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ABSTRACT 

We develop stable algorithms for the computation of the Kronecker structure of 
an arbitrary pencil. This problem can be viewed as a generalization of the well- 
known eigenvalue problem of pencils of the type XI- A. We first show that the 
elementary divisors (A- a)’ of a regular pencil AB - A can be retrieved with a 
deflation algorithm acting on the expansion (h- a)B -(A - aB). This method is a 
straightforward generalization of Kublanovskaya’s algorithm for the determination of 
the Jordan structure of a constant matrix. We also show how to use this method to 
determine the structure of the infinite elementary divisors of M-A. In the case of 
singular pencils, the occurrence of Kronecker indices-containing the singularity of 
the pencil-somewhat complicates the problem. Yet our algorithm retrieves these 
indices with no additional effort, when determining the elementary divisors of the 
pencil. The present ideas can also be used to separate from an arbitrary pencil a 
smaller regular pencil containing only the finite elementary divisors of the original 
one. This is shown to be an effective tool when used together with the QZ algorithm. 

I. INTRODUCTION 

The eigenvalue problem is one of the most discussed problems in linear 
algebra, both from the numerical point of view [l] and from the algebraic 
point of view [2]. 

It is well known that the problem of determining the eigenstructure 
(eigenvalues and associated Jordan structure) of an n X n matrix A is equiv- 
alent to finding the elementary divisors of the regular pencil hI,- A [2]. 
Although the algebraic problem is well defined, the numerical problem can 
be very poorly conditioned (e.g. defective matrices). Several algorithms [3] 
have been elaborated for the eigenvalue problem, which are very satisfac- 
tory. Numerical (backward) stability is indeed guaranteed, even when the 
problem is ill posed. 
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However, when the eigenvalues of A are known, the problem of de- 
termining the Jordan structure is better posed than the general problem [4]. 
A computational algorithm directed towards this problem was first for- 
mulated by Kublanovskaya [S] and improved by Golub and Wilkinson [4]. 

The generalized eigenvalue problem for regular pencils hB -A, though 
very similar to the previous problem, is more complicated, since infinite 
elementary divisors may also occur [2]. Numerical algorithms have been 
developed which deal efficiently with this problem [6, 7j. In this paper we 
show that when the eigenvalues of the pencil are known, a simple generali- 
zation of Kublanovskaya’s algorithm yields analogous results with respect to 
stability and conditioning criteria. Also, this generalization is extended to 
treat sing&r pencils. For this case a canonical form was first presented by 
Kronecker [8]. However, current computational methods [2, 9, lo] are 
inefficient from the point of view of stability as well as that of algebraic 
complexity. 

We show that the Kronecker indices, which are additional structure 
elements in the case of singular pencils, can be determined in much the same 
way as the infinite elementary divisors. This method can be used to separate 
in a stable way a regular pencil containing only the finite elementary divisors 
of the original singular pencil. If the finite eigenvalues (Smith zeros) are 
known, the algorithm can be continued to determine the complete structure. 
If they are not lmown, one may make use of the QZ algorithm on this 
smaller regular pencil. 

During the past decade significant advances have been made in the 
theory of multivariable linear systems. In this area Kronecker’s pencil theory 
has been applied to model matching [II], realization [ 121, linear feedback 
[ 131, modeling [14] and inversion [15, 161. In each of these problems the 
structure of a singular pencil plays a significant role. Hence there is a need to 
determine the Kronecker structure in a reliable way. Several algorithms [2,9, 
lo] are available for the determination of this structure, but they are 
numerically unstable. They indeed compute the Kronecker canonical form 
explicitly, but are then unstable, precluding pivoting techniques. As shown 
in this paper, one should in this case restrict oneself to the computation of a 
“staircase” form revealing the eigenstructure without putting the matrix in 
its canonical form. 

During the review of this paper, Prof. Wilkinson drew our attention to an 
internal report [2I] treating similar problems and also using similar tech- 
niques. The connection with the Kronecker structure, though, is not shown 
in his paper. We feel that it is exactly this feature that makes the picture 
more complete and that allows easier comprehension of the problem. The 
numerical approach and the treatment of finite eigenvalues are new. 

In the following section we introduce our notation, and we review 
several results which we shall need in the sequel. In Sec. III the structure 
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algorithm for regular pencils is explained, and we also show its relation to 
Kublanovskaya’s algorithm. In Sec. IV we give the extension of the algorithm 
for singular pencils and comment on its use for the extraction of the “regular 
part” of a singular pencil. In Sec. V we mention several applications, such as 
in the area of linear systems. 

