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Abstract

Model reduction, based on balanced truncation, of stable and of positive real systems are considered.
An overview over some of the already existing techniques are given: Lyapunov balancing and stochastic
balancing, which includes Riccati balancing. A novel scheme for positive real balanced truncation is then
proposed, which is a combination of the already existing Lyapunov balancing and Riccati balancing. Using
Riccati balancing, the solution of two Riccati equations are needed to obtain positive real reduced order
systems. For the suggested method, only one Lyapunov equation and one Riccati equation are solved in
order to obtain positive real reduced order systems, which is less computationally demanding. Further it
is shown, that in order to get positive real reduced order systems, only one Riccati equation needs to be
solved. Finally, this is used to obtain positive real frequency weighted balanced truncation.
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1 Introduction

In simulation and control there is a need for efficient
and compact mathematical models. Model reduction
is a tool for reducing the size of high order mathe-
matical models, where the focus is on approximating
the most important dynamical features of the original
model. Model order reduction is used in a wide va-
riety of applications and different fields, such as very
large-scale integration (VLSI) chip design, simulation
of micro-electro-mechanical systems (MEMS), image
processing, economical models, weather and air quality
prediction and control design and synthesis.

In this paper an overview of already existing model
reduction methods is given. We first focus on order
reduction by balanced truncation, which is well suited
and efficient for systems of moderate size (say, of an
order of a few thousands). Recent results have shown
that these type of algorithms also are promising for
higher order systems, as better algorithms are being
developed (Benner et al., 2005).

Positive real systems describes a class of systems
which cannot generate energy internally; they can store
and dissipate energy, but they cannot produce energy.
For such systems, it is important that any approximate
model reflects this property in order to avoid nonphysi-
cal behavior when used in numerical simulations. This
is a useful property, which we would like to preserve
in the model reduction process, and there are balanced
truncation methods that indeed preserve the positive
realness of a system during the reduction process. In
this paper, we present a new algorithm in this class,
which is computationally efficient.

In Section 2 we give an introduction to the most
common balancing schemes, Lyapunov balancing and
stochastic balancing. Based on these algorithms we
propose a novel algorithm, which constructs positive
real reduced order systems. In Section 3 we look at
which properties are required in order to yield positive
real reduced order systems. We then use this result to
develop a method for positive real frequency weighted
truncation.
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Figure 1: Order reduction by projection

2 Balanced Truncation

For an nth order minimal linear time invariant (LTI)
system in state space form,

ẋ = Ax + Bu, (1)

y = Cx + Du, (2)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n and D ∈

R
p×m, the associated transfer function is given by

G(s) = C(sIn − A)−1B + D. (3)

Model reduction deals with finding a reduced order
system, with order r ≤ n, which captures the main
features of the original system, i.e. its dynamics, sys-
tem stability, system passivity and possibly some struc-
tural properties. We denote the reduced model of order
r ≤ n by

ẋr = Arxr + Bru,

y = Crxr + Dru,

where Ar ∈ R
r×r, Br ∈ R

r×m, Cr ∈ R
p×r and Dr ∈

R
p×m, and its associated transfer function is given by

Gr(s) = Cr(sIr − Ar)
−1Br + Dr.

Many different coordinate systems can be used to de-
scribe the dynamical system in (1). Let T ∈ R

n×n be a
nonsingular matrix, and let the system undergo a state
space transformation,

x̄ = Tx, (4)

˙̄x = TAT−1x̄ + TBu, (5)

y = CT−1 + Du. (6)

This transformed system (5-6) has the same dynamics
for any nonsingular matrix T . Model reduction can
now be done by choosing T , in terms of some physi-
cal measure, and discard the parts of the transformed
state x̄ which are less important in terms of that mea-
sure. Partitioning the matrices TAT−1, TB, CT−1

accordingly,

TAT−1 =

[

Ā11 Ā12

Ā21 Ā22

]

,

TB =

[

B̄1

B̄2

]

,

CT−1 =
[

C̄1 C̄2

]

,

the reduced order system can thus be written as,

Ar = Ā11, Br = B̄1, Cr = C̄1, Dr = D.

This procedure of reducing systems is called projection
based model order reduction (PBMOR). Depending on
which properties the PBMOR keeps (e.g. stability or
passivity) or on which T is chosen, different classes of
PBMOR are obtained.

One important class of PBMOR method is balanced
truncation, where the coordinate transformation T in
(4)-(6) is chosen such that two given positive defi-
nite matrices (say, M and N) are transformed via
M̄ := TMTT , N̄ := T−T N(T−1) to become equal and
diagonal :

M̄ = N̄ = Σ.

The resulting transformed system is then in a so-called
balanced coordinate system based on M and N . For
instance, in order to obtain asymptotically stable sys-
tems one chooses M and N as the solution of a Lya-
punov equation; for positive real systems one chooses
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them as a solution of the positive real lemma. The ma-
trices M and N are then clearly related to the prop-
erties of the system (i.e. the Lyapunov equations, the
positive real equations) and will lead to different types
of balancing and hence also to different types of re-
duced order models. The idea of balanced systems
were introduced by (Mullis and Roberts, 1976) in digi-
tal filters, and later introduced to the system and con-
trol society by (Moore, 1981). An nice survey of bal-
anced truncation methods is given in (Gugercin and
Antoulas, 2004).

