec edges and nc nodes. Then it is better to split it into two
communities r and s whenever

er↔s

2nrns

< γ, [8]

where er↔s is the number of links between community r and s,
which is exactly the density of links between community r and
s. So, the link density between communities should be lower
than γ, while the link density within communities should be

1Or technically, twice the number of edges in an undirected graph, or the total weight in a weighted
graph.
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higher than γ. This thus provides a clear interpretation of the
γ parameter.

As stated earlier, for γ = 0 we retrieve the label propa-
gation method, which has only one trivial minimum, namely
all nodes in one big community, which can be easily under-
stood when thinking of γ as the minimal intracommunity link
density. In general, where γ = minij Aijwij the optimal
solution is the trivial solution of all nodes in one big com-
munity. On the other extreme, when γ = maxij Aijwij , it
is optimal to split all nodes in communities, i.e. such that
each node forms a community in itself. In fact, communi-
ties of one node only form when λ = maxij Aijwij , since
otherwise it will always be beneficial to put the node in one
of its neighbors’ communities. Hence, for practical purposes
minij Aijwij ≤ γ ≤ maxij Aijwij .

Also, we can restrict ourselves to connected components,
since disconnected components will never be together in one
community. This can be easily seen since the total number
of internal edges remains the same when splitting up a com-
munity that consists of two connected components, while the
community sizes are decreased.

Resolution limit
The RB model, and by extension modularity, suffers from a so-
called resolution limit [15]. That is, there is some dependence
on global variables, which limits the size (and number) of
communities that can be found. The number of communities
roughly scales as

√
γRBm with m the number of edges [17].

The RN model is claimed to be resolution-free, and should
thus not show any of this unwanted dependence on global
variables. The RB model is therefore considered a global op-
timization method (in the sense that there is some dependence
on global variables, such as the number of edges m), while the
RN method can be considered local (where such dependence
is not present).

Traditionally the resolution limit is investigated by analyz-
ing the counterintuitive merging of communities, for example
cliques or some smaller communities that are only sparsely in-
terconnected as displayed in Figure 1. The RB model with a
configuration null model will merge two neighbouring cliques
for example when [17]

γRB <
q

nc(nc − 1) + 2
, [9]

where q is the number of cliques and nc is the number of nodes
of a clique. So, the RB model depends on a global variable,
namely the number of cliques q. This shows that modular-
ity might be ‘hiding’ some smaller communities within larger
communities, depending on how far you ‘zoom in’. Indeed
in [15] it was suggested for modularity to look at each commu-
nity to consider whether it had any sub communities or not.
Some related problem with modularity were noticed in [25]
and more recently in [26].

The RN model on the other hand, will only join two cliques
when [20]

γRN <
1

n2
c − 1

, [10]

which does not depend on the number of cliques q, and de-
pends only on the ‘local’ variable nc, so is argued not to suffer
from any resolution limit. For the CPM suggested here, we
arrive at the condition

γ <
1

n2
c

, [11]

which also does not depend on the number of cliques q and
can hence also said to be resolution-free. More general, CPM
favors to cluster r consecutive cliques instead of r − 1 at the

point when

γ <
2

r(r − 1)n2
c

. [12]

Since it can be proven that cliques must always be clustered
together, this defines the complete optimum over the whole
range of γ, except for the clustering as individual nodes at
γ = 1. A similar argument can be made using communities
with heterogeneous sizes.

However, it remains somewhat unclear what is meant ex-
actly by resolution-free in the above discussion, and the label
resolution-free warrants a more precise definition. Consider
for example that we take away the dependence on the num-
ber of links in the configuration null-model, so that we take
pij = kikj . Notice that this only corresponds to a multiplica-
tive rescaling of γRB by 2m. Although this no longer corre-
sponds to a proper null-model (in the sense that

P

ij pij = m),
there’s nothing preventing us from defining such weights, or
taking a rescaled resolution parameter γRB . Reanalyzing the
case above, we come to the conclusion that cliques are sepa-
rate whenever

γRB >
1

2(nc(nc − 1) + 2)2
, [13]

which unsurprisingly no longer depends on any global vari-
ables. By the argument employed in the previous section, the
method should be resolution-free.

