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Abstract— Here, model reduction, based on balanced trun- original system, i.e. dynamics, system stability and patgsi
cation, of stable and passive systems will be considered. An or structural properties. The reduced model of onder n
overview over some of the already existing techniques will is denoted as:
be given; Lyapunov balancing, Riccati balancing and Stochs ’

tic balancing. Subsequently a novel scheme for positive réa % = AX +Bu (4)
balanced truncation will be proposed. This new method is a
combination of the already existing Lyapunov balancing and y = GX+Dru )

Riccati balancing. Using Riccati balancing, the solution b . .

two Riccati equations are needed to obtain passive reduced Many different coordinate systems can be used to de-
order systems. For the suggested method, only one Lyapunov scribe the dynamical system in (1)-(2). Léte R™" be a
equation and one Riccati equation are solved in order to obta nonsingular matrix, and let the system undergo a similarity
passive reduced order systems, which is less computatiohal {ransformation:

demanding. A numerical example is given at the end to compare '

the approximation error of the different schemes. X = Tx (6)
. INTRODUCTION X = TAT X+ TBu @)
Recently there has been an increasing interest in passivity y CT'4Du. (8)

preserving modellrzedu;:tiorlléani se\éer?_I' metr;]od;s havle l_)leﬁqese equations have the same dynamics for any nonsingular
suggested, e.g. [12], [3], [13], [4], [6]. Here the focuslwi matrix T. The idea behind the balanced truncation is to

be on balanced truncation methods. Compared to reductign - ¢ the system in (1)-(2), by choosing T in terms

algorithms based on Krylov-iterations or other parameters (oo physical measure, and discarding the parts of the

mgtchmg schemes, the balanped truncation algorithms &i§namics which are less important in terms of this measure.
suited for small systems up until an order around 1000. In t e most commonly used method is Lyapunov balancing

next sections, an OVETVIEW OVET Some of the most common\lﬁyhere the system is balanced in terms of controllability and
used balanced truncation schemes are given; Lyapunov bgliservability

ancing, Riccati balancing and Stochastic balancing. lEarh
new algorithm is proposed; mixed gramian balancing, with I11. LYAPUNOV BALANCING

the aim of keeping the passivity properties of the original Lyapunov balanced truncation was introduced to the sys-

system. At the end a numerical example is given to COMPAfEms and control society by [11]. The Lyapunov balancing
the different reduction schemes and to verify the emc'enckﬂrocedure is based on information from two Lyapunov

of the proposed method. equations giving the controllability gramia®, and the
Il. REDUCTION BY BALANCED TRUNCATION  observability gramian, Q;
Given a n'th-order minimal LTI system in state space form AP+PAT+BB" = 0 9)
X — Ax+BuU (1) ATQ+QA+C'C = o (10)
y = Cx+Du, (2) Notice that the gramians are positive definite if the system

is minimal. The idea behind the Lyapunov balancing is to
transform the mathematical model to a basis where the states
which are difficult to control are also difficult to observegda
G(s) =C(sl—A)"B+D. (3) the reduced model is obtained by discarding the states which
have this property. In Table Ill the algorithm for finding the
Model reduction deals with finding a reduced order systenbalancing transformatiori andT ~1, from (6)-(8), based on
with orderr < n which captures the main features of thehe Lyapunov equations, is written out sequentially [2].
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TABLE |
BALANCED TRUNCATION ALGORITHM

(19)-(21) are used. These can be obtained by rewriting (13)-
(15) and (19)-(21) as a dual pair of Riccati equations, and

1) Choose a pair of positive definite matricé;Q. then solve forR and O;

2) Solve out Cholesky factdd of P; P=UUT.

3) Do the eigenvalue decomposition ldFl(?ZU TUT?U 1KZZKT " AR+RA + (RC" —B)(D+DT")"}(CR-B")=0 (22)
4) Get the balancing transformationg;=>~/<K'U "%, T"*=UKX" /<. T T Tv—1/pT N

5) Compute the balanced realizatiods= TAT 1, B=TB, C=CT L. A'O+OA+ (OB_C )(D+ D ) (B O_C)—O- (23)

6) TruncateA, B,C to form the reduced order system B;,C:.