2.1 Lyapunov Balancing

Lyapunov balanced truncation was introduced to the
systems and control society by (Moore, 1981). It is
based on the solution of two Lyapunov equations, defin-
ing the controllability gramian P , and the observability
gramian Q :

AP + PAT + BBT =0,

AT Q + QA + CT C =0.

Notice that the gramians are positive definite if the
system is minimal. The idea behind the Lyapunov bal-
ancing is to transform the mathematical model to a
coordinate system where the states that are difficult to
control also are hard to observe. The reduced model is
obtained by discarding the states which have this prop-
erty. Below we recall an algorithm for finding trans-
formations T and T−1 satisfying (4)-(6). Lyapunov
balanced truncation then amounts to using the posi-
tive definite controllability and observability gramians
(P,Q) for the matrices (M,N).

Table 1: Balanced Truncation Algorithm

1. Choose a pair of positive definite matrices (M,N)

2. Compute the Cholesky factorizations of M and N

M = LMLT
M , N = LNLT

N

3. Compute the SVD of LT
MLN

LT
MLN =UΣV T

4. Construct the balancing transformations
T =Σ1/2UT L−1

M , T−1 =L−T
N V Σ1/2

5. Construct the balanced realization
Ā = TAT−1, B̄ = TB, C̄ = CT−1,

yielding TMTT =T−T NT−1 =Σ

6. Truncate Ā, B̄, C̄ to form the reduced order system
Ar, Br, Cr

The physical interpretation of the Lyapunov balanc-
ing can be related to the L2-norm of the input and

the output of the system. The controllability and ob-
servability gramians P and Q are related to the energy
demanded to control and observe the system (Glover,
1984). The controllability gramian P is connected to
the solution of the minimum L2-norm problem,

min
u∈L2(−∞,0)

{
∫ 0

−∞

u(t)Tu(t)dt s.t. x(0) = x0

}

=xT
0P

−1x0.

In this setting the size of the eigenvalues of P describes
(in the L2-norm) how much input energy is needed
to control the associated state eigenvector. The ob-
servability gramian Q is related to the L2-norm of the
output. If the system is released at x(0) = x0 with
u(t) = 0,∀t ≥ 0 the following equality holds,

∫ ∞

0

y(t)T y(t)dt = xT
0 Qx0.

In this setting, the size of the eigenvalues of Q describes
(in the L2-norm) how much output energy is produced
when the associated state eigenvector is in free evolu-
tion.

The balanced systems based on the positive definite
matrices (P,Q),

Ā = TAT−1, B̄ = TB, C̄ = CT−1,

where,

TPTT = T−T QT−1 = Σ,

are now in a coordinate system where the observability
and controllability gramians are equal and diagonal.
Here Σ represents the singular values of the system

Σ = diag(σ1 ≥ σ2 ≥ . . . ≥ σn).

Since the system is in a balanced coordinate system,
the singular values give a measure of which states are
difficult to control and observe, and can therefore be
discarded without affecting too much the input-output
behaviour. Hence, looking at the singular values of a
system provides a good way to measure which states
to keep and which ones to discard.

An attractive part of the Lyapunov balancing is that
there exists a well defined error bound between the
original and reduced order system (Glover, 1984),

||G(s) − Gr(s)||∞ ≤
n

∑

k=r+1

σk,

where n is the order of the original system and r is the
order of the reduced order system.

When applied to an asymptotically stable system,
Lyapunov balancing preserves the stability of the sys-
tem, but a property like passivity might not be pre-
served. We will call a state transformation T which
guarantees that the reduced order system is stable as
well, a stable state space transformation.
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Definition 1 Let G(s) in (3) be a stable minimal re-
alization, then T ∈ R

n×n is called a stable state trans-
formation if all the truncated systems,

Gr(s) = Cr(sI − Ar)
−1Br + Dr, r = (1, . . . , n − 1),

obtained from the transformed system (4)-(6) are sta-
ble.

2.2 Stochastic Balancing

Stochastic balancing was first proposed by (Desai and
Pal, 1984) where it was used to balance stochastic sys-
tems; (Harshavardhana et al., 1984) then showed that
it preserves the positive realness of the original system.
In (Green, 1988) it it shown how this can be applied
to LTI systems. The idea behind stochastic balanc-
ing leads to three different model order reduction algo-
rithms, as will be shown in this section.

Let Φ be the power spectrum of the positive real min-
imal degree transfer function Z(s) = H(sIn−F )−1G+
J , then we have the following relation (Obinata and
Anderson, 2001)

Φ = Z(s)+ZT (−s)=V (s)V T (−s)=WT (−s)W (s). (7)

Here Z(s) denotes the phase system, V (s) the left spec-
tral factor of Z(s), and W (s) the right spectral factor
of Z(s). The system Z(s) = (F,G,H, J), which is pos-
itive real (PR), satisfies the positive real lemma equa-
tions,

FR + RFT = −GlG
T
l , (8)

RHT − G = −GlJ
T
l , (9)

−J − JT = −JlJ
T
l . (10)

Here R = RT > 0, Gl and Jl can be solved from these
equations. A dual pair of positive real equations can
be obtained by pre- and post-multiplying (8) by R−1,
and pre-multiplying (9) by R−1. By defining;

O := R−1,

Hr := −LT GT
l R−1,

Jr := LT JT
l ,

where L is an arbitrary orthogonal matrix (i.e. LLT =
I), we obtain dual positive real (DPR) equations, given
by

FT O + OF = −HT
r Hr, (11)

OG − HT = −HT
r Jr, (12)

−J − JT = −JT
r Jr. (13)

Here O = OT > 0, Hr and Jr can be solved from these
equations, which show that the dual system ZT (−s) =
GT (sI − FT )−1HT + JT of Z(s) is positive real.

