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Abstract

We describe model reduction techniques for large scale dynamical systems, mod-
eled via systems of equations of the type

{ F(&(t), (1), u(t)) = 0
y(t) = H(z(1), u(?)),

as encountered in the study of control systems with input u(t) € R™, state
z(t) € RN and output y(t) € RP. These models arise from the discretization of
continuum problem and correspond to sparse systems of equations F(. ,. ,.) and
H(.,.). The state dimension N is typically very large, while m and p are usually
reasonably small. Although the numerical simulation of such systems may still
be viable for large state dimensions IV, most control problems of such systems
are of such high complexity that they require model reduction techniques, i.e.
techniques that construct a lower order model via a projection on a state space
of lower dimension. We survey such techniques and put emphasis on the case
where F'(.,.,.) and H(.,.) are linear time-invariant or linear time-varying.

1 Linear, time-varying and nonlinear models

Model reduction can have a lot of meanings. In this paper we refer to the problem of
representing a complex dynamical system by a much simpler one. More precisely, we
focus on dynamical systems describing a relation between a vector u(.) € R™ of input
functions of time and a vector y(.) € R? of output functions of time. The relation
between inputs and outputs is a “system” S which is often represented as a “black

box”:

() — — uy ()
Ya(.) — System — uy()
up() — 2(.) — ()

and uses an internal “state” x(.) € R to describe the relation between inputs and
outputs.
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Even though the original physical model typically has an infinite dimensional state-
space to start with we assume that the model has already been discretized in space
by e.g. using a finite element model. This however leads to a state-space dimension
N that is typically very large if one wants to obtain a sufficient approximation of the
true physical phenomenon. On the other hand, the resulting models are then often
sparse and when simulating such systems using ODE techniques, this can be exploited
to yield a reasonable complexity.

For control applications one has often to solve associated problems that are not
sparse anymore and hence have a much higher complexity. Typical examples of this
are optimal control or Kalman filtering over a finite horizon. These both require the
solution of an adjoint problem without sparsity.

The models that are used in control systems design can be both continuous-time
and discrete-time and are nonlinear in their most general form. For computational
reasons these are typically linearized around their trajectory. The resulting linear
time-varying systems can then subsequently be approximated by a time invariant one
over a period of time where the model does not change too much. So we differentiate
between six types of models that are used in this area. Notice that a discrete-time
model will e.g. result from using an ODE solvers for the simulation of a corresponding
continuous-time model. Moreover, we simplified the models by choosing explicit state
equations, although the ideas presented in later sections generalize to a large extent
to implicit state equations.

continuous-time — discrete-time

(X linearize [}

y(t) = C@)x(t) + D(t)u(t) Y
freeze time [}
{ i(t) = Az(t) + Bu(t) { z(k+1) = Az (k) + Bu(k)
y(t) = Cx(t) + Du(t) y(k) = Cx(k) + Du(k)

In order to reduce the complexity of the solution of a control problem for any of
these models one can use reduced order models. These are essentially projectors P(.)
of the state-space vector z(.) to a vector Z(.) = P(.)z(.) of much lower dimension.
The control problem is then solved in the lower dimensional setting, after which the
solution can be “lifted back” to the original coordinate system. This of course does
not yield the correct solution but an approximation whose quality depends on several
factors. We now describe the different types of projection techniques that can be used
for each of these models, starting with the simplest case, the linear time-invariant case.
Throughout the paper we assume all signals and models are real. When we need an
infinite dimensional setting we assume that we are working in a Hilbert space with the
usual inner product leading to the ¢, norm. We also assume that vectors (i.e. signals)
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have bounded ¢ norm.

