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Abstract: The modeling of the radiation forces in a 3 degrees of freedom (DOF)
model of a surface vessel for dynamic positioning (DP) is addressed. The radiation
forces consist of added mass and potential damping. These forces are passive,
and they can be represented in state-space form before they are included in the
overall DP model. The state-space models representing the potential damping are
of high order and it is necessary to use model reduction techniques to make them
efficient when designing marine control systems. Different reduction procedures are
applied, with the aim of keeping the passivity properties of the potential damping.
A novel passivity preserving reduction technique is proposed and compared with
existing techniques. Previous approaches have relied on reducing SISO-systems
representing the potential damping in every mode. Here the modes which have
couplings are combined in MIMO-systems before reduction. This approach takes
better care of the coupled dynamics and in addition the order of the model can be
reduced significantly compared to the SISO-representation.
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1. INTRODUCTION

In this paper, special attention is given to the
representation of radiation forces in a 3 DOF
model of a surface vessel for DP. The radiation
forces describes the interaction of the ship with
the surrounding fluid. The radiation forces are an
important part of the ship model, and recently
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is has been shown how they can be represented
in state-space form and in this way included in
the overall ship model (Fossen and Smogeli, 2004).
The radiation forces can be split in one part due
to added mass and one part due to potential
damping. The state-space models representing po-
tential damping are usually of high-order, and it
is necessary to use model reduction techniques
to make them efficient in models for control and
simulation. It has been shown that the state-space
models of the potential damping are positive real
(Unneland and Egeland, 2006), this needs to be
addressed when reducing the order of the models.



In Section 2, the equations of motion for a seago-
ing vessel is presented, whereas special attention
is given to the state-space representation of the
potential damping. The potential damping terms
have usually been represented as SISO-models for
every mode, and it is suggested to combine the
modes which have couplings in MIMO-systems.
With this approach the dynamics of the overall
radiation forces will be better kept during model
reduction; the same dynamics can be expressed
with lower order models. In Section 3, the different
model reduction algorithms intended for use will
be presented. A novel algorithm is proposed, with
the aim of keeping the positive real properties of
the potential damping. In Section 4, the different
algorithms are applied to the state-space models
of the potential damping. First the algorithms
are compared in terms of accuracy. Subsequently
order reduction of the SISO-systems represent-
ing the potential damping and the new proposed
MIMO-representation will be compared. Finally,
in Section 5 the conclusions are given.

2. EQUATIONS OF MOTION

By using the Newton-Euler equations of motion
for rigid bodies the forces and moments working
on the 3 DOF horizontal rigid body, which repre-
sents the DP vessel, can be incorporated into the
model by means of force and moment superposi-
tion (Fossen, 2002):

η̇=R(ψ)ν (1)

MRB ν̇+CRB(ν)ν = τR+τA+τc+τFK+diff . (2)

HereMRB is the rigid-body system inertia matrix,
CRB is the rigid-body Coriolis and centripetal
matrix, τR represents the radiation forces, τA
represents the control forces, τc represents the
current forces and τFK+diff represents the Froude-
Krylov and diffraction forces. The generalized
position vector is defined in the North-East-Down
frame (n-frame) as a combination of the positions
in surge and sway and the yaw Euler angle:

η = [n, e, ψ]T . (3)

And the generalized velocity vector is defined in
the Body-fixed frame (b-frame) as a combination
of the linear velocities in surge and sway and the
angular velocity in yaw, of the moving vessel in
the b-frame with respect to the n-frame:

ν = [u, v, r]T . (4)

The position vector η is related to the velocity
vector ν through the rotation matrix in yaw R(ψ):

η̇ = R(ψ)ν =





cosψ − sinψ 0
sinψ cosψ 0

0 0 1



 ν. (5)