The solutions R and O of (8)-(10) and (11)-(13) form
convex sets (Willems, 1971)

0 < Rmin ≤ R ≤ Rmax,

0 < Omin ≤ O ≤ Omax.

Given the solution R to the PR equations, then O =
R−1 is a solution to the DPR equations, hence Rmin =
O−1

max and Omin = R−1
max.

Let (R,Gl, Jl) be the solution to the PR equations
(8)-(10), then the left spectral factor associated with
(R,Hl, Jl) is

V (s) = H(sI − F )−1Gl + Jl.

Let (O,Hr, Jr) be the solution to the DPR equations
in (11)-(13), then the right spectral factor associated
with (O,Hr, Jr) is

W (s) = Hr(sI − F )−1G + Jr.

A function Fc can now be defined using F , Gl and Hr

from (8) and (11) such that (Obinata and Anderson,
2001),

[

Z(s) V (s)
W (s) Fc(s)

]

=

[

H

Hr

]

(sI−F )−1
[

G Gl

]

+

[

J Jl

Jh 0

]

.

(14)

By doing balancing truncation on Fc(s) = Hr(sI −
F )−1Gr based on its controllability gramian and ob-
servability gramian,

FP + PFT + GlG
T
l = 0,

FT Q + QF + HT
r Hr = 0,

induced truncations of the realizations Z(s), V (s) and
W (s) are simultaneously obtained. Depending on
whether you choose the system G(s), which is to be
reduced, equal to Z(s), V (s) or W (s) one ends up with
three different order reduction algorithms; Riccati bal-
ancing (phase system balancing), left spectral factor
balancing and right spectral factor balancing.

Riccati balancing (phase system balancing)

By choosing the phase system equal to the system
transfer function, Z(s) = G(s), one obtains Riccati
balancing, also called phase system balancing. It is
now assumed that G(s) = (A,B,C,D) is a minimal
positive real transfer function, hence the system will
satisfy the PR equations (8)-(10) and the DPR equa-
tions (11)-(13).

In Riccati balancing the minimal solution
(Rmin, Omin) to (8)-(10) and (11)-(13) are used.
These can be obtained by rewriting (8)-(10) and
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(11)-(13) as a dual pair of Riccati equations, and then
solve for R > 0 and O > 0;

FR+RFT +(RHT −G)(J+JT )−1(HR−GT )=0, (15)

FT O+OF +(OG−HT )(J+JT )−1(GT O−H)=0. (16)

When Z(s) = G(s) this gives,

AR+RAT +(RCT −B)(D+DT )−1(CR−BT )=0,

ATO+OA+(OB−CT)(D+DT )−1(BT O−C)=0.

By performing Riccati balancing the system is trans-
formed to a basis where,

R = O = Σ.

Since these are the minimal solutions to (8)-(10) and
(11)-(13) (Antoulas, 2005),

Rmin =Omin =Σ. (17)

In (Green, 1988) it is shown that since the minimal so-
lutions Rmin and Omin are balanced, O−1

min = Rmax ≥
Rmin the σi in (17) are all less than or equal to 1, hence
for Riccati balancing,

Σ ≤ I.

When applied to positive real systems, this property is
preserved in the reduction process. We will call such
state transformation T given by the balancing of (R,O)
a positive real state transformation,

Definition 2 Let G(s) in (3) be a positive real mini-
mal realization, then T ∈ R

n×n is called a positive real
state transformation if all the truncated systems,

Gr(s) = Cr(sI − Ar)
−1Br + Dr, r = (1, . . . , n − 1),

obtained from the transformed system (4)-(6) are pos-
itive real.

Like the Lyapunov balancing this also has a physical
interpretation. Another way of checking if a system is
passive, is in terms of Lyapunov theory and the use
of storage functions (Willems, 1971). In these terms
a system is said to be passive if there exists a storage
function, V (x) > 0, such that the following inequality
holds

V (x) ≤ V (x(0)) +

∫ t

0

s(u(t), y(t))dt.

Here s(u(t), y(t)) is called the supply function, and de-
scribes the rate at which power is supplied to the sys-
tem. Two quantities can be defined from the notion of

a storage function (Willems, 1971): the required sup-
ply, Vr, and the available storage, Va. The required
supply, Vr, is defined as

0 ≤ Vr(x0) = inf
u(t)|x(0)=x0

[
∫ 0

−∞

s(u(t), y(t))dt

]

,

and it is the minimum amount of energy that must be
injected in the system in order to control the system
to state x0 at time 0. The solution of (15) is related to
the required supply (Phillips et al., 2003)

xT
0 R−1x0 = Vr(x0).

In this setting, the size of the eigenvalues of R describes
how much energy is needed to control the associated
state eigenvector. Small eigenvalues of R imply that
a large amount of energy is needed to reach the as-
sociated mode. R can be looked on as an input en-
ergy gramian; we will refer to R as the required supply
gramian.

The available storage is defined as

0 ≤ Va(x0) = sup
x(0)=x0

−

[
∫ ∞

0

s(u(t), y(t))dt

]

,

it is the maximum amount of energy which can be ex-
tracted from the system in free evolution. The solution
of (16) is related to the available storage

xT
0 Ox0 = Va(x0).