2 Linear Time Invariant Systems

This is the simplest case of model reduction and it is also the one that has been
studied the most. We formulate the approximation problem in continuous-time but
everything extends to discrete-time systems as well. The original system is given by
the state space equations
z(t) = Az(t) + Bu(t)
(2.1)
y(t) = Ca(t) + Dult).

where u(t) € R™, y(t) € R and z(t) € RY are the vectors of input variables, out-
put variables and state variables, respectively. The input dimension m and output
dimension p are assumed much smaller than the state dimension N. A reduced-order
approximation of (2.1) takes the corresponding form

; ’ (2.2)

where (t) € R? and 2(¢t) € R". Notice that both systems are driven by the same input
u(t) and that their outputs y(¢) and g(t) are of the same dimension, and hence can
directly be compared (this does not hold for z(¢) and #(¢)). The idea of model reduction
is to find a smaller model (2.2) whose output g(¢) is close to the original output y(¢). In
other words, we are trying to construct a dynamical system of much lower complexity
that nevertheless approximates well the behavior of the original system. How can we
assess the quality of the reduced order model and how can we compute at low cost
good approximations ? These are the questions to be addressed here.

2.1 Transfer functions and norms

Linear time invariant systems have a transfer function which (for continuous-time
systems) is obtained under Laplace transform of the differential equations [8]. This
yields

T(s)=C(sly — A)'B+D, T(s)=C(sl,—A)'B+D,

respectively, for the full and reduced order models. These transfer functions play an
important role since the approximation problem can now be phrased in the frequency
domain. Let

up(w) = Fult), yrlw)=Fy(t), 95(w)=Fi(t)

be the Fourier transforms of the corresponding time domain signals defined for ¢ €
(—o0,+00) (we assume these signals to be of bounded ¢ norm). If both transfer
functions T'(s) and T'(s) correspond to stable dynamical systems (i.e. their poles must
lie in the open left half plane), then the inputs and outputs of these systems are related
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at each frequency w by the so-called frequency response of the systems defined as the
transfer function evaluated at s = jw [8] :

~

yr(w) =T(jw)us(w),  grw) = T(jw)us(w).

As a consequence we also have that the error e(¢) = [y(t)—1(¢)] has a Fourier transform

Fe(t) = ej(w) = [T(jw) = T(jw)lug(w).

Since the Fourier transform is a linear transformation preserving the energy of a signal
(namely ||z (w)|ls = v27||z(t)]2), the energy |le(t)]|2 of the error signal e(t) is mini-
mized for all unit norm inputs «(¢) by minimizing ||ef(w)||2 for all ||us(w)||2 = 1. The
so-called H,.-norm, denoted by || . ||, is defined as follows [14] :

1T (w)lloe = sup [T Gw)ug(w)ll2/l|ug(w)ll2
This norm is thus defined as the largest possible energy increase between inputs and
outputs of a dynamical system and since Fourier transforms are linear, this holds as
well in the time domain as in the frequency domain. For a stable transfer function,
one shows that [14] :
IT() oo = max [T ()

Applying this to the difference between the original and approximate system, we obtain

IT() = T(lloe = max | T(jw) = T(jw)ll2,

so that we will minimize the worst case error ||e;(w)]|s by minimizing ||T(.) — T'(.)]|co-

So the problem of model reduction of a stable linear time invariant systems can be
stated as follows : find the best stable approzimation T(.) of a given degree for T(.)
where the error is measured in the Ho, norm.

Unfortunately, it is not easy to find good (stable) approximations 7'(.) of a given
(stable) transfer functions 7'(.) using this norm. Another norm that is quite close to
the H,-norm is the Hankel norm, which is still the largest possible energy increase
between inputs and outputs, but where we restrict inputs to be nonzero in the interval
(—00,0) (i.e. the “past”) and outputs to be nonzero in the interval [0,00) (i.e. the
“future”). It turns out that the input/output map is then easy to describe and its
norm easy to compute. For the continuous-time case we have

0 o]
= / Ce A" Bu(r)dr = Ce?t - / e’ Bu(—7)dr, t€[0,00).
o 0

This map obviously factorizes in two sub-maps :
y(t) = Ce™z(0), 2(0) :/ e’ Bu(—7)dr.
0

The infinite dimensional “Hankel” operator H mapping u(t), t € (—o0,0) to y(t), t €
[0, 00) is then of rank at most N since z(0) € RV.
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The same holds for discrete-time systems where the input/output relation becomes
0 o0
=Y CA* N Bu(j) = CA* -3 A'Bu(—j), k€ [0,00).
—o0 0

This map obviously factorizes in two sub-maps since
y(k) = CA(0), w(0) =Y AVBu(—;
0

The infinite dimensional “Hankel” operator H mapping u(k), k € (—o0,0) toy(k), k €
[0, 00) is then of rank at most N since z(0) € RY.