Not all problems have disappeared however. Consider that
we take the subgraph consisting of only two of these cliques.
Again, we can analyze when the method would merge or sep-
arate the two cliques in this subgraph. The two cliques will
be joined whenever

γRB <
1

2(nc(nc − 1) + 1)2
, [14]

still not depending on any global variables, so everything
should be fine. Unfortunately, it is not. Combining the above
two inequalities, we obtain that whenever

1

2(nc(nc − 1) + 2)2
< γRB <

1

2(nc(nc − 1) + 1)2
, [15]

the method will separate the cliques in the larger graph, yet
merge them in the subgraph.

So, again, the question remains: what does it mean to be
resolution-free? Furthermore, what conditions should be im-
posed on the weights aij and bij in equation[1] for the method
to be resolution-free? Would a method that takes into account
the local number of triangles be resolution-free? Or would it
be possible to use the shortest (weighted) path for example?

The above discussion motivates us to consider the follow-
ing definition of a resolution-free method. The general idea
is that when looking at any induced subgraph of the origi-
nal graph, the partitioning results should not be changed. In
order to introduce this definition, let H be any objective func-
tion (which we want to minimize), we then call a partition C
for a graph H-optimal whenever H(C) ≤ H(C′) for any other
partition C′. We can then define resolution-free as follows.

Def inition 1. Let C = {C1, C2, . . . , Cq} be a partition of graph
G considered H-optimal. Then the objective function H is
called resolution-free if for each subgraph H induced by D ⊂ C,
the partition D is also H-optimal.

Furthermore, some objective functions can be called addi-
tive.

Footline Author PNAS Issue Date Volume Issue Number 3
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Fig. 1. The problem of the resolution-limit with modularity is usually demonstrated on a ring network of cliques. The cliques are as densely connected as possible, and as

sparsely connected between them, while still retaining a connected graph. The resolution-limit is said to arise because it will merge the cliques depending on the size of the

network. In fact, methods that do not suffer from the resolution limit, i.e. resolution-free methods, may merge these cliques also, but this will not depend on the size of the

network. The distinguishing fact between resolution-limit and resolution-free methods is that the first will detect smaller subcommunities when applied to the subgraph, while

the latter will not detect smaller subcommunities. Of course, whether the communities should consist of only cliques or of multiple joined cliques will still depend on the actual

resolution of the method, which for CPM is designated by γ.

Def inition 2. An objective function H for a partition C =
{C1, . . . , Cq} is called additive whenever H(C) =

P

i H(Ci),
where H(Ci) is the objective function defined on the subgraph
H induced by Ci.

If we have an optimal partition C for an additive
resolution-free objective function H, we can replace sub par-
titions of C by other optimal sub partitions.

Theorem 1. Given an additive resolution-free objective func-
tion H, let C be an H-optimal partition of a graph G and let
H ⊂ G be the induced subgraph by D ⊂ C. If D′ is an al-
ternative optimal partition of H then C′ = C \ D ∪ D′ is also
H-optimal.

Proof Define C′ and D′ as in the theorem. By additivity,
H(C′) = H(C \D)+H(D′), and by optimality H(D′) ≤ H(D).
Since also H(C) = H(C \D) +H(D) we obtain H(C′) ≤ H(C),
so C′ is also optimal. �

Although, this might seem to contradict the NP-hardness
community detection methods, this is not the case. It states
that when there are two optimal partitions, any combination
of those partitions are optimal, so in a certain sense, they
are spanning a space of optimal partitions. It does not say
whether such a partition can be easily found. Also, there
might be two optimal partitions that cannot be obtained by
recombining them, because all communities partly overlap
with each other.

It is also possible to prove that a complete graph Kn with
n nodes is never split (unless into all nodes separately).

Theorem 2. Given a resolution-free objective function H, the
H-optimal partition of Kn for all n is either only one com-
munity, namely all nodes, or n communities consisting each
of one node.

Proof Assume on the contrary there is an optimal partition
C of Kn such that 1 < |C| < n. Then for any D ⊂ C the
subgraph H induced by D is a complete graph. But by as-
sumption, D is then not optimal, and by resolution-free, C is
then not optimal. Hence, inductively, the theorem must hold
for all n. �

This proves that a clique in a graph can never be split into
two (or more communities), unless they are joined with other
nodes. Otherwise, the partition of the subgraph would not be
optimal, and by resolution-free the whole partition would not
be optimal.