Here, the size of the eigenvalues of O describes how
much energy can be extracted from the system in free
evolution. Small eigenvalues of O imply that a small
amount of energy can be extracted from the associ-
ated mode. O can be interpreted as an output energy
gramian; we will refer to O as the available storage
gramian.

By doing Riccati balancing, the system is balanced
in terms of its required supply and available storage.
States which are associated with small amount of avail-
able storage and big amounts of required supply will
be discarded. This balancing scheme is commonly used
to reduce positive real systems, and will preserve this
property in the reduction process.

Left spectral factor balancing

Having the relation (7),

Z(s) + ZT (−s) = V (s)V T (−s),

the left spectral factor V (s) can be found from the
solution, (R,Gl, Jl), to the PR equations (8)-(10),

V (s) = H(sI − F )−1Gl + Jl.
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Let the left spectral factor be the transfer function to
be reduced, G(s) := V (s):

V(s)=G(s)=H(sI−F)−1Gl+Jl =C(sI−A)−1B+D.

(18)

Then there exists a positive real function Z(s),

Z(s)=H(sI − F )−1G+J =C(sI−A)−1G+J (19)

which is connected to V (s) through the PR equations
in (8)-(10). They can now be written as,

AR + RAT = −BBT , (20)

RCT − G = −BDT , (21)

−J − JT = −DDT . (22)

The controllability gramian R of the left spectral fac-
tor can be solved from (20), hence it is the same as the
required supply gramian, R, of the positive real func-
tion Z(s). By first solving for R in (20), G in (21) can
be solved for,

G = RCT + BDT . (23)

The dual positive real equations for Z(s) in (19) are
now,

AT O + OA = −HT
r Hr,

OG − CT = −HT
r Jr,

−J − JT = −JrJ
T
r .

Let this be rewritten as a Riccati equation, where J +
JT has been substituted for DDT in (22)

AT O+OA+(OG−CT )(DDT )−1(GT O−C)=0. (24)

By balancing G(s) based on the solution matrices
(R,O), left spectral balancing can be obtained. Given
G(s), the equations which needs to be solved are
(20),(23) and (24).

Right spectral factor balancing

As for the left spectral factor, when the relation (7) is
given,

Z(s) + ZT (−s) = WT (−s)W (s),

the right spectral factor W (s) can be found from the
solution (O,Hr, Jr) to the DPR equations (11)-(13),

W (s) = Hr(sI − F )−1G + Jr.

Let the right spectral factor be set equal to the transfer
function of the system W (s) = G(s),

W (s)=G(s)=Hr(sI − F )−1G+Jr =C(sI − A)−1B+D.

Now there exists a positive real function Z(s),

Z(s)=H(sI−F )−1G + J = H(sI − A)−1B+J, (25)

which is connected to W (s) through the DPR equa-
tions in (11)-(13). They can now be written as,

AT O + OA = −CCT , (26)

OB − HT = −CT D, (27)

−J − JT = −DT D. (28)

The observability gramian O of the right spectral fac-
tor can be solved from (26), hence it is the same as the
available storage gramian O of the positive real func-
tion Z(s). By first solving for O in (26), H in (27) can
be solved for,

HT = OB + CT D. (29)

The positive real equations for Z(s) in (25) are now,

AR + RAT = −GlG
T
l ,

RHT − B = −GlJ
T
l ,

−J − JT = −JlJ
T
l .

Let this be rewritten as a Riccati equation where J+JT

has been substituted for DT D in (28),

AR+RAT +(RHT −B)(DT D)−1(HR−BT)=0. (30)

By balancing G(s) based on the solution matrices
(R,O), right spectral balancing can be obtained.
Given G(s), the equations which needs to be solved
are (26), (29) and (30). In Table 2 an overview over
the different balancing schemes induced by balancing
Fc in (14) is given.

Equality of the balancing schemes

For SISO systems, the reduced order systems gener-
ated by the left spectral factor balancing and the right
spectral factor balancing will have the same transfer
function. Two systems state space representations are
said to be zero-state equivalent if they have the same
transfer matrix (Chen, 1999),

Theorem 1 Two linear time-invariant state equations
[A,B,C,D] and

[

Ā, B̄, C̄, D̄
]

are zero-state equivalent
or have the same transfer matrix if D = D̄ and

CAmB = C̄ĀmB̄, m = 0, 1, 2, . . . .

For SISO systems the transfer function G(s) = GT (s).
Hence, for SISO systems, the dual system GT (s) is
zero-state equivalent with the given system G(s).
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Table 2: Overview over the different balancing schemes and associated equations to be solved

Φ(s) = V (s)V T (−s) = Z(s) + ZT (−s) = W T (−s)W (s)

Balancing Left Spectral Factor Phase System Right Spectral Factor

Method V (s)=H(sI−F )−1Gl+Jl Z(s) = H(sI−F )−1G + J W (s)=Hr(sI−F )−1G+Jr

G(s) = (A, B, C, D) given
⇓ Z(s) = G(s)

V (s) = C(sI − A)−1Gl + Jl Z(s) = C(sI − A)−1B + D W (s) = Hr(sI − A)−1B + Jr

Lyapunov bal.; Controllability gramian, P :

-solve for (P, Q) AP + PAT + BBT = 0
-balance (P, Q) ×

Observability gramian, Q:

AT Q + QA + CT C = 0

Riccati bal.; Contr. gramian, R: ⇐ ⇒Required supply gramian, R:

-solve for (R, O) AR + RAT + GlG
T

l
= 0 AR + RAT = −GlG

T

l

-balance (R, O) RCT −B = −GlJ
T

l

−D−DT = −JlJ
T

l

m
AR+RAT +(RCT −B)(D+DT)−1(CR−BT)=0

×
Available storage gramian, O:⇐ ⇒Obs. gramian, O:

AT O + OA = −HT

r
Hr AT O + OA + HT

r
Hr

OB−CT = −HT

r
Jr

−D−DT = −JT

r
Jr

m
ATO+OA+(OB−CT)(D+DT)−1(BT O−C)=0

Mixed bal.; Controllability gramian, P :

-solve for AP + PAT + BBT = 0
(P, O) or (R, Q) ×

-balance Available storage gramian, O:⇐ ⇒Obs. gramian, O:

(P, O) or (R, Q) ATO+OA+(OB−CT)(D+DT)−1(BT O−C)=0 AT O + OA + HT

r
Hr

or
Contr. gramian, R:⇐ ⇒Required supply gramian, R:

AR + RAT + GlG
T

l
= 0 AR+RAT+(RCT −B)(D+DT)−1(CR−BT)=0

×
Observability gramian, Q:

AT Q + QA + CT C = 0

G(s) = (A, B, C, D) given
V (s) = G(s)

V (s) = C(sI − A)−1B + D Z(s) = C(sI − A)−1G + J W (s) = Hr(sI − A)−1G + Jr

Left spectral Contr. gramian, R:⇐ ⇒Required supply gramian, R:

factor bal.; AR + RAT + BBT = 0 AR + RAT = −BBT

-solve for (R, G, O) G = RCT + BDT

-balance (R, O) −J−JT = −DDT

×
Available storage gramian, O:⇐ ⇒Obs. gramian, O

ATO+OA+(OG−CT)(DDT)−1(GTO−C)=0 AT O + OA + HT

r
Hr

G(s) = (A, B, C, D) given
W (s) = G(s)

V (s) = H(sI − A)−1Gl + Jl Z(s) = H(sI − A)−1B + J W (s) = C(sI − A)−1B + D

Right spectral Available storage gramian, O:⇒ ⇐ Obs. gramian, O:

factor bal.: AT O + OA = −CT C AT O + OA = −CT C

-solve for (O, H, R) HT = OB + CT D

-balance (R, O) −J − JT = −DT D
×

Required supply gramian, R:

AR+RAT +(RHT −B)(DT D)−1(HR−BT )=0
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Proposition 1 The reduced order systems Gr(s)
given by left spectral factor balancing and right spec-
tral factor balancing of the system G(s) are zero-state
equivalent.

Proof. Let us substitute the system G(s) with the
dual system GT (s) in (18),

V (s) = GT (s) = BT (sI − AT )CT + DT .

Left spectral factor balancing of the dual system GT (s)
gives the following equations,

AT R + RA = −CT C,

G = RB + CT D,

−J − JT = DT D

AO+OAT −(OG−BT )(DTD)−1(GT O−BT )=0.

Looking at Table 2, one can see that left spectral fac-
tor balancing of the dual system GT (s) is the same
as right spectral factor balancing of the system G(s).
The same yields for right spectral factor balancing of
the dual system GT (s), which gives the same equations
as for left spectral factor balancing of G(s). Due to this
duality the reduced order systems Gr(s) given by left
spectral factor balancing or right spectral factor bal-
ancing of G(s) will be zero-state equivalent.
There is no similar physical interpretation to the left
and right spectral factor balancing schemes, as for the
Lyapunov and Riccati balancing schemes. But in (Op-
denacker and Jonckheere, 1986) it is shown that these
schemes give reduced spectral factors such that their
phases approximate the phases of the original spectral
factors. Hence, left spectral factor balancing and right
spectral factor balancing can be interpreted as phase
matching reduction algorithms. For positive real SISO
systems the phase will be in the interval [−90◦,+90◦],
hence as long as the phase of the original system is well
fitted the positive real property will be preserved.

2.3 Mixed gramian balancing

In this section a new combination of gramians is pro-
posed. So far, the only algorithm presented which will
guarantee positive real reduced order systems is the
Riccati balancing. When Riccati balancing is used,
the system is balanced based on the solution of two
Riccati equations. Since the balanced system satisfy
the PR equations, this gives positive real reduced or-
der systems. The solution of two Riccati equations are
computationally demanding. The idea behind the new
approach is to solve one Riccati equation and one Lya-
punov equation. As long as one of the PR equations is
satisfied, this also holds for the balanced system, and
hence for the reduced order system.

By taking the controllability gramian P ,

AP + PAT + BBT = 0 (31)

and the available storage gramian O,

AT O+OA+(OB−CT )(D+DT )−1(BT O−C)=0, (32)

and balancing the system G(s) by using (P,O), we ob-
tain a positive real reduced order system. A similar
result can be obtained if the pair (R,Q), consisting
of the required supply gramian and the observability
gramian, is balanced:

AR+RAT +(RCT −B)(D+DT)−1(CR−BT)=0, (33)

AT Q + QA + CT C = 0. (34)

Definition 3 The positive real minimal system G(s)
is called mixed gramian balanced if,

P =O=Σ=diag(σ1Im1, . . . , σqImq),

or

R=Q=Σ=diag(σ1Im1, . . . , σqImq),

where σ1 >σ2 >. . . >σq >0 and mi where i = (1, . . . , q)
are the multiplicities of σi and m1 + . . . + mq = n.

The following theorem can now be stated.