Riccati balancing can now be achieved by substitutRg)

with (P, Q) in the balanced truncation algorithm in Table I.
Another way of checking if a system is passive, is in terms

of Lyapunov theory and the use of storage functions [15]. In

:E”Ch energty,dln ttetrms of thie; tnorq_]h IS nbeededbt?)tcontrol these terms a system is said to be passive if there exists a
€ associated stale eigenvector. The obServablilty @Ml o, 46 fynctiony (x) > 0, such that the following inequality
Q, is related to thd.,-norm of the output; if the system holds:

In this setting, the sizes of the eigenvalue$afescribe how

is released ax(0) = xp with u(t) =0,vt > 0 the following t
equality holds: V(x) <V(x(0 "‘/ (24)
Heres(u(t),y(t)) is called the supply function, and describes
t)dt= 12
/ yo XOQXO (12) the rate at which power is supplied to the system. Two

guantities can be defined from the notion of a storage
function [15]; the required supplyy;, and the available
rstorageVa. The required supply, is defined as;

In this setting, the sizes of the eigenvalues@fdescribe
how much energy, in terms of thie,-norm of the output,
is produced when the associated state eigenvector is in f
evolution. , 0

When applied to asymptotically stable systems, the Lya- 0=Vi(%0) = u(t)‘l(?g):x() [/m s(u(t),y(t))dt] ’ (25)

punov balancing preserves the stability of the system, but q h ; h b q
a property like passivity might not be preserved. In thé&" itis the minimum amount of energy that must be injecte
to the system, in order to control the system to skgtat

next section, Riccati balancing, which keeps the passivi
properties of a system will be presented. [[bzzi 0. The solution of (22) is related to the required supply

IV. RICCATI BALANCING xR %0 = Vi (x0). (26)

Riccati balancing [5] is used to reduce positive realn this setting, the sizes of the eigenvaluesPodescribe
systems, and will keep the positive real properties of thb_ow much energy is _needed to con_trol _the associated state
system. If a systemiA, B,C, D) is positive real, it will satisfy eigenvector. Small eigenvalues & implies that a large

the positive real (PR) equations [9]; amount of energy is needed to reach the associated rRode.
can be regarded as an input energy gramian; and here it is
AR+RA" = —BBf (13)  denoted as the required supply gramian.
RC"T-B = -BDf (14) The available storage is defined as;
-D-D" = —-DDf (15) e
0=va(0) = sup - | [“sutjyo)at]. (27
Here R=R" > 0, B, and D, are to be solved from the x0=x L0

equations (13)-(14). A dual pair of positive real equationg is the maximum amount of energy which can be extracted
can be obtained by pre- and postmultiplying (13) Ry!, from the system in free evolution. The solution of (23) is

and premultiplying (14) byR1. By defining; related to the available storage;
O = R? (16) X0 0% = Va(Xo). (28)
_ TRTp—
G = -JBR (17) Here, the sizes of the eigenvalues®@fdescribe how much
D = J'D, (18) energy can be extracted from the system in free evolution.

Small eigenvalues ofO implies that a small amount of
energy can be extracted from the associated m@dean
be interpreted as an output energy gramian; and here it is
ATO+0A = —CTC (19) denoted as the avaﬂgble storage gramian. _
T - b (20) Another_mterpretatlon can also be given to the gramian
OB-C = rer pair (R, O) in terms of spectral factors and power spectrums
—-D~— = —DyDr . Letting e the power spectrum of the positive rea
D-D' DfD (21) [1]. Letting ® be th f the positi !
minimal degree transfer functiod(s), then we have the
following relation;

wherelJ is an arbitrary matrix, andJ" =1, the dual positive
real equations can be obtained;

These equations shows that the dual systef(—s) =
BT(sl—AT)"ICT + DT of G(s) is positive real. In Riccati
balanced truncation the minimal solutions to (13)-(15) and ® = Z(s)+Z' (—s) =V (V' (—s) =WT (—s)W(s). (29)



Here Z(s) is denoted as the phase systanis) as the left Also having the relations (15) and (21),
spectral factor oZ(s), andW(s) as the right spectral factor T T T
of Z(s). In this section, let us assume that the original system DDy =D+D" =Dy Dr, (39)

G(s) equals the phase systefs) in (29), then; the available storage gramian #fs) can be solved for,
®=G(s)+G' (=) =V (VT (=) =WT (—s)W(s). (30) ATO+ OA+ (OB—CT)(D/DT) }(BTO-C)=0. (40)

Subsequently, 1e(R/B;,Dy) be the solution to the PR Stochastic balancing uses the solution @ O) in the

equatlons (13).'(15)’ then the left spectral factor assedia balancing scheme. Due to this, the stochastic balancing is
with (R,By,Dy) is based on balancing one gramian from a Lyapunov equation
V(s) =C(sl —A)B +D. (31) (37) and one gramian from a Riccati equation (40).