We can prove that CPM is resolution-free in this sense.
By extension, the unweighted RN model and LP model are
then also resolution-free. It is easy to see that the RB model
using the configuration model (so also modularity) are not
resolution-free in this sense, as also shown by the example in
Figure 1. The CPM model is trivially shown to be additive
by equation [7]. Perhaps it is less obvious, but the RB model
(and modularity) is not additive, since it cannot be defined in
terms of indepent contributions, i.e. the contribution H(Ci)
per community depends on the whole graph G, instead of only
on the subgraph H induced by Ci.

Since the CPM model is also related to the RB model us-
ing the ER null-model, it is tempting to conclude it is also
resolution-free. Indeed, this might be said to be the case,
if we choose p independently of the graph, i.e. not define
it as p = m/n(n − 1), and simply choose it as some value
p ∈ R. However, we then obviously get back to the CPM
model. This shows there is only a fine line between methods
that are resolution-free, and those that are not.

However, we will not prove this for all methods separately.
Rather, the results follow from the more general theorem we
will now prove. In order to prove this more general statement,
we first introduce the notion of ‘local’ weights. Again, build-
ing on the idea of subgraphs, we define local weights such that
the weights do not change when looking to subgraphs.

Def inition 3. Let G be a graph, and let aij and bij as in equa-
tion [1] be the associated weights. Let H be a subgraph of
G with associated weights a′

ij and b′ij. Then the weights are
called local if aij = λa′

ij and bij = λb′ij, where λ = λ(H) > 0
can depend on the subgraph H.

Clearly then, the RN and CPM model have local weights,
while the RB model does not. This definition says that local
weights should be independent of the graph G in a certain
sense. In fact, it is quite a strong requirement, as it should
even hold for a single link (ij) in the subgraph where only i
and j are included. That means it can’t depend on any other
link but the very link itself (excluding self-loops). Since for
missing links, there is (usually) no associated weight or any-
thing, it can only be constant. Hence, the RN model and the
CPM model are one of the few sensible options available for
having local variables.

Interestingly the definition of local weights does allow the
dependence on some node properties. For example, consider
a mobile phone network, where nodes are people, and an edge

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author



between two people is present if they have communicated
(with possibly a weight wij as the number of calls). Further-
more, suppose each node is associated to a certain geographi-
cal position. We could then take for the weights bij of missing
links the geographical distance between the two nodes, since
this can be defined independent of the graph, so also for the
subgraph including only node i and j. Something resembling
this setup has been considered in [27], where it was taken into
account that the probability of a link depends highly on the
distance between them [28]. Also, for multipartite graphs, the
weights could depend on the class of node i and node j, thus
allowing different parameters between different pairs of classes
of nodes.

We can now prove the more general statement that meth-
ods using local weights are resolution-free.

Theorem 3. The objective function H as defined in equa-
tion [1] is resolution-free if it has local weights.

Proof Let C be the optimal partition for G with community
assignments ci, D ⊂ C a subset of this partition, and H the
subgraph induced by D with h nodes. Furthermore, we de-
note by di the community indices of D, such that di = ci

for 1 ≤ i ≤ h and by A′ the adjacency matrix of H, so that
Aij = A′

ij for 1 ≤ i ≤ h. Assume D is not optimal for H, and
that D∗ is optimal, such that H(D) > H(D∗), or

−
X

ij

(A′
ija

′
ij − (1 − A′

ij)b
′
ij)δ(di, dj) >

−
X

ij

(A′
ija

′
ij − (1 − A′

ij)b
′
ij)δ(d

∗
i , d∗

j ).

Then define c∗ by setting c∗i = d∗
i for 1 ≤ i ≤ h and c∗i = ci

for h < i ≤ n. Then because the result is unchanged for the
nodes h < i ≤ n, we have that

∆H =H(C) −H(C∗)

= −
X

ij

(Aij − (1 − Aij)bij)δ(ci, cj)

+
X

ij

(Aij − (1 − Aij)bij)δ(c
∗
i , c∗j )

= −
X

ij

(A′
ijaij − (1 − A′

ij)bij)δ(di, dj)

+
X

ij

(A′
ijaij − (1 − A′

ij)bij)δ(d
∗
i , d∗

j )

= − 1

λ

X

ij

(A′
ija

′
ij − (1 − A′

ij)b
′
ij)δ(di, dj)

+
1

λ

X

ij

(A′
ija

′
ij − (1 − A′

ij)b
′
ij)δ(d

∗
i , d∗

j ) > 0

where the last step follows from the locality of the weights
aij and bij . This inequality contradicts the optimality of C.
Hence, for all induced subgraphs H, the partition D is opti-
mal, and the objective function H is resolution-free. �

The converse is unfortunately not true. Consider a graph
G with some weights aij and bij . Now pick your favorite graph
H induced by some subpartition D, and define the weights
a′

ij = aij and b′ij = bij except for one particular edge (kl), for
which we set a′

kl = akl + ǫ. Then for some ǫ > 0, the origi-
nal subpartition will remain optimal in H, while the weights
are not local. Since the small change of the weight is only
made when considering the graph H, all other subpartitions
will always remain optimal. Of course, such a definition of the
weight is rather odd, so in practice we will never use it.