Theorem 2 Let the positive real and minimal system
G(s) have the mixed gramian balanced realization,

G(s) =

[

A B

C D

]

=





A11 A12 B1

A21 A22 B2

C1 C2 D



 ,

where,

P = O = Σ = diag(Σ1,Σ2),

or

R = Q = Σ = diag(Σ1,Σ2),

with

Σ1 = diag(σ1Im1, . . . , σkImk),

Σ2 = diag(σk+1Imk+1
, . . . , σqIq).

Then the reduced order model,

Gr(s) =

[

A11 B1

C1 D

]

,

obtained by truncation is positive real.
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Proof. We first give a proof for the pair (P,O). Since
the system (A,B,C,D) is balanced, the two gramians
(P,O) are equal and diagonal, P = O = Σ, and satisfy
one Lyapunov equation and one Riccati equation,

AΣ + ΣAT + BBT = 0,

ATΣ+ΣA+(ΣB−CT )(D+DT )−1(BT Σ−C)=0.

Writing out the second equation in terms of its parti-
tioned matrices gives the following (1, 1) block,

AT
11Σ1+Σ1A11+(Σ1B1−CT

1 )(D+DT )−1(BT
1 Σ1−C1)=0.

Since Σ1 > 0 the positive realness of the reduced order
system (A11, B1, C1,D) can be concluded.

The same can be shown for the pair (R,Q). Since
the system (A,B,C,D) is balanced, the two gramians
(R,Q) are equal and diagonal, R = Q = Σ, and satisfy
one Lyapunov and one Riccati equation,

AΣ + ΣAT + (ΣCT )(D + DT )−1(CΣ − BT ) = 0,

AT Σ + ΣA + CT C = 0.

Writing out the first equation in terms of its partitioned
matrices gives the following (1,1) block,

A11Σ1+Σ1A
T
11+(Σ1C

T
1 −B1)(D+DT)−1(C1Σ1−BT

1 )=0.

Since Σ1 > 0 the positive realness of the reduced order
system (A11, B1, C1,D) can be concluded.
Further it can be shown that the transfer function of
the reduced order system Gr(s) = (A11, B1, C1,D) will
be the same either if the gramian pair (P,O) or the
gramian pair (R,Q) is used as a basis for the mixed
gramian balanced truncation algorithm.

The dual of the system G(s) is written,

GT (−s) =

[

AT CT

BT DT

]

.

Substituting the system G(s) with the dual system
GT (−s) in the equations (31)-(32) gives the following
equations,

AT P + PA + CT C = 0,

AO+OAT +(OCT −B)(D + DT )−1(CO−BT ) = 0.

Solving for these equations, where the original system
G(s) has been substituted with its dual, GT (−s), is
the same as solving for the required supply gramian
(33) and the observability gramian (34) of the original
system G(s).

Subsequently, G(s) is replaced with its dual GT (−s)
in the equations (33)-(34),

AT R+RA+(RB−CT )(DT + D)−1(BT R−C) = 0,

AQ + QAT + BBT = 0.

Solving for these equations, is the same as solving for
the controllability gramian and the available storage
gramian of the original system G(s).

Due to this duality, which comes from the dual-
ity of the Lyapunov equations and the Riccati equa-
tions, the transfer function of the balanced system
G(s) = (A,B,C,D) from either using (P,O) or (R,Q)
as a basis for the balanced truncation will be zero-state
equivalent. When the systems are reduced, due to the
duality, the transfer function Gr(s) = (A11, B1, C1,D)
will also be zero-state equivalent.

3 Extending Balanced Truncation

Stable systems can be characterized by the solution
of a Lyapunov equation and positive real systems can
be characterized by the solution of the positive real
lemma. In this section we show that as long as one
of the gramians in the balance truncation scheme sat-
isfy one of these equations the reduced order system
generated will be stable or positive real.

3.1 Stable Projection

A stable system is characterized by the following the-
orem (Antoulas, 2005),

Theorem 3 A matrix A is Hurwitz; that is Re(λi)< 0
for all eigenvalues of A, if and and only if for any
given positive definite symmetric matrix Q there exists
a positive definite symmetric matrix P that satisfies the
Lyapunov equation,

AP + PAT = −Q. (35)

Moreover if A is Hurwitz, then P is the unique solution
of (35).

Let Y = Y T > 0 be an arbitrary positive real ma-
trix, and P = PT > 0 be the solution to (35). By
substituting (M,N) by the pair (P, Y ) in the balanced
truncation algorithm in Table 1, it can be shown that
the reduced order system will be stable.

Theorem 4 Let the stable and minimal system G(s)
have the balanced realization,

G(s) =

[

A B

C D

]

=





A11 A12 B1

A21 A22 B2

C1 C2 D





with P = Y = Σ = diag(Σ1,Σ2), where the pair (P, Y )
comes from,

arbitrary Y = Y T > 0,

AP + PAT + Q = 0,

P = PT > 0,

Q = QT > 0.

9
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Then the associated state transformation T will be a
stable state transformation and the reduced order model
obtained by truncation is stable.

Proof. Since (A,B,C,D) is balanced, the two grami-
ans (P, Y ) are equal and diagonal P = Y = Σ, and
satisfy the following equations,

P = Y = Σ =

[

Σ1 0
0 Σ2

]

> 0,

AΣ + ΣAT + Q = 0.