II. PRELIMINARIES 

Throughout the paper we use uppercase for matrices (I for the unit 
matrix) and lowercase for vectors and scalars. Greek letters are used in 
conformity with standard conventions in the literature. All matrices, vectors 
and functions considered are defined over @. By A* we denote the conjugate 
transpose of A, and by AP the “pertranspose” of A, which is the transpose 
over the second diagonal. 

In our exposition we frequently use invertible row transformations to 
reduce an arbitrary m x n matrix A to the form 

wherein A, has p linearly independent rows (p is then clearly the rank of A). 
We call such a transformation a “row compression” of the matrix A. 
Analogously we use the name “column compression” for the invertible 
column transformation 

A+=[ A, 1 0 I, (2.2) 
- 
P 

wherein the columns of A, are linearly independent. The resulting matrices 
4 and A, are said to have zero row nulliiy (or 
column nullity (or full column rank), respectively. 
inverse A,” and A, a left inverse A,’ satisfying 

A,A,+ = Z, = A,+A, 

full row rank)-and zero 
Therefore A., has a right 

(2.3) 

We reserve the specification “full rank” for square invertible matrices. A 
reliable way of computing these compressions is by making use of the 
singular-value decomposition [3, 41 of the m X n matrix A: 

A = U-Z-V*, 
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where 

(1) U and V are respectively m X m and n X n unitary matrices, 
(2) Z is a m X n matrix of the form 

Z= =, O [tl 0 0’ 
XP=diag{a,,...,a,}, 

with u, being positive real and satisfying ui >a, > * * * >a, >O. 

It may be readily verified that U*A and AV yield respectively a row 
compression and a column compression of A. 

The matrix function XB - A, with A and B arbitrary constant matrices of 
equal dimensions, is called a regular pencil when det(AB - A)f 0 and a 
singular pencil otherwise. Regular pencils are thus always square. 

DEFINITION. Two pencils XB, - A, and AB, - A, of dimension m X n are 
said to be stictly equivalent when there exist constant invertible matrices P 
and Q of orders m and n respectively, such that 

P(AB,-A,)Q=hB,-A, (24 

We will denote this equivalence relation by -. 

Kronecker’s theory of singular pencils [2] shows that any pencil XB - A 
has, under strict equivalence, a canonical quasidiagonal form: 

P(hB-A)Q=diag{L, ,,..., L,,,Z$ ,..., L[,LV-Z,hZ-I}, (2.5) 

where 

(1) Lp is the p X ( p + 1) bidiagonal pencil 

jh :I ;. _l]P 

(2) LE is the "pertransposed" pencil 

-1 

x * *. 

-. -1 

A 

of dimensions ( p + 1) X p, 
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(3) N is a nilpotent Jordan matrix, and 
(4) J is in Jordan canonical form. 

Hence, AZ - J contains the finite elementary divisors and M- Z the infinite 
elementary divisors. Also, the blocks LE, and 5: contain the singularity of the 
pencil, since there exist polynomial (column or row) vectors that zero out 
these blocks identically: 

P 
I[” *-’ ;*._,) 

P+l 

1 
h 

A2 

ip 

(2.6) 

The sizes of these blocks characterize them completely and are therefore 
given specific names. The q are called Kronecker column indices and the qf 
are called Kronecker row indices. 

The pencil hN- I is completely determined by the degrees Sj of the 
infinite elementary divisors, and AZ-J by the finite elementary divisors 
(h - c+)‘. 

EXAMPLE 1. A possible canonical form is e.g. the 14 by 16 pencil. 

h -1 

h -1 
h -1 

-1 
x -1 

h -1 
h 

-1 
L- 

-1 
x -1 

A-2 

h-3 
-1 h-3 
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Then 

(i) the Kronecker indices are 

&r-O, &a=O, Es=l, &4=2, 

(ii) there are two infinite elementary divisors: 6, = 1, 6, = 2; 
(iii) the finite elementary divisors are A -2 and (A-3)2. 

The elements summed up in (i), (ii) and (iii) completely characterize the 
canonical form (2.7). 

As shown in (2.6), one can always find a polynomial vector y of degree p 
to zero out the block 4. By appropriately completing y with zeros, one finds 
a corresponding “right null vector” for the canonical pencil containing such 
a LP block. Similar remarks apply to left null vectors; in the example (2.7) 
these are 

[O 0 0 1 0 0 0 0 0 0 0 0 0 O] corresponding to L,114, 

[O 0 0 0 A3 A2 A 1 0 0 0 0 0 O] corresponding to Lrl’,. 