1 1

-0 . . o, . .
P 20 15 BT 0 5 10 -0 -5 [} ) 15 20 25 30 % 4
input u(k) Discrete output y(k)

u(k), k € (—00,0) = z(0) = y(k), k € [0, 00)

Since the Hankel operator has finite rank NV, it has only a finite number of nonzero
singular values and these can easily be computed. For this, we represent the two linear
maps as follows :

y([0,00)) = Ox(0),  x(0) = Cu((-00,0)).

and define the dual maps as

y([0,00)) = z(0), C*:z(0) — u((—00,0)).

2.2 Gramians

The products G, = O*O and G, = CC* are N x N matrices and are called the
Gramians of the system.
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For a continuous-time system (2.1) the observability and controllability Gramians

are equal to [8] :

“+o00

G, = / (CeMT (CeM)d,
0

G. =

| " (M BY (A B) T dt,
which by Parseval’s theorem are also equal to
G, = % /:o(—jwf — ATYCTO (T — A)du,
G, = % /_:O(jwl — A)TBBT(—jwl — AT) duw.

These Gramians can be computed as the solution of the Lyapunov equations
ATG,+G,A+CT"C =0 and AG.+G.AT + BBT =0.

For a discrete-time system the corresponding time domain definitions are :

G, = Jio(CAk)T(CAk),
G. = S (A*B)(A*BY,

which by Parseval’s theorem can be transformed to the frequency domain :
1 2m . .
Go= 5= [ (eI = AT ICTC(T — A) 7 du
m Jo

1 2T X X
G, = — / (€T — A)'BBT (e 7T — AT) lqu.
21 Jo

These Gramians can again be computed as the solution of the Stein equations

ATG,A—Gy,+CTC =0 and AG.AT —G.+ BBT =0.
How can one compute the norm of the Hankel map

H=0C"

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

One shows that for any two positive definite matrices there always exists a (so-called

contragradient) transformation
G,=T"G, T, G.=T7'G.T7",
such that both new Gramians are equal and diagonal [9] :

G, =G, = A =diag {\1,...,\y}.

(2.13)
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The transformed Gramians @o and G’C are easily seen to be the new Gramians of the
transformed system

{A,B,é, f)} = {T*lAT, T*lB,CT,D} <= {A,B,C,D}.

Note that the corresponding state-to-outputs and inputs-to-state maps of the trans-
formed system equal
O=0T, ¢C=T"'C.

In this new coordinate system we thus have
O*O =A=CC". (2.14)
The transformation T is in fact a similarity that diagonalizes the product G.G, since
T-YG.G,)T = GG, = A2
Moreover, the \;’s are the singular values of the Hankel map since the maps
HH =C*0*OC, and CC*O*O =TANT™"

have the same nonzero eigenvalues. Finally (2.14) also implies that A contains the
square of the singular values of the transformed maps O and C.

2.3 Approximation via projection methods

How is this now used for model reduction ? It is well known that the best approx-
imation M, of a given rank n < N to a linear map M of rank NV is obtained from
the singular value decomposition of M. Notice that this decomposition always exists
if M is bounded and has finite rank N to start with. Let us partition the eigenvalue
matrix A and the system matrices {A, B, C'} conformably such that the (1,1) blocks
are n. X n :

.| A O i 12111 12112 oo E1 2 . A oA
A= A= " N B=| = C = ) 2.15
lo A22]7 lA21 A22]: [BQ], [Cl 02] ( )
Define also
V=1, 0], X:[H Pz XV7, (2.16)

then P is a projector since Y7 X = I, and P2 = P. Tt follows from (2.14) that there
exist orthogonal transformations U and V' which we partition conformably, such that