Writing out the latter equation in terms of its parti-
tioned blocks gives,

[

A11Σ1 + Σ1A
T
11 + Q11 A12Σ2 + Σ1A

T
21 + Q12

A21Σ1 + Σ1A
T
11 + Q21 A22Σ2 + Σ2A

T
22 + Q22

]

=0.

For the truncated system (A11, B1, C1,D) it follows
that,

Σ1 = ΣT
1 >0,

Q11 = QT
11 >0,

A11Σ1 + Σ1A
T
11 + Q11 =0,

and stability of Gr(s) can be concluded.
In the next section this result will be extended to yield
for positive real systems, and used as a tool for finding
new types of algorithms.

3.2 Positive Real Projection

In this section we extend the results of Section 2.3. As
long as one of the gramians in the balanced truncation
algorithm satisfies the PR or DPR equations this will
give positive real state transformations. Hence, only
one of the gramians in the balanced truncation algo-
rithm must satisfy the positive real lemma.

The positive real system G(s) = (A,B,C,D) will
satisfy the positive real equations,

AR + RAT = −BlB
T
l ,

RCT − B = −BlD
T
l ,

−D − DT = −DlD
T
l ,

where R = RT > 0, Bl and Dl are to be solved for.
These equations can be rewritten as a linear matrix
inequality (LMI),

[

AR + RAT RCT − B

CR − BT −D − DT

]

=−

[

Bl

Dl

]

[

BT
l DT

l

]

≤0,

where R is to be solved for. Having R and balancing
this with an arbitrary positive real symmetric matrix

Y , R = Y = Σ will give a positive real state trans-
formation T . Associated with the positive real system
G(s) is also a pair of dual positive real equations,

AT O + OA = −CT
r Cr

OB − CT = −CT
r Dr

−D − DT = −DT
r Dr,

where O = OT > 0, Cr and Dr are to be solved for.
The LMI representation of these equations is,
[

AT O + OA OB − CT

BT O − C −D − DT

]

=−

[

CT
r

DT
r

]

[

Cr Dr

]

≤0.

Balancing O with an arbitrary symmetric positive real
matrix Y will also give positive real reduced order sys-
tems.

Theorem 5 Let the positive real and minimal system
G(s) have the balanced realization,

G(s) =

[

A B

C D

]

=





A11 A12 B1

A21 A22 B2

C1 C2 D



 ,

where,

R = Y =Σ, (36)

arbitrary Y = Y T >0,
[

AR + RAT RCT − B

CR − BT −D − DT

]

≤0,

R = RT >0.

or,

O = Y = Σ, (37)

arbitrary Y = Y T > 0,
[

AT O + OA OB − CT

BT O − C −D − DT

]

≤ 0,

O = OT > 0.

Then the reduced order model,

Gr(s) =

[

A11 B1

C1 D

]

,

obtained by truncation is positive real.

Proof. Since (A,B,C,D) is balanced, the two grami-
ans (R, Y ) are equal R = Y = Σ, and satisfy the fol-
lowing equations,

Σ = ΣT =

[

Σ1 0
0 Σ2

]

> 0,

[

AΣ + ΣAT ΣCT − B

CΣ − BT −D − DT

]

≤ 0.

10
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Writing out the last equation in terms of its partitioned
blocks gives,





A11Σ1 + Σ1A
T
11 A12Σ2 + Σ1A

T
21 Σ1C

T
1 − B1

A21Σ1 + Σ2A
T
12 A22Σ2 + Σ2A

T
22 Σ2C

T
2 − B2

C1Σ1 − BT
1 C2Σ2 − BT

2 −D − DT



≤0.

For the system (A11, B1, C1,D) we then have,

Σ1 = ΣT
1 > 0,

[

A11Σ1 + Σ1A
T
11 Σ1C

T
1 − B1

C1Σ1 − BT
1 −D − DT

]

≤ 0,

and positive realness of Gr(s) can be concluded.
The same can be shown for the pair (O, Y ). Since

(A,B,C,D) is balanced, the two gramians (O, Y ) are
diagonal and equal, O = Y = Σ, and satisfy the fol-
lowing equations,

Σ = ΣT =

[

Σ1 0
0 Σ2

]

> 0,

[

AT Σ + ΣA ΣB − CT

BT Σ − C −D − DT

]

≤ 0.

Writing out the last equation in terms of its partitioned
blocks gives,





AT
11Σ + Σ1A11 AT

21Σ2 + Σ1A12 Σ1B1 − CT
1

AT
12Σ1 + Σ2A21 A22Σ2 + Σ2A22 Σ2B2 − CT

2

BT
1 Σ1 − C1 BT

2 Σ2 − C2 −D − DT



≤ 0.

For the reduced order system (A11, B1, C1,D) we then
have,

Σ1 = ΣT
1 > 0,

[

AT
11Σ1 + Σ1A11 Σ1B1 − CT

1

BT
1 Σ1 − C1 −D − DT

]

≤ 0,

and positive realness of Gr(s) can be concluded.
By knowing these properties, it is now possible to de-
velop new positive real balanced truncation methods.
In the next section this will be illustrated by using
these properties to develop an algorithm for positive
real frequency weighted truncation.

3.3 Frequency weighted truncation

The balancing methods in Section (2.1)-(2.3) approxi-
mates the system G(s) over all frequencies. For some
systems it might be of interest to do an approximation
only in a certain range of frequencies. This is called
frequency weighted truncation. This can be done by
weighting the error system by an input weight Wi(s)
or/and an output weight Wo(s),

||Wo(s)(G(s) − Gr(s))Wi(s)||∞,

such that the weighted error is small. Most methods for
frequency weighted reduction has focused on keeping
the stability properties of the system, a good overview
over different methods is given in (Obinata and An-
derson, 2001; Antoulas, 2005). In this section we will
extend the frequency weighting to positive real input
weighted balancing and positive real output weighted
balancing.