2.1 Radiation forces and moments

The expression for the radiation forces, τR, can
be found using potential theory programs like
WAMIT, VERES or Octopus Seaway. The Hy-
drodynamic frame (h-frame) used in these pro-
grams do not correspond to the coordinate frames
used in the equations of motion for control, ob-
servers and simulator for surface vessels (Fossen
and Smogeli, 2004). Due to this, it is assumed for
the rest of the paper, that the h-frame potential
coefficients are computed in CG and the b-frame
origin coincides with the h-frame origin. Hence
for small rotations, we can assume that these
frames coincide. Using numerical hydrodynamics
we get an expression including the added mass,
A(ωe), and potential damping, B(ωe), forces and
moments. These are dependent on the frequency
of encounter ωe (Ogilvie, 1964):

τR = −A(ωe)ν̇ −B(ωe)ν. (6)

For a moving vessel, energy is supplied to the fluid
through generated waves. This is represented by
the potential damping forces, and these forces are
proportional to the vessel velocities. When the
vessel is accelerating, it gets an added mass due to
the inertia of the fluid surrounding the hull. This
is represented by the added mass forces, and they
are are proportional to the vessel accelerations.

Several approaches have been proposed to rep-
resent the potential damping in state-space form
e.g. (Yu and Falnes, 1995) and (Kristiansen et al.,
2005). In this paper an approach by (Kristiansen
et al., 2005) will be used, such that

τR =−MAν̇ − µpd (7)

χ̇=Apdχ+Bpdν (8)

µpd =Cpdχ+Dpdν. (9)

Here the added mass is represented by the ma-
trix MA = A(∞) and the potential damping is
represented by µpd. In this setting the poten-
tial damping forces can be represented with up
to 9 SISO systems depending on the symmetry
properties of the vessel. Because of port-starboard
symmetry of the vessel presented here, the result-
ing vessel model will consist of 5 SISO systems
(Sii = (Aii, Bii, Cii, Dii)), where the off-diagonal
terms are symmetric (Sjk = Skj). Note that surge
is decoupled from sway and yaw;

µpd(s) =





S11 0 0
0 S22 S23

0 S32 S33



 ν(s). (10)

The state-space models describing the potential
damping forces are of high order and it is neces-
sary to use model reduction techniques to make
them efficient for computer simulation and con-
trol synthesis. Model reduction is the process of



converting a high order model to a low order
approximation, which captures the main features
of the original model.

Previous approaches looking at the model reduc-
tion of the state-space models representing the
potential damping, e.g. (Kristiansen et al., 2005),
has represented every mode in the model as a
SISO system, and they have been reduced inde-
pendent of each other. This is illustrated in Fig.
1. Here, these results are further developed by

S22(s)

S11(s)

S23(s)

S33(s)S32(s)

0

33r(s)32r(s)

S11r(s) S22r(s) S23r(s)

n(s)mpd(s)

S

Fig. 1. SISO-reduction of the potential damping.

suggesting structures representing all the SISO
systems, which have couplings, as one MIMO sys-
tem. With this approach one gets 2 systems, one
representing the surge dynamics and one system
representing the coupled dynamics in sway and
yaw. This new approach is illustrated in Fig. 2.
By doing this, the order of the model can be
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0
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Fig. 2. Reducing the modes with couplings as
MIMO-system.

extensively reduced with a satisfying accuracy.
With this approach the radiation forces can be
written as;

τR =−MAν̇ − µpd (11)

χ̇=Apdχ+Bpdν (12)

µpd =Cpdχ+Dpdν. (13)

Here (Apd, Bpd, Cpd, Dpd) represents two systems;
the dynamics in surge (Sx=(Ax, Bx, Cx, Dx))

and the coupled dynamics in sway and yaw
(Syψ=(Ayψ, Byψ, Cyψ, Dyψ)):

Apd=diag[Ax, Ayψ]=diag([A11],[A22, A23, A32, A33])
(14)

Cpd=diag[Cx, Cyψ]=diag([C11],[C22, C23, C32, C33])
(15)

Bpd=

[

Bx 0
0 Byψ

]

=













B11 0 0
0 B22 0
0 0 B23

0 B32 0
0 0 B33













(16)

Dpd=

[

Dx 0
0 Dyψ

]

=













D11 0 0
0 D22 0
0 0 D23

0 D32 0
0 0 D33













. (17)

2.2 Ship Kinetics

Combining (5), (2) and the equations for the
radiation forces (11)-(13), the equations of motion
for the vessel are as follows:

η̇ =R(ψ)ν (18)

χ̇=Apdχ+Bpdν (19)

µpd =Cpdχ+Dpdν (20)

Mν̇ + CRB(ν)ν + µpd = τc+τA+τFK+diff .(21)

Here M = MRB+MA. In the next section we will
look at different methods to do the reduction of
the state-space models representing the potential
damping in (19)-(20). In (Unneland and Egeland,
2006) it is shown that the mapping ν 7→ µpd
representing the potential damping is positive
real; this is a property which should be preserved
during the reduction. For this model, this states
that the systems Sx and Syψ are positive real.

3. MODEL REDUCTION BY BALANCED
TRUNCATION

Given a nth-order LTI system in state space form,

ẋ=Ax+Bu (22)

y=Cx+Du, (23)

with associated transfer function,

G(s) = C(sI −A)−1B +D. (24)

The reduced order model, with order r�n, will be
denoted as,

ẋr =Arxr +Bru (25)

yr =Crxr +Dru, (26)

and the associated reduced order transfer func-
tion,

Gr(s) = Cr(sI −Ar)
−1Br +Dr. (27)



Model reduction based on balanced truncation is
a commonly used scheme. The idea behind the
balanced truncation is to transform the system
to a balanced representation in terms of some
physical measure, and discard the parts of the
dynamics which are less important in terms of
this measure. The most commonly used method
is Lyapunov balancing, which balances the system
in terms of the controllability and observability
gramians.

3.1 Lyapunov balancing

The Lyapunov balanced realization was intro-
duced to the systems and control society by
(Moore, 1981). The Lyapunov balancing proce-
dure is based on information from two Lyapunov
equations giving the controllability gramian, Wc,
and the observability gramian, Wo,

AWc +WcA
T =−BBT (28)

ATWo +WoA=−CTC. (29)

Notice that the gramians are positive definite if
the system is minimal. The idea behind the Lya-
punov balancing is to transform the mathematical
model to a basis where the states which are dif-
ficult to control are also difficult to observe, and
the reduced model is obtained by discarding the
states which have this property. Below a general
algorithm for balanced truncation is written out
sequentially.

Balanced truncation algoritm:

(1) Choose a pair of positive definite matrices;
Mc, Mo.

(2) Solve out Cholesky factors;
Mc = LcL

T
c , Mo = LoL

T
o .

(3) Calculate SVD of Cholesky product;
UΣV = LTo Lc.

(4) Get the balancing transformations;
T = LcV Σ−1/2, T−1 = Σ−1/2UTLTo .

(5) Compute the balanced realizations;
Â = T−1AT, B̂ = T−1B, Ĉ = CT

(6) Truncate Â, B̂, Ĉ to form the reduced order
system Ar, Br, Cr

Lyapunov balancing can be done by choosing the
positive definite matrix Mc equal to the controlla-
bility gramianWc and the positive definite matrix
Mo equal to the observability gramian Wo.

When applied to asymptotically stable systems
the Lyapunov balancing preserves the stability of
the system, but a property like passivity might
not be preserved.

3.2 Riccati balancing

Riccati balancing (Desai and Pal, 1984) is used to
reduce passive systems, and will keep the positive

real properties of the system. The system G(s)
is positive real, with minimal realization, if it
satisfies the positive real (PR) equations:

AXc +XcA
T =−BlB

T
l (30)

XcC
T −B =−BlD

T
l (31)

−D −DT =−DlD
T
l (32)

Xc =XT
c > 0, (33)

which can be solved for Bl and Dl. Xc can be seen
as a matrix measuring the energy accumulated
in the system, and in that sense analogous to
the controllability gramian, Wc, in the balanced
truncation algorithm. As an analogon to the ob-
servability gramian, Wo, the dual positive real
(DPR) equations can be solved for Cr and Dr:

ATXo +XoA=−CTr Cr (34)

XoB − CT =−CTr Dr (35)

−D −DT =−DT
r Dr (36)

Xo =XT
o > 0. (37)

So-called Riccati balancing can now be done by
choosing the positive definite matrix Mc equal to
Xc and the positive definite matrix Mo equal to
Xo in the balanced truncation algortihm. Notice
that the minimal solutions to Xc and Xo are used.
When applied to positive real systems the Riccati
balancing preserves the positive real property of
the system.