However, although the converse is not true, we can say a
bit more. Although the weights can be a bit different, there
is not that much room for these differences. We demonstrate
this on the ring network of cliques. The weights can depend
only on the graph, so if G and G′ are two isomorphic graphs,
then aij(G) = ai′j′(G

′), where i and i′ are two isomorphic
nodes. This obvioulsy also applies to automorphic graphs,
and thus limits the possible choices of weights. More specifi-
cally, it limits the possible choices of the weights of the ring
network considerably. The weights that can be different (re-
gardless of whether they are local or not) are illustrated in
Figure 1, where the α’s refer to the weights of present links,
and the β’s to the weight of missing links. For the convenience
of the reader, we color coded (online only) the equations used
in the following section, so that they match the illustration in
Figure 1.

All nodes within a clique are isomorphic, except the node
that connects to other cliques. So, all the edges among those
nc−1 nodes are similar, and will have the same weight α1. All
edges from these nc − 1 nodes to the ‘outside’ node will have
the same weight α2. Finally, the edge connecting two cliques
is denoted by α3. There are only relatively little links miss-
ing within a clique, namely the self-loops. The self-loop for
the special ‘outside’ node is denote by β2 while the self-loop
for the other nodes in the cliques is denoted by β1. Finally,
there are two type of missing links between two cliques: (1)
a link between the ‘outside’ node and a normal node denoted
by β3; and (2) a link between two normal nodes, denoted by
β4. These weights are made clear in Figure 1.

Let us now analyze when the method will not be
resolution-free. That is, the cliques must be merged in some
(large) graph, while for the subgraph consisting of these two
merged cliques, they should be separated by the method.
Or the other way around, they should be separated in some
(large) graph, but merged in the subgraph.

We can write the Hs for all q cliques being separate as

Hs = −q(α1(nc − 1)(nc − 2) + 2α2(nc − 1)

− (nc − 1)β1 − β2)

and Hm for merging all two consecutive cliques as

Hm = − q

2
2(α1(nc − 1)(nc − 2) + 2α2(nc − 1)

− (nc − 1)β1 − β2 + α3 − β3(nc − 1) − β4(nc − 1)2)

Furthermore, for the induced subgraph H consisting of two
consecutive cliques, we can write H′

s for separating the two
cliques and H′

m for merging them, similarly as before, where α′

and β′ are the weights for the subgraph H. Then the method
is not resolution-free if it would merge the two cliques at a
higher level (i.e. when Hm < Hs) yet wouldn’t merge them
at smaller scale (i.e. when H′

s < H′
m), or if they would be

separate at a higher level (i.e. when Hm > Hs), yet merged
at a smaller scale (i.e. when H′

s > H′
m) Working out this

condition for Hm < Hs (and similarly for Hm > Hs) gives us

α3 > (nc − 1)(β4(nc − 1) + β3),

while for H′
s < H′

m (and similarly for H′
s > H′

m) we obtain

α′
3 < (nc − 1)(β′

4(nc − 1) + β′
3).

Combining these two inequalities for both cases we obtain

α′
3(β4(nc − 1) + β3) < α3(β

′
4(nc − 1) + β′

3), [16]

α′
3(β4(nc − 1) + β3) > α3(β

′
4(nc − 1) + β′

3). [17]

where either equation [16] or [17] should hold. Hence, only
if the left hand side equals the right hand side, it does not con-
stitute a counter example. Working out this equality, there
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Fig. 2. Performance of different community detection methods in terms of Nor-

malized Mutual Information (NMI) depending on mixing parameter µ, showing CPM

to perform superbly. The open symbols denote results for n = 10
3 and the closed

symbols for n = 10
4. Both had a degree distribution exponent of 2 (with average

degree 15 and maximum degree 50) and community size distribution exponent 1

(with community sizes ranging from 20 to 100). Per value of µ 100 graphs were

used to obtain this result. The resolution parameter γ used to obtain this result for