1
0= U1A1%1 U2A2%2 ] ,C= [ A1;1V1T -I

1 , 11 = OPClly = [UsApa V3 |2 = A
L ALV
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The mapping OPC is therefore an optimal rank n approximation to  but it does not
necessarily have a Hankel structure, in which case it does not correspond to a time
invariant system [14]. It turns out that if the gap A\, — A, 11 is large then the projected
system
{12111, Bl: éla D} - {?TAX, Y/TB, éX, D}

has a corresponding Hankel map that is very close to OPC. For obvious reasons, this
technique of producing reduced order models is called “balanced truncation”. One
shows [9] that balanced truncation of stable systems always produces stable reduced
order models as well. This technique has the additional advantage to yield simulta-
neously all reduced order models of degree 1 up to N — 1 and one can choose e.g.
the order n of the approximate model based on the error estimate )\, between both
Hankel maps. A more involved model reduction technique that is derived from the
balanced coordinate system is the so-called optimal Hankel norm approximation [4].
Its construction involves more work but yields a stable and optimal Hankel norm ap-
proximation of a given order n. When the gap A\, — A, is large, both techniques
yield very close models [14].

2.4 Large-scale models

We pointed out that balanced truncation is based on the construction of two restric-
tions X and Y satisfying Y7 X = I, and hence of a projector P = XY7T. This
projector P is orthogonal in the coordinate system of the balanced realization (2.16),
but the corresponding projector P is not orthogonal in the original coordinate system.
Defining
X=7X, Yr'=YyTT1!
it follows that Y7X = YTT-1TX = I, and that the balanced truncation amounts to
{AH, B, C’l,D} = {YTAX, YTB,CX, D}

in the original coordinate system. The construction of the projector in the previous
section was based on an eigenvalue decomposition of the product of two Gramians,
which is a dense matrix even if the original system {A, B, C, D} is sparse.

So how can one produce an “approximation” of this projector P without having to
perform eigenvalue or singular value decompositions of dense N x N matrices 7 For
this it is informative to look at the Hankel map of the discrete-time case :

Yo U1 C U_1
Y1 U_p CA U_s
wm | =O0C| | =] caz | B 4B 4B .||,

From this one expects Krylov sequences to play an important role in approximating
both factors O and C. A Krylov subspace is defined as follows :

K;(M,R) = Jm{R, MR, M?R, ..., MHR} (2.17)
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where the matrices M and R are N x N and N X k, respectively. The construction
of bases of Krylov spaces of a particular order have been studied for many years in
the numerical linear algebra literature (especially for sparse M and R). The link
with the present problem is obviously the eigenvalue problem since we would like to
approximate the dominant eigenspace of the product of the Gramians G,G.. One
wishes in fact to construct an n dimensional basis with n < N and yet capture the
dominant features of both Gramians.

For linear time invariant systems, one can exploit the frequency domain identities
(2.6,2.11) very efficiently. They suggest that the Gramians are well approximated
if the transfer function is interpolated in points where the expressions (2.6,2.11) are
large. The transfer function T'(s) can be expanded in a Taylor series around any point
o that is not a pole of T'(s) :

T(S):T0+T1(S—U)1+TQ(S—U)2+"', (218)
where the coefficients 7T; — called moments — are equal to :

19T (s)

Ty=T(c)=D—-C(A—0ol)"'B, T;= FRew

= —C(A—oI)"VB, i>0.

In general, one can produce a reduced-order model that interpolates the frequency
response and its derivatives at multiple points {o™), 0@ ... )} A model meeting
these constraints is denoted a multipoint Padé approximation or a rational interpolant.
Recently, a general theory for such interpolations, based on Krylov subspace computa-
tions was presented [5]. It is shown in [6] that these approximations also satisfy certain
Galerkin conditions for the Lyapunov equations (2.7,2.12). Moreover, it is shown there
that these techniques also apply to implicit systems of differential equations. Another
approach is to use interpolation ideas to accelerate particular iterative methods for
computing the solution of Lyapunov and Stein equations directly [10].