3.3 Mixed gramian balancing

In this section a new algorithm for achieving posi-
tive real reduced order systems is proposed. When
using Riccati balancing the system is balanced
based on the solution of two Riccati equations,
and when the balanced system satisfies the PR
lemma this gives postive real reduced order sys-
tems. The solution of two Riccati equations are
computationally demanding. The idea behind the
new approach is to solve one Riccati equation only.
As long as the PR lemma is satisfied, this also
holds for the balanced system and for the reduced
system.

In this approach we balance the solution of one
Riccati equation and one Lyapunov equation. Let-
ting G(s) = C(sI−A)−1B+D denote the original
system, it can be balanced by taking the control-
lability gramain Wc like in (29)

AWc +WcA
T = −BBT , (38)

and balance it with the minimal solution to Xo in
(34)-(37)

ATXo+XoA+(XoB−CT)(D+DT)−1(BTXo−C)=0.
(39)



Mixed gramian balancing can now be done by
choosing the gramian Mc equal to the control-
lability gramian Wc and the gramian Mo equal
to the output energy gramian Xo in the balanced
truncation algorithm.

Definition: The positive real minimal system
G(s) is called mixed gramian balanced if,

Wc = Xo = Σ = diag(σ1Im1
, . . . , σqImq

), (40)

where σ1 > σ2 > . . . > σq > 0, mi, i = 1, . . . , q
are the multiplicities of σi and m1 + . . .+mq = n.

We can now state the following theorem:

Theorem: Let the positive real and minimal
system G(s) have the mixed gramian balanced
realization

G(s) =

[

A B

C D

]

=





A11 A12 B1

A21 A22 B2

C1 C2 D



 (41)

with Wc = Xo = Σ = diag(Σ1,Σ2) where
Σ1 = diag(σ1Im1

,. . . , σkImk
) and

Σ2 =diag(σk+1Imk+1
,. . . , σqImq

). Then the re-
duced order model,

Gr(s) =

[

A11 B1

C1 D

]

, (42)

obtained by truncation is positive real.

Proof: Since (A,B,C,D) is balanced, the two
gramians, Σ, are equal and satisfy one Lyapunov
equation (38) and one Riccati equation (39),

AΣ + ΣAT +BBT = 0 (43)

ATΣ+ΣA+(ΣB−CT )(D+DT )−1(BTΣ−C) = 0.
(44)

Writing out the second equation in terms of
its partitioned matrices gives the following (1, 1)
block;

AT11Σ1+Σ1A11+(Σ1B1−C
T
1 )(D+DT)−1(BT1 Σ1−C1)=0.

(45)
Since Σ1 > 0 the positive realness of the
reduced order system (A11, B1, C1, D) can be
concluded. �

In the next section the different algorithms will
be applied to the different representations of the
model representing the potential damping in the
vessel model, and they will be compared in terms
of quality.

4. RESULTS

The numerical computation of the frequency de-
pendent potential damping, B(ωe), are done in
SEAWAY Octopus, and positive real state space
realizations are achieved in all modes. Below the
sizes of the different state-space realizations in
(10) are listed:

system S11 S22 S23 S32 S33

order 114 124 69 69 104
.

First in this section, the different reduction al-
gorithms will be compared, special attention is
given to the performance of the novel mixed bal-
ancing scheme compared to the Riccati balancing;
the only algorithms ensuring positive real reduced
systems. All of the SISO-systems Sii are reduced
to order 10, using the algorithms in Section 3.
This gives an ‖ · ‖∞-error between the original
system and reduced system around 0.01 times the
maximum gain for each system. The ‖ · ‖∞-error
between the original and reduced systems for the
different systems and algorithms are listed below.
The ‖ · ‖∞-norm gives a bound on the worst-
case performance of the systems. Let Siir denote
the reduced system of Sii. Notice that because of
symmetry the results for S23 equals the results for
S32, and the latter is omitted.