CPM was analytically calculated.

are two possibilities. Either the weights should be local, so
that

α3

α′
3

=
β3

β′
3

=
β4

β′
4

= λ, [18]

or the following equality should hold.

nc − 1 =
α3β

′
3 − α′

3β3

α′
3β4 − α3β′

4

[19]

Obviously, this again constitutes some very particular case
of non-local weights. We can repeat this same procedure for
other subpartition, and for other graphs, thereby forcing the
weights to be of a very particular kind. This thus leaves little
room for having any sensible definition of local weights.

Furthermore, it is possible to prove that the property of
being additive is equivalent to having local weights if λ = 1.
Hence, whenever the general first principle Potts model has
local weights (with λ = 1), it is additive and resolution-free.
Since there are only relatively few sensible choices available
for local weights, all resolution-free methods within this frame-
work can be easily described. That means resolution-free com-
munity detection has only a quite limited scope. In fact, the
CPM seems to be the simplest non-trivial sensible formulation
of any general resolution-free method, although there’s some
leeway for special graphs (i.e. having some node properties,
such as multipartite graphs). This is not to say that methods
with non-local weights (e.g. modularity, number of triangles,
shortest path, betweennness) should never be used for com-
munity detection at all, they are just never resolution-free.

Performance and Application
In order to asses the performance of the proposed CPM

model, we performed various tests. Using the latest suggested
test networks [13] we find that the CPM model and the accom-
panying algorithm is both highly accurate and very efficient.
More details on the efficient Louvain-like algorithm and the
test procedure can be found in the Material and Methods sec-
tion at the end of this article.
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Fig. 3. Performance of CPM and Infomap on a hierarchical benchmark network in

terms of Normalized Mutual Information (NMI) depending on mixing parameters µ1

and µ2. The networks had n = 10
4 nodes with a degree distribution exponent of

2 (with average degree 20 and maximum degree 50) and community size distribu-

tion exponent 1 for both small (size ranging from 10 to 50) and large communities

(size ranging from 50 to 300). Per combination of parameters 10 graphs were used

to obtain this result. The resolution parameters γ for the two different levels were

calculated analytically.

The benchmark networks are created by using a known
community structure, i.e. a planted community structure,
where both the degree distribution and the community size
distribution follow some power law. We have examined both
directed test networks as well as hierarchical test networks,
where communities at multiple ‘levels’ in the data exist. The
difficulty of detecting communities correctly depends on the
parameter µ of having links outside its community, while for
hierarchical communities, there are two such parameter µ1 for
the first level (the large communities), and µ2 for the second
level (the subcommunities).

Some of the earlier algorithms and models that showed ex-
cellent performance are the Louvain [7] method for optimizing
modularity, and the Infomap method [29], of which recently
an hierarchical version was proposed [30]. In Figure 2 we have
displayed the results for the Louvain method (both using the
configuration null model, as well as the ER null model, with
default resolution parameter γRB = 1), the Infomap method,
and the CPM method for test networks having n = 103 and
n = 104 nodes. It can be clearly seen that CPM performs
outstanding.

Most methods seem to perform well until a certain thresh-
old, after which performance drops suddenly, suggesting ei-
ther a phase transition in the community structure of the test
graphs, or in the method being used. The community struc-
ture of such a test network can be said to be present, as long
as the density within a community is higher than the den-
sity between communities. This is actually the case up until

µ < n−〈ns〉
n−1

where 〈ns〉 is the expected community size, so

that µ is close to 1 for both n = 103 and n = 104. Hence, the
sudden drop signals the inability of the algorithm to correctly
identify the communities, since the actual phase transition of
the existence of communities should take place only later. For

6 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author



the hierarchical version similar thresholds for the existence of
communities can be provided, and in our case, this is also
close to the possible maximum.

The difference in performance of the CPM model in com-
parison to the RB model using the ER null model is especially
striking. This is no result of the method being resolution-free
or not, but rather depends highly on choosing the correct
resolution parameter. Obviously then, setting γ = p is in
general not a very good strategy, and for general networks
one should carefully analyze at which resolution the network
contains significant partitions, for example looking at stable
partitions using a randomized algorithm [19, 20].