3 Time-varying systems

Time varying systems are described by systems of differential or difference equations.
Assume that we are given a large-scale time-varying system

{ z(t) = A(t)x(t) + B(t)u(t) { x(k+1) = A(k)x(k) + B(k)u(k) (3.1)
y(t) = C(t)z(t) + D(t)u(t) y(k) = C(k)x(k) + D(k)u(k) '
which we would like to approximate by a lower order model
{ () = A(H)2(t) + B(t)u(t) { 2k +1) = A(k)@(k) + B(k)u(k) (3.2)
g(t) = C(t)z(t) + D(t)u(t) y(k) = C(k)z(k) + D(k)u(k).

It is obvious that projectors have to be time-varying as well in order to capture the
dynamics of the system at each time instant. Since there is no transfer function
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anymore, one should use instead the Gramians of the state-to-outputs and inputs-to-
state maps.

Gramians of time-varying systems are based on the fundamental solution matrix
®(.,.) of the corresponding homogeneous system, which yields the state at a particular
time in terms of the state at a previous time [§] :

(1) = A(t)x (1), (/f+ 1) A(/f) (k),

For a continuous-time system the observability and controllability Gramians can be
defined as follows for a finite time window ¢ € [t;, tf] :

Go(t) = [ (Crr0 ) (C)a(r, )i (33)
G(t) = /t;(@(t, 7)B(1))(®(t, 7)B(7))"dr. (3.4)

Using ﬁQJ(T t) = ©(T,1)A(t) and L@(T,t) = A(T)®(T,t) we observe that the
Gramians can be computed as the solution of the Lyapunov differential equations

iy Golt) = AR)TGo(t) + Go(H) A1) + C()TC(t), Golty) =
H#Ge(t) = AW)G(t) + G(AM)" + BO)B®)",  Ge(t;) = 0.

Notice that the first equation goes “backward” in time, while the second goes forward

in time. For a discrete-time system the corresponding Gramians are defined for k£ €

[k;, k] as follows :

Gulk) = X (CLIBG BTG 35
) = 3 (B(h. 1) BU)(@(k. ) BG)) 39

Using ®(K, k) = ®(K,k + 1)A(k) and ®(K + 1,k) = A(K)P(K, k) we observe that
the Gramians can be computed as the solution of the Lyapunov difference equations

Go(k) = A(k)"Go(k + 1)A(k) + C(k)TC(k),  Go(kf+1) =0,

G.(k+1) = A(k)G.(k)AK)T + B(k)B(k)T, G.(k;—1)=0.

Again we point out that both recurrences evolve differently with time. In the literature
(see e.g. [11, 12]) one typically assumes ¢; = k; = —oo and t; = kf = oo but in order
to be able to compute the Gramians we consider here a finite interval of time.

The continuous-time and discrete-time problems are very similar but since continuous-
time systems need to be discretized anyway, we focus here on discrete-time systems.
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The state-to-outputs and inputs-to-state maps of the discrete-time case are :

y(k) C(k)
y(k+1) C(k + 1) A(k)
y(k+2) | = | Clh+2AMk+ D)AR) | *F),
u(k —1)
u(k — 2)

M@:[B%—D Ak —1)B(k —2) A(k—1)A(k—2)B(k - 3) ~ﬂ u(k — 3)

The Gramians clearly reflect the energy of both these maps and hence play an impor-
tant role in their approximation. Provided we compute only a finite window of the
above Gramians then one can easily come up with a square root version for the Grami-
ans. Let RT(k)R,(k) = G,(k) and R (k)R.(k) = G.(k) be Cholesky factorizations of
these Gramians then R,(k) and R.(k + 1) are the upper triangular factors of the QR
factorizations

Qui R, (1) = | LA ) Qe ey = | BT

respectively. Rather than computing the exact factors, one can keep a low rank ap-
proximation of both Gramians

RI(k)R,(k) ~ Go(k), RE(k)R.(k) ~ G.(k). (3.7)

The matrices R,(k+1) and R.(k) will have e.g. n < N rows, implying that at each step
of the QR factorization only the n “dominant” rows of the triangular factors should
be kept. The basic idea for this is to keep at each step the leading n row vectors of the
singular value decomposition rather than performing the above QR decompositions.
How to do this is described in a different context in [13], [7].