There is no similar interpretation of the stochastic bal-
%Cing procedure, due to energy, as for the Lyapunov and
Riccati balancing. But in [10] it is pointed out that stocti@s
balancing gives reduced order systems with closeness in
phase to the original system, and from this closeness in

AR+RA = —B B,T. (32) magnitude. The stochastic balancing can be seen as a phase
. . _ matching reduction technique. For SISO systems, one can

A similar result is also true for the available storagepeck if the systems are passive by looking at their phase,
gramian. Le{O,C;, Dr) be the solution to the DPR equationsy hich should be betweerr90°. This gives an indication
in (19)-(21), then the right spectral factor associatehWity ¢ the algorithm might often give passive reduced order

(O.Cr.Dy) is systems, since their phase will be well matched. In the
W(s) :Cr(sI—A)*lBJr D;. (33) next section a novel algorithm for positive real balanced

) ) ) truncation will be given, based on the results presented in
By looking at the DPR equations in (19)-(20), one can se@e first sections.

that solving for the available storage grami&, of G(s),
is the same as solving for the controllability grami&n,of V1. MIXED GRAMIAN BALANCING
the associated right spectral facti(s);

By looking at the PR equations in (13)-(15), one can see th
solving for the required supply gramiaR, of G(s) is the
same as solving for the controllability gramid®),of the left
spectral factory (s);

In this section a new algorithm for achieving positive real
ATO+0A=-C/C (34) reduced order systems is proposed. So far, the only algorith

_ » L presented which will guarantee positive real reduced order
When applied to positive real systems, the Riccati balangystems is the Riccati balancing. When Riccati balancing

ing preserves the positive real properties of the systeridn ;g used, the system is balanced based on the solution of
next section stochastic balancing, a method closely wlate 1y Riccati equations. Since the balanced system satisfy th
the Riccati balancing will be presented. It can only presenpR equations, this gives positive real reduced order system
the stability of the system, but has some interesting phagge solution of two Riccati equations are computationally
matching properties which is worth investigating in reati jemanding. The idea behind the new approach is to solve one
with passive systems. Riccati equation and one Lyapunov equation. As long as the
V. STOCHASTIC BALANCING PR equations are satisfied, this also holds for the balanced

. . . . system and for the reduced system.
Stochastic balancing was introduced by [5] with the pur In this approach we balance the solution of one Ric-

pose of balancing stochastic systems. A more generalized,. . . .
; . cati equation and one Lyapunov equation. Letti®&(s) =
approach was later presented in [9] together with an err “1 . i
; ) . . (sl —A)~*B+ D denote the original system. By taking the
bound. As for the Riccati balancing, the method is relatecontrollabilit ramianp in (9):
to results from spectral factorization. In this sectior, us Y9 '

assume that the original syste®{s) equals the left spectral AP+PAT +BB" =0 (41)

factorV(s) in (29); o _ _
T - - and balancing it with the available storage grami@anfrom
® = G(9GT(-5) = Z(9+ZT(~9) =W (-9W(S[35) (23)

G(s) = C(sl—A) B +D. (36)

ATO+O0A+(0B-CT)(D+D") }(BTO-C)=0, (42)
Let R denote the controllability gramian of the syst&is); - ) _
positive real reduced systems are achieved. The same vyields

AR+RA" + BB =0. (37)  if one takes the observability gramia@, in (10),

Solving for the controllability gramian db(s) is the same as ATQ+QA+C'™C=0 (43)
solving for the required supply gramian of the phase system

Z(s). WhenR is found, sincgA,B;,C,D)) is given, theBin  and combines it with the required storage gramRnfrom
(14) can be solved for, (22),

B=RC' +B/D/. (38) AR+RA" + (RCT —B)(D+D") }(CR-BT)=0. (44)



TABLE Il
OVERVIEW OVER THE DIFFERENT BALANCING SCHEMES AND ASSOCIATE EQUATIONS TO BE SOLVED

Left Spectral Factor Phase System Right Spectral Factor
V(s) = H(sI-F)~1G +J Z(s) = H(sl-F)"1G+J W(s) = H (sI-F)~1G+
Z(s) =G(s)

G(s) = (A,B,C,D) given
Controllability gramian,P:
Lyapunov balancing; AP+PAT +BBT =0

balanceP and Q.