We have also performed extensive tests on hierarchical
networks, where the method also performs excellent, and is
able to extract the two different levels of communities effec-
tively, as displayed in Figure 3. With increasing µ1 is becomes
more difficult to recuperate the large communities of level 1,
just as it becomes increasingly difficult to detect correctly the
smaller communities at level 2 with increasing µ2. However,
when µ1 increases it becomes easier to detect smaller commu-
nities, because the average outer density for smaller communi-
ties then becomes lower (otherwise, the communities remain
less clearly distinguished within one large community). On
the other hand, when µ2 is sufficiently high, the inner density
of large communities and small communities becomes essen-
tially the same, so that it becomes more difficult to detect
them. Summarizing, for relatively low µ2 / 0.7, the first
(larger) level becomes more clear for low µ1, while the second
(smaller) level becomes more clear for larger µ1. This is both
the case for the Infomap method and the CPM method. The
Infomap seems to be slightly better at detecting the correct
communities, although the CPM method is highly competi-
tive.

Conclusion
Several community detection methods, among which modu-
larity, are affected by the problem of the resolution limit. In
this paper we have provided a novel rigorous definition of what
it means for a community detection method to be resolution
(limit) free. A number of interesting (and favourable) prop-
erties of resolution-free methods are provided. Most impor-
tantly, we are able to prove exactly which community detec-
tion methods are resolution free, namely those methods that
use local weights. This also clarifies the relationship between
‘local’ methods and the resolution limit.

Moreover, there does not seem to be much room for hav-
ing resolution-free methods without local weights. Of the few
possibilities available for having resolution-free community de-
tection, the Constant Potts Model (CPM) we introduced in
this paper seems to be the simplest possible formulation. We
provided an intuitive interpretation of its resolution parame-
ter in terms of inner and outer density of communities. After
intensive testing, this method and its accompanying algorithm
is shown to perform superbly, including being able to detect
different levels in hierarchical graphs. The algorithm runs
very efficiently, and can easily handle networks with several
million number of edges and nodes. A rigorous definition of
resolution-free community detection allows for a more articu-
late analysis, and induces further progress on developing novel
and meaningful methods.

Materials and Methods

Louvain like Algorithm.

The algorithm we employ derives from the Louvain method [7], which also re-

sembles the algorithm suggested by [20], and performed quite well in the context of

modularity optimization [31]. We use the concept of node size, denoted by ni for a

node i, initialized to ni = 1 (indeed the community size nc =
P

i niδ(σi, c)
is related). We first iterate (randomly) over all nodes, and put nodes greedily into the

community that minimizes equation [ 6 ] most. We subsequently create a new graph

based on the communities, and new node sizes, and reiterate over this new smaller

graph. More specifically:

1. Initialize A and set ni = 1 for all nodes i.
2. Loop over nodes i (possibly randomly), remove it from its community and calcu-

late for each community c the increase if we would put node i into community

c,

∆H(σi = c) = −(ei↔c − 2γni

X

j

njδ(σj , c)), [ 20 ]

where ei↔c =
P

j(Aij + Aji)δ(σj , c) is the number of edges between

node i and community c. We put node i into the community c for which

∆H(σi = c) is minimal. We iterate until we can no longer decrease the

objective function.

3. We build a new graph A′
cd =

P

ij Aijδ(σi, c)δ(σj , d) and node sizes

n′
c =

P

i niδ(σi, c). We repeat step 2 by setting A = A′
and n = n′

until the objective function can no longer be decreased.

As stated earlier n′
c is simply the number of nodes in community c, i.e. the size

of community c, and that A′
cd is the number of links between community c and d.

Merging nodes c and d in A′
gives a change of

∆Hcd = −(A′
cd − 2γncnd) [ 21 ]

which corresponds exactly with merging communities c and d in A. If there are

weights present, the algorithm can be applied by using Aij = wij if there is an

(ij) link present, and 0 otherwise.

The looping over the nodes in step 2 can be done in O(m) time for m edges.

Since A′
is a q × q matrix, with q the number of (non-empty) communities, this

reduces the problem size significantly, although the matrix A′
is likely to be more

dense then A, so the looping over the nodes in step 2 is then expected to be in the

order of O(q2). Typically, only a few iterations over the nodes, and a few levels

are required to optimize a graph. The total running time is therefore expected to be

about O(m).