Let the positive real minimal system G(s) be written
as,

G(s) =

[

A B

C D

]

, (38)

and let the input weight weight be denoted with Wi(s),
where,

Wi(s) =

[

Ai Bi

Ci Di

]

.

The augmented system can now be written as,

Ḡ(s)=G(s)Wi(s)=

[

Āi B̄i

C̄i D̄i

]

=





A BCi BDi

0 Ai Bi

C DCi DiD



 ,

this gives the following weighted error system,

||(G(s) − Gr(s))Wi(s)||∞. (39)

Assuming that Wi(s) is chosen such that the overall
system Ḡ(s) is stable, the controllability gramian for
the overall system can be solved for,

ĀiP̄ + P̄ ĀT
i + B̄iB̄

T
i = 0, (40)

where P̄ = P̄T > 0 and,

P̄ =

[

P P̄12

P̄21 P̄22

]

.

Expanding (40) gives the following (1,1) block,

AP + PAT + BDiD
T
i BT = 0, (41)

where P = PT > 0. Further, the available storage
gramian is solved for the unweighted system (38),

AT O+OA+(OB−CT )(D + DT )−1(BT O−C) = 0.
(42)

By combining (P,O) from (41) and (42) input weighted
positive real reduced order systems can be obtained.
Assuming that (P,O) are balanced, P = O = Σ, we
have the following equations,

Σ = ΣT =

[

Σ1 0
0 Σ2

]

> 0,

AΣ + ΣAT + BDiD
T
i BT = 0,

AT Σ+ΣA +(ΣB−CT )(D + DT)−1(BT Σ−C) = 0.

11
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Writing down the (1, 1) blocks of the two latter equa-
tions gives,

A11Σ1 + Σ1A
T
11 + B1DiD

T
i BT

1 = 0,

AT
11Σ1+Σ1A11+(Σ1B1−CT

1 )(D+DT)−1(BT
1 Σ1−C1)=0,

one can see that the reduced order system satisfy the
Riccati equation and hence it will be positive real. By
choosing the input weight Wi(s) properly, the weighted
error in (39) will be small.

This approach can also be used on output weighted
systems. Let the systems output weight be denoted
with Wo(s), where,

Wo(s) =

[

Ao Bo

Co Do

]

.

The augmented output weighted system can now be
written as,

Ĝ(s)=Wo(s)G(s)=

[

Âo B̂o

Ĉo D̂o

]

=





A O B

BoC Ao BoD

DoC Co DoD



,

with the associated weighted error system,

||Wo(s)(G(s) − Gr(s))||∞.

Assuming that Wo(s) is chosen such that the overall
system Ĝ(s) is stable, then the observability gramian
for the overall system can be solved for,

ÂT
o Q̂ + Q̂Âo + ĈT

o Ĉo = 0, (43)

where Q̂ = Q̂T > 0. Let Q̂ be written as,

Q̂ =

[

Q Q̂12

Q̂21 Q̂22

]

.

Expanding (43) gives the following (1, 1) block,

AT Q + QA + CT DT
o DoC = 0, (44)

where Q = QT > 0. Further, the required supply
gramian is solved for the unweighted system (38),

AR + RAT + (RCT −B)(D+DT )−1(CR−BT ) = 0.
(45)

By combining (R,Q) from (44) and (45) output
weighted positive real reduced order systems can be
obtained. When (R,Q) are balanced, R = Q = Σ, we
have the following equations,

Σ = ΣT =

[

Σ1 0
0 Σ2

]

>0,

AΣ + ΣAT + CT DT
o DoC =0,

AΣ+ΣAT +(ΣCT −B)(D + DT )−1(CΣ−BT ) =0.

By writing down the (1, 1) blocks of the two latter
equations,

A11Σ1 + Σ1A
T
11 + CT

1 DT
o DoC1 =0,

A11Σ1+Σ1A
T
11+(Σ1C

T
1 −B1)(D+DT)−1(C1Σ1−BT

1 )=0,

one can see that the reduced order system satisfy a
Riccati equation, and hence it will be positive real.

4 Concluding Remarks

A survey of Lyapunov balancing and stochastic bal-
ancing have been given. Based on these algorithms
a new approach for obtaining positive real balanced
truncation has been suggested, which we called mixed
gramian balancing. This approach is a combination of
Lyapunov balancing and Riccati balancing, and relies
on balancing the solution of one Lyapunov and one Ric-
cati equation. Riccati balancing relies on the solution
of two Riccati equations, while the mixed balancing
relies on the solution of one Lyapunov equation and
one Riccati equation. This is less computationally de-
manding.

Further it has been shown that in order to obtain
positive real truncated systems, only one of the grami-
ans in the balancing algorithm need to satisfy either
the PR or the DPR equations. This opens for new
combinations of gramians in order to obtain positive
real truncated systems. Here it has been used to ob-
tain positive real frequency weighted truncation. For
future research it would be of interest to find error
bounds for the proposed algorithms.

In the literature there already exists model reduction
methods for the H2 or H∞ norm which give stable sys-
tems (Yan and Lam, 1999). For future work it would be
interesting to see if it is possible to extend some of this
work to positive real system exploiting the properties
in this chapter.
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