Zero Kronecker indices thus correspond to constant null vectors (degree 
/.l=O). 

A Kronecker block clearly has deficient column (or row) rank for any 
value of A, and a corresponding constant null vector can be found by 
substituting that value of A in the corresponding equation (2.6). 

Regular pencils U3 - A have no Kronecker indices, since det(hB - A) SO 
and not all the values of X will yield rank deficiency of the matrix. We prove 
in Sec. IV that it is always possible, by a deflation procedure using unitary 
transformations only, to separate from a sing&r pencil XB- A a regular 
pencil M$ - A, with the same elementary divisors as hB - A. The canonical 
form of US, -A, is thus 

?&,-A-diag{N- I,M-I} (2.6) 

with N and J as in (2.5). 
If the regular pencils XI - A, and U - A, are strictly equivalent, then A, 

and A, are similar (since P= Q - ‘). The Kronecker canonical form can 
therefore be viewed as a generalization of the Jordan canonical form to 
arbitrary pencils. At a first level of generalization are ‘the regular pencils 
US -A (bringing in infinite elementary divisors), and at a second level are 
the arbitrary pencils (introducing the Kronecker indices). 
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While the link with the eigenvalue problem is obvious for pencils U - A, 

the concept of eigenvalue is rather ambiguous for arbitrary pencils (different 
definitions occur in the literature). In analogy to infinite and finite elemen- 
tary divisors, we connect the terms “infinite” and “finite” eigenvalue with 
regular pencils and with the “regular part” AB, - Ar of singular pencils as 
well, We thus say that the pencil (2.7) has three infinite eigenvalues: two 
eigenvalues at 3 and one at 2. 

We use the name “finite structure” for the set of finite elementary 
divisors (or Jordan information of hI - J), and “infinite structure” for the set 
of infinite elementary divisors (or Jordan information of XN- I). The set of 
Kronecker indices will be called the “singular structure” of the pencil. These 
three structure elements thus completely determine the canonical form of a 
pencil and conversely. 

An algorithm for the computation of the Jordan information of a pencil of 
the type XI- A was developed by Kublanovskaya, in the case where the 
eigenvalues of A are known. It operates on the constant term of the 
expansion (X - a)l- (A - CXZ). Clearly U-A has elementary divisors at (Y 
when A - (YI is singular. Moreover, the nullities vi of (A - (~lr)~ for j = 1,. . . ,l 
contain the Jordan information of A at (Y [2] (where vi does not change any 
more after I). The following algorithm computes these nullities in a stable 
way [4, 51 (comments are given between comment and ;). 

ALGORITHM 2.1. 

comment initialization ; 
i: = 1; A,,, : = A - d; nl: = n; 

step _ i : comment compute the singular value decomposition of the ni X ni 
matrix A,,j ; 
cull SVD (Ai,/) result ( Ut, Xi, Vj) rank (rj) nullity (sj); 
if s/=0 then begin 1:=/-l; stop end; 
ccmmnent compress AiPi to full column rank rj and partition ; 

comment also update and partition blocks in column i ; 
fori=lstepluntiZj-ldo [Aj+,i 1 Ai,, ] : =AjSlv;.; 

comment update; nt+‘:=q; j:=i+l; go to step-j; 

The nullities z+ j = 1,. , . , I, are then given by [4]: 

i 
vi= 2 si. 

i=l 
(2.9) 
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This algorithm implicitly computes a similarity transformation to put hZ - A 
in a “staircase” form. When one embeds each Vi in a n X n matrix and puts 

v=b Y 
j=l [+I z ’ 

the matrix L=V*(A-aZ)Vhas the form (for some X) 

where AZ+, I+~ has full rank and A, is zero on and above the main diagonal 
(A, is thus nilpotent). This yields the structure of A at (Y, since V*AV has the 
form 

V*AV=A+aZ =[~]=[j--&-], 

(2.10) 

where 

A,+aZ,= (2.11) 

As a consequence of the rank search in Algorithm 2.1, the off-diagonal blocks 
A i+1,i have full column rank si. Therefore, the si are decreasing with i 
(remark that s,, r = 0 because of the stopping rule of the algorithm). This 
implies [4] that Aa + CIZ,, and A have the following Jordan structure: 

A has s1 - si+r = ur Jordan chains of size j (for j=Z ,..., 1). (2.12) 

As expected from (2.9), the index set {si} thus also yields the Jordan 
structure of A at CL 
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Since4+l,~+l in (2.10) has full rank, AI+ r, I+ i + aZ, = A” has no eigenvalue 
at CY. The procedure is then restarted on XI,- A” using an expansion at 
another eigenvalue. This process is continued until the total structure of A is 
recovered. Each step of this algorithm can also be viewed as a deflation step 
whereby si eigenvalues (Y are retrieved at a time. When no eigenvalues at (Y 
are left, the algorithm is restarted at another point. 