Finally, notice that for resolution-free methods, the results should be unchanged

on subgraphs. Hence, we could therefore perform the method (recursively) on sub-

graphs. We suggest then the following improvement. First cut the network at each

recursive call, until the density of the subgraph exceeds γ. Then, we recombine the

subgraphs, and loop over nodes/communities to find improvements until we can no

longer increase greedily, and return to the previous recursive function call. These calls

should be easily parallelized, making community detection in even larger graphs or in

an on-line setting possible by using cluster computing.

Benchmark tests.

In order to asses the performance of the proposed CPM model and the suggested

Louvain like algorithm, we performed various tests. Using the latest suggested bench-

mark networks [13] we find that the CPM model and the accompanying algorithm is

both highly accurate and very efficient.

The benchmark networks are created by using a known community structure,

i.e. a planted community structure. The community sizes ns are chosen from a

distribution following a power-law Pr(ns = n) ∼ n−τ2 . The degrees ki of

the nodes are also chosen from a power-law distribution Pr(ki = k) ∼ k−τ1 .

The stubs are then connected, with probability 1−µ within a community, and with

probability µ between two communities. Since the network is finite, the degree and

community sizes are automatically constrained by the number of nodes n. Also, it

is rather uninteresting to have communities of size 1. So, commonly a lower bound

ns and upper bound ns on the community sizes is imposed, while for the degree

the average degree 〈k〉 is specified. For the hierarchical version, there are two levels,

with the communities of the second level embedded in the first level. In that ver-

sion a fraction of µ1 of the links is placed between two different macro communities
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at the first level, while a fraction of µ2 of the links are placed between the small

communities of the second level (but within the same macro-community).

Instead of detecting the resolution algorithmically, we can actually calculate the

proper resolution parameter value γ analytically (and therefore, beforehand). We

compare our results to the standard modularity detection (i.e. using the configuration

null model with resolution parameter γRB = 1) and to the ER configuration null

model (with γRB = 1). Here, it becomes clear that the ER configuration null

model doesn’t perform well with it’s standard resolution parameter, while modularity

performs somewhat better. However, when choosing the correct resolution parameter,

as we do, the accuracy is exceptional.

In order to calculate the correct resolution parameter, we consider the following.

The resolution parameter γ acts as a sort of threshold on community inner and outer

density. If we were to set γ equal to the inner density, it would be rather difficult to

fulfill the condition that the inner density should be higher than that, and similarly so

for γ equal to the outer density. So, we need to be as far as possible from both the

inner density as well as the outer density, which would be simply the average of the

two.

The inner density for a community having ns nodes can be easily found as

pin =
(1 − µ)〈k〉

ns − 1
, [ 22 ]

and the outer density (i.e. all the edges originating from a community to the outside)

is

pout =
µ〈k〉

n − ns

, [ 23 ]

where n is simply the total number of nodes. The average community size 〈ns〉
than gives us the average 〈pin〉 and 〈pout〉, and is proportional to

〈ns〉 ∼
ns

X

n=ns

nn−β , [ 24 ]

where ns is the minimal community size and ns the maximal community size. We

then simply set

γ =
1

2
(〈pin〉 + 〈pout〉). [ 25 ]

For the hierarchical test networks, we can perform a similar analysis, and arrive

at

pin
1 = (1 − µ1)〈k〉/(ns,1 − 1) [ 26 ]

pout
1 = µ1〈k〉/(n − ns,1) [ 27 ]

pin
2 = (1 − µ1 − µ2)〈k〉/(ns,2 − 1) [ 28 ]

pout
2 = (µ1 + µ2)〈k〉/(n − ns,2) [ 29 ]

and use the average of the in and outer density, similar as before, for the two different

levels. Ordinarily, the communities are assumed to exist whenever pin > pout.

For comparing our results to the ‘known’ community structure, we use the nor-

malized mutual information. Given two different partitions C and D, the mutual

information I is defined as

I(C, D) = −
X

r,s

nr,s

n
log n

nr,s

nrns

[ 30 ]

with nr,s being the number of nodes that are in community r in partition C and
in community s in partition D, while nr simply denotes the number of nodes in

community r. The normalized mutual information In(C, D) is then defined as

In(C, D) =
2I(C, D)

H(C) + H(D)
, [ 31 ]

where H(C) indicates the entropy of a partition C , which is defined as

H(C) = −
X

s

ns

n
log

ns

n
. [ 32 ]

The normalized mutual information 0 ≤ In(C, D) ≤ 1, with 1 indicating equiv-

alent partitions.
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