Balancing : Lyapunov Riccati Mixed

‖S11 − S11r‖∞ 2.19 · 103 2.30 · 103 2.11 · 103

‖S22 − S22r‖∞ 1.06 · 104 1.71 · 104 1.05 · 104

‖S23 − S23r‖∞ 3.66 · 104 7.21 · 104 3.69 · 104

‖S33 − S33r‖∞ 2.28 · 106 2.63 · 106 2.16 · 106

All the algorithms give reduced order systems
which are positive real, even though the Lyapunov
balancing gives no guaranty for this. The Lya-
punov balancing and Mixed balancing have the
best results. If one restricts oneself the algorithms
which guarantee positive real systems, the Mixed
balancing gives better results than the Riccati
balancing. This result is reflected in Fig. 3, where
the 114 states system S11 is reduced to different
orders with the different algorithms. The model
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Order of reduced system S
11r

||S
11

−
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11
r|| ∞

Lyapunov
Mixed
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Fig. 3. Reduction error ‖S11−S11r‖∞ for different
order of the reduced system S11.

representing the potential damping consists now
of 5 SISO-systems of order 10 (the systems ob-
tained by the Lyapunov balancing will be used).
We would like to further reduce the order of the
system representing the potential damping. Indi-
vidually reducing the order of the SISO-systems
representing the potential damping and the new
proposed MIMO-representation will be compared.
The latter approach consists of reducing the two
systems Sx and Syψ in (14)-(17) instead of the
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Fig. 4. Comparison of the reduction error when re-
ducing Syψ as MIMO-system or individually
the SISO-systems.

SISO-systems S11, S22, S23, S32 and S33, as illus-
trated in Fig. 1 and 2.

Since Sx only represents the dynamics in surge,
this will be the same as reducing the system S11.
The interesting point is to see how the reduction of
the MIMO-system Syψ compares to reducing the
SISO-systems S22, S23, S32 and S33 individually,
and then let them represent the dynamics in sway
and yaw. Below the ‖ · ‖∞-error is listed for
the two different approaches and for the different
algorithms when reducing the system from an
order of 40 to 24;

‖Syψ − Syψr‖∞
Balancing SISO− MIMO−
method : representation representation

Lyapunov 8.00 · 106 2.66 · 105

Riccati 9.04 · 106 8.99 · 106

Mixed 8.52 · 106 2.25 · 106

One can see that for all algorithms the new MIMO
formulation gives better performance. The new
approach reflects that by reducing the overall sys-
tems as SISO systems one might cancel dynamics
which are important for the modes which are
coupled. In the new formulation the dynamics are
better kept in lower order models. In Fig. 4 the dif-
ference between the SISO-reduction and MIMO-
reduction using Lyapunov balancing is illustrated.
All the reduced systems were positive real. As
long as the Lyapunov algoritm gives positive real
reduced systems, this is a good algoritm to use in
terms of cost. The Mixed balancing shows better
performance than the Riccati balancing for this
type of system, but further investigation with
other systems is needed before any conclusions
can be drawn. It is a cheaper algorithm than the
Riccati balancing; due to this it is preferred if it
gives better results.

5. CONCLUSIONS

A 3 DOF model of a surface vessel for DP has
been presented; special attention was given to
the representation of potential damping forces in
state-space form. A new formulation which in-
cludes modes which have couplings in MIMO-
systems has been suggested, compared to the clas-
sical approach where all modes are represented as
SISO-systems. This formulation has shown to be
effective when the order of the potential damp-
ing is reduced; the same dynamics can be ex-
pressed with lower order models than in the SISO-
approach. The potential damping forces are posi-
tive real, and a novel reduction algorithm keeping
the positive real properties has been proposed;
mixed gramian balancing. This approach is com-
putationally more efficient than Riccati balancing
which is usually used for positive real systems.
Compared to the Riccati balancing, the new al-
gorithm produces reduced order model with lower
‖ · ‖∞-error for the potential damping. Further
investigation with other systems is needed before
any general conclusion can be drawn.
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