In the following section we present an analogous rank search for regular 
pencils of the more general type M-A. 

III. REGULAR PENCILS 

When computing the eigenstructure of the regular pencil ti -A, one will 
use similarity transformations in order to preserve the Z matrix of the original 
pencil (see Algorithm 2.1). On the other hand, when dealing with the more 
general form AB - A, one has the possibility of making use of independent 
left and right multiplications. In this section we show how this additional 
degree of freedom enables us to transform both A and B into specific 
“staircase” forms, yielding the required structure information, Before de- 
scribing the actual algorithm, we work out a few steps of it in detail in order 
to clarify the procedure. 

The aim is to retrieve the structure of the eigenvalue (Y of the regular 
pencil hB - A. Since (Y is an eigenvalue, the constant term of the expansion 
at (Y, 

(A-a)B-(A-aB), (3.1) 

is singular. For simplicity rename h - (Y, Z? and A - aB respectively as A’, B,, r 
and A,,,. We thus have an expansion 

A’%-Al.1 (3.2) 

with 4, singular. The transformation A - (Y =x’ is also called a “shift” 
whereby the eigenvalue (Y of (3.1) is transformed (or “shifted”) to an 
eigenvalue 0 of the pencil (3.2). Using this shift, all finite eigenvalues can 
thus be treated similarly. We then perform following steps: 

step 1 
(a) Compute a singular-value decomposition of A,,,, 

A 1,1= ~a%Yz (with nullity si), 
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and multiply the pencil by V, on the right. Hence the columns of A,,, are 
“compressed’ in the first n - sr columns, and the remaining sr columns are 
zero. The resulting pencil is then partitioned as 

(A’B,,,-A,,,)V,= [ A’B,-A, 1 A’B, ]}a (3.3) 
V- 

n--s, SI 

(b) Compute a singular-value decomposition of B,, 

B, = U,Z, V;, 

and multiply the pencil left by U,* on the left, which compresses B, to full 
row rank. The rank must be sr, since if it were less, that would imply that 
det(AB -A) = 0; hence we can partition as follows: 

(c) Permute the top and bottom blocks (this is a unitary row operation 
I’&. Hence we have constructed unituy transformations P, and Qr such that 

I 1% 
I ’ (3.5) 

*1 

where 

--- 
ne Sl 

(i) B,,, has full rank s1 (this is the first separated “stair”), 

has full column rank n,. 

Note that we reuse some of the names of the blocks-e.g. B,,,-after 
processing them. This is done to avoid step indices. Just as in the 
Kublanovskaya algorithm, this step may be viewed as a deflation. The 
eigenvalue problem (3.5) indeed splits up into two eigenvalue problems 
A’B,,, and A’B2,2-A,,,. The first pencil clearly has all its eigenvalues at 
A’ = 0, since det(X’B,, 1) = (X’)“ldet(B,, r). We have thus reduced the problem 
to the processing of A’B,,, - A,,,. While the off-diagonal blocks XB,, 1 - A,. 1 
do not play a role in the eigenvalue problem, they do when the Jordan 
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structure of the eigenvalues are required. The off-diagonal blocks will 
therefore also be processed in the algorithm. 

step 2: 
(a), (b):(c) Reteat the above procedure on A’B,,,-- A,,, with n,X na 

matrices Pz and Qa, thus obtaining a similar reduction of this smaller pencil. 
These transformations may be embedded in 

so that we have 

where 

(i) Bs,s and B,,, have full rank, 

have full column rank. 

(Again we reuse some of the names of the blocks.) 

Step i (induction step) 

Repeat this procedure until the upper left block 4,i has fulI rank. 