X
Observability gramianQ:

Solve forP and Q. ATQ+QA+CTC=0
Controllability gramianR: < =-Required supply gramiark:
Riccati balancing; AR+RAT+ GG =0 AR+RAT = -GGl
balanceR and O. RCT-B=-GJ'
—-D-DT=-3 J|lr

Solve forR andO.
AR+RAT +(RCT-B)D+DT) %CR-BT)=0
X

Available storage gramiam:< =-Observability gramian:
ATO+O0A = —HH ATO+OA+HH,
OB-CT =—-HJ)
—D-D"=-J"J%

(i
ATO+0OA +(0B—CT)D+D")"}BTO-C)=0
Controllability gramian,P:

Mixed balancing; AP+PAT +BBT =0
balanceP and O, X

or Available storage gramiarQ:< =-Observability gramian(:
balanceR and Q. ATO+0OA+(0B—CT)D+D")"}BTO-C)=0 ATO+OA+HH,

or

Solve forP and O, Controllability gramian,R.«< =-Required supply gramiarR:

or AR+RAT + GG =0 AR+RAT +(RCT-B)D+D"y}{CR-BT)=0
solve forR and Q. X

Observability gramianQ:
ATQ+QA+CTC=0

V(s) =G(s)
G(s)=(A,B,C,D) given
Controllability gramian R« =-Required supply gramiarR:

Stochastic balancing AR+RAT +BBT =0 AR-+RAT = —BBT

balanceR and O. G=RC"+BD'
-J-JT =-DD'

Solve for X

R, G andO. Available storage gramiarQ:< =-Observability gramian®
ATO+0A +(0G-CT)DD")"{GTO-C)=0 ATO+OA+HH,

Now, the following definition of a mixed gramian balancedwith P = O = ¥ = diag(%;,%) or R=Q = X =

system can be given, diag(X1,>2) where X1 = diag(0ilmy,...,0klm) and X =
Definition 1: The positive real minimal syster®(s) is  diag(dmImy;---,qlm)- Then the reduced order model,
called mixed gramian balanced if the system is balanced A: B
based on the gramian paiP,0) from (9) and (23) or on Gi(s) = [ Cll Dl ] (49)
the gramian pai(Q,R) from (10) and (22). 1
obtained by truncation is positive real.
P=0=2Z=diag(g1lm,...,0glmg) (45) Proof: Since(A,B,C,D) is balanced, the two gramians,
or (46) (P,O) are equal,P = 0O =%, and satisfy one Lyapunov
R=Q =2 = diag(0ilm, .., Oglm) (47) equation (9) and one Riccati equation (23),
mil, sy ¥qimaq)/s
. A +3AT +BBT =0 (50)
where 01 > 02 > ... > 09 >0, m, i =1,...,q are the - T 1T
multiplicities of oi andmy +...+mg=n. A'2+ZA+(2B-C')(D+D")*(B'2—-C)=0. (51)
The following theorem can now be stated. Writing out the second equation in terms of its partitioned

Theorem 1:Let the positive real and minimal syste®is)  matrices gives the followingl, 1) block;

have the mixed gramian balanced realization, B
J Al1%1+ Z1A11+ (£1B1 —Cf)(D+ D7) }(B[ 21 —Cp) = 0.
(52)
, (48) Since Z; > 0 the positive realness of the reduced order
system(A;1,B1,C1,D) can be concluded.




The same can be shown for the pdiR Q). Since VIl. NUMERICAL EXAMPLE

(A,B,C,D) is balanced, the two gramian®}, Q) are equal,  The 3 degrees of freedom dynamical positioning equations
R=Q=2, and satisfy one Lyapunov equation (9) and ong, 5 marine vessel can be written as follows [7]:
Riccati equation (23),

MV +Cre(V)V+Tpg = Tc+Ta+Tekaditt  (61)
A +5AT +(3CT -B)(D+D")"}(Cz-B")=0 (53) X = AX+Bv (62)
ATz +3A+C'C=0 (54) Tpg = Cx+Dv. (63)

Here v = [u,v,r] is the velocity vector consisting of the
velocities in surge, sway and yail. € R is the rigid-body
inertia matrix,Crg is the rigid-body Coriolis and centripetal
AviS1 4+ S AT 4+ (5:CT — B (D +DT)-1(Ci51 — BT =0 matrix, Tpq represents the potential damping of the system,
uZi+2iAn+ (216 B (D+DY) (G - By) (55) represents the control forces, represents the current forces
Since 1 > 0 the positive realness of the reduced orde?md TFKIH’”;]. repr((ajs?nrt]s the Frgude—Krylov agd dlffrla Et']?n
system(A1,B1,C1, D) can be concluded. orces. In this model the surge dynamics are decoupled from

Further it can be shown that the reduced order syste:mzer?égi;?rzcst:?esévanya?nr;gsy;wsJrhIes gzgsoazeh/ﬁlﬁg_—:yisnn:
(A11,B1,Cq,D) will be the same, either if the gramian pair P 9 y 9 y

. . ! . representing the dynamics in sway and yaw.
(P,O) or the gramian paifR,Q) is used as a basis for the i . . i
mixed balanced truncation algorithm. The dual system of The subsystem (62)-(63) representing the potential damp