It is important to point out here that one can still define the eigenvalues of the
product of the Gramians :

and these will be positive real if the system is completely controllable and completely
observable over the considered time interval [11, 12]. The contragradient transfor-
mation then exists and reduced order models can be constructed provided there is a
nonzero gap An(k) — A\yi1(k) > 0 at each time instant. The optimal projector would
be P(k) = YT(k)X (k) where X (k) contains the first n columns of T'(k) and Y7 (k)
contains the n first rows of T-1(k). It follows from (3.7) that a good approximation
is given by
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and its quality will depend on the gap A, (k) — An,11(k) > 0 at each time step.

For continuous-time problems with Gramians defined over infinite horizon intervals
(—o0,t] and [t,+00), it is shown in [11, 12] that if the original system is stable, then
so will the reduced order model provided the original system is uniformly completely
controllable and observable. If finite intervals are considered, the issue of stability is
less crucial of course.

Notice that since we are defining projectors for finite time windows, this could also
be applied to linear time invariant systems that are unstable. One can then not show
any property of stability for the reduced order system, but the finite horizon Hankel
map will at least be well approximated.

3.1 Time-varying linearized problems

The nonlinear problems in dynamical systems are much harder to handle

{ #(t) = G(x(t), u(t)) { z(k+1) = G(x(k), u(k))
y(t) = H(z(t), u(t)), y(k) = H(x(k), u(k)).
One typically linearizes such models along a “nominal” trajectory (z(t),u(t)) by com-
puting A(.), B(.), C(.) and D(.) from the Taylor expansion of G(.,.) and H(.,.) around
that trajectory. Model reduction techniques for time-varying models could then be ap-
plied to this, but the construction of the Gramians becomes too complex, since they
evolve in two different time directions.

A simpler idea that has gained popularity in nonlinear systems is to just compute
a trajectory z(.) and consider

t;

[ 2@ dr, and sz; oK) (k)T,

as approximations of Gramians (or “energy functions”) for constructing an appropriate
projector. This is known as the Proper Orthogonal Decomposition (POD) technique

[1].
How does this relate to the time-varying schemes described in the previous section ?
If we consider a linear time-varying system :

(t) = A(t)x(t), and x(k+1)= A(k)x(k),
with initial conditions z(¢;) and z(k;), respectively, then
z(t) = ®(t,t;)z(t;), and x(k) = Ok, k;)x(k;).

The above expressions then become
[ @ t)alt)) @(r t)a(e) dr, - and S° (@ (k. k() Bk, ki) (k)"

k—k;
which shows the link with Gramians over a finite time interval. The difference here is
that no input matrix B(.) is involved.
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4 Concluding remarks

Model reduction of dynamical systems has its roots in many different fields of ap-
plied mathematics. The earlier occurrence of such techniques is the approximation
of rational functions of high degree by a lower degree one. The first results in that
area were formulated in a mathematical setting and included techniques such as Padé
approximations, continued fraction expansions and so on [3]. Such results were also
used in the context of model reduction techniques or approximation techniques in ap-
plication areas such as signals and systems and lead to the synthesis of approximating
systems by one of a prespecified degree. Examples of algorithmic developments in this
area are the Remez algorithm in filter design and the Massey Berlekamp algorithm
in convolutional codes. More recent developments in linear systems theory are nicely
synthesized in [2].

But these developments are referring mainly to the area of linear time-invariant
dynamical systems. In this paper we tried to establish connections between different
projection techniques used in the area of systems and control and in particular showed
how to extend this to the time varying case and tried to show the connection with a
popular technique for nonlinear dynamical systems.
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