This procedure is recapitulated in the following in ALCOL-~~~~ notation 
(comments are given between comment and ;): 
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ALGORITHM 3.1. 
comment initialization ; 
j:=l; A,,,:=A-aB; B,,,:=B; n,:=n; 

step _ j: cmnment compute the S.V.D. of the ni X ni matrix Ai,i ; 
caZ2 SVD (Ai,i) result (U,, Z,, V,) nullity (si); 
if si=O then begin l:=j-1; stop end; 
comment compress Ai,i to full column rank and partition ; 
[ Aj+l 1 O]:=A&; [ Bi+, 1 f$ ]:=Bj,iV,; 
comment also update and partition blocks in column j ; 
fori=lstepluntili-ldo 

begin [ A/+l,i 1 Aj,i ]:=Aj,jVa; [ Bi+l,i 1 Bi,i ]:=Bj,iV, end; 

comment compute the S.V.D. of the ni X si matrix Bi ; 
call SVD (Bj) result (U,, Z,, V,) rank (q); 
cumment compress Bi to full row rank, permute and partition ; 

:= PbU$Aiql; 

comment update; ni+,:=ni-si; i:=i+l; go to step-j; 

Note that the stopping rule of the algorithm is when Ai,i has full column 
rank (then si = 0 and I = i - 1). This algorithm reduces A’B,. 1 -A,., to the 
form (for sor;le X) 

P&G-A)Q=P(A’B,,-A&Q= 
h’B~+l,l+l-4+1,1+1 0 

X A’B, -A, I 

~4+1,z+1-4+1,1+1 0 . . . 0 0 

~Bz+1,,-4+1,z h’Bls, + . . 0 0 

where 

(1) Az+l,z+, has full rank (thus s~+~=O), 
(2) the B,,j have full rank si for i = 1,. . . , 1, 
(3) the &,,_, have full column rank si for i=2 ,..., 1. 
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From this last property it follows that the si form a decreasing sequence and 
thUS 

si-si+1 =ai>O for j=l,...,L (3.9) 

The analogy between Algorithms 3.1 and 2.1 suggests that these indices 
again contain information about the structure of AB- A at CL In I..emmas 
3.2, 3.3 and 3.4 and Proposition 3.5 we prove that the form (3.8) indeed 
yields the Jordan structure of XB -A at CL Each step of the reasoning brings 
the form (3.8) closer to its canonical form. Since the transformations used for 
this purpose are not unitary, proceeding beyond the form (3.8) is not 
recommended. 

LEMMA 3.2. The pencil (3.8) is strictly equivalent to the pencil 

diag{A’B~+,,I+,-AI+,,,+,,A’B,-A,}. (3.10) 

Proof. We prove this inductively by constructing the transformations 
that zero the blocks Al+ l,i and B,, l,i for i = I,. . . ,I The blocks used thereby 
as pivots are left or right invertible according to (2.3). 

Step 1. Since A,,,,,,, has full (column) rank, there exists a row transfor- 
mation that uses this block to zero out AI+l,l (see Fig. 1). Afterwards the 

modified &+i,, is eliminated by a column transformation using B,,, as pivot, 
since this block has full (row) rank. 

Induction step i. Having already eliminated h’BI+,,i-A,,,,i for i>i, we 
perform the elimination of xIBl+l,i -AI+, i in an analogous fashion. This is 

done br using Al+i,[+i and Bi,i as pivots, as in Fig. 2. 

FIG. 2 



116 P. VAN DOOREN 

Note that none of these transformations affect the diagonal blocks of (3.10). 

n 

LEMMA 3.3. The pencil X’B, -A, in (3.10) is strictly equivalent to the 
bidiugonul block pencil 

X’B,,, 0 

-4,z-1 * 
X&--A,= . * 

. * . (3.11) 

0 -A,,, A’%1 

Proc$ We show by induction that in each column j, all elements other 
than the blocks A’ Bt, i and 4,i_ r can be eliminated. Suppose that columns 
1 , . . . , j + 1 have already been treated. We first eliminate Bi,i_ 1 using Bt _ l,l_ 1 
as pivot. Here Afsi _ r remains unchanged. The situation is then as shown in 
Fig. 3. 

X 

x *.* 

. x 
X h’Bi,i ’ 

I 

-+,i_1 I X’Bi-,,i-1 

FIG. 3 

Since 4,r_1 has full column rank, we have in the bottom right corner a 
situation similar to that treated in Lemma 3.2. Hence we may use the 
method of this previous lemma to zero out all information under A,/_ r. 
Observe that these transformations do not affect the blocks B,,, and &,,_ r. n 

Denote 

l,=Z, and Ki- + (3.12) 
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LEMMA 3.4. The bidiugonul pencil XBb, -A, in (3.11) is strictly equiv- 
alent to the rwrmalized pencil 

h’B,,-A,= 

A’J, 0 

-K,_, * 

(3.13) 

Proof. Since in XBb, - Abi the matrix B,,, has full (row) rank s,, there 
exists a column transformation that reduces