G(s) in (3) can be written as: ing forces is usually identified from data from towing tank
' experiment or hydrodynamical software (Wamit, Veres, Oc-
} topus Seaway), and the realizations are of high order. This

Writing out the first equation in terms of its partitioned
matrices gives the followingl,1) block;

T T
G' (-5 = [ ';‘T ST (56) makes model reduction necessary in order to make the overall
model (61)-(63) efficient for simulation or control desidn.
can be shown that the mapping fram- 1,4 is passive [14],

Substituting the syster@s(s) with the dual systen@'(—s) and this property should be kept during the reduction.

in the equations (41)-(42), we get the following equations;

6
ATP4+PA+CTC=0 (57) 6" fwaw‘n — %
AO+OAT + (OCT —B)(D" + D) }(CO-B") = 0. (58) * Riccati *
31| © Mixed
x Stochasti
Solving for these equations, where the original systen .4l e
G(s), has been substituted with its duds'(—s), is the =
same as _s_olvmg fc_>r the required sgpply gramian (43) ar T g
controllability gramian (44) of the original syster(s). w
Subsequently, the systef®(s) is replaced with the dual =5
systemG' (—s) in the equations (43)-(44): *
17 % T
ATR+RA+ (RB-CT)(DT + D) }(BTR-C)=0 (59) % . . % ® E T
T T _ /
AQ+QA +BB =0 (60) ° O7rder of red?Jced syste5m 4 3

Solving for thgse equ:?\tions, is the same "_"S solving fcﬁig. 1. ||H(s) —H:(s)|| for different order of the reduced system, applying
the controllability gramian (41) and the available storagene different reduction schemes, wherds) is of order 10. Notice that
gramian (42) of the original syste@(s). Lyapunov balancing does not generate passive systems folealess than

5.
Due to this duality, which comes from the duality of

the Lyapunov equations (9)-(10) and the Riccati equations The vessel used is 8—175 tanker, and an 16-order
(22)-(23), the balanced systefA, B,C,D) from either using model of the dynamics in surge is achieved. This model
(P,0) or (R,Q) as a basis for the balanced truncation will bgs reduced to different orders, with the different schemes.
equal. Hence the reduced order systéfm,B1,C1,D) Will  The worst case error between the original system and the
also be equal. reduced order systenjH (s) — H;(S)||», is plotted in Figure

In Table 1l an overview over the different balancing1, for different order of the reduced system. The reduced
schemes are given, and the relations to the different sgiectorder systems of order lower than 5, obtained with Lyapunov
factors of the systen®(s) are given. balancing, are no longer passive. For all the other reductio

In the next section an numerical example will be givenschemes, passive reduced order systems are obtained. As one
where the different algorithms are applied with the aim ofan see from Figure 1 the stochastic balancing and mixed
keeping the passivity properties of the model. gramian balancing schemes gives reduced order systems with



less|| - ||-error than the Riccati scheme. Stochastic balancing

does not ensure passive reduced order systems, but sincetli]t
has nice properties in terms of phase matching, as mentioned
in section V, it seems as if it very often gives passive reduce [2]
order systems. This is well reflected in the results which ig3

obtained here.
[4]

—+Lyapunov
“¥Riccati

© Mixed i
- Stochastic

(5]

(6]

(7]

(8]

El

[10]

[11]
Fig. 2. The normalized singular values obtained for theesystusing the
different balancing schemes [12]

Looking at the normalized singular value distribution
which is plotted in Figure 2, the difference in the ||e-
error for the different schemes is reflected. As one can sggy)
the singular values obtained from the system where Riccati
balancing has been used, decreases slower than for the other
schemes. By discarding a state from the Riccati balanceg
system, much more of the dynamics is canceled, when the
distribution is like this.

[13]

VIIl. CONCLUSIONS AND FUTURE WORK

A novel scheme for obtaining positive real balanced
truncated systems has been presented. The new approach,
mixed gramian balancing, is a combination of the already
existing Lyapunov balancing and Riccati balancing schemes
Compared to Riccati balancing, which ensures passive re-
duced order systems, it has nice properties. Instead ohsgplv
for two Riccati equations, one Lyapunov and one Riccati
equation is solved, which is computationally less demagdin
A numerical example has also been given, and looking at the
|| - ||-error of the original system and reduced order system,
the new scheme seems to bee competitive with Ricccati
balancing.

Future work will concentrate on finding a computationally
bound for the reduction error when using mixed gramian
balancing. It is also of interest to check how it works when
applied to MIMO-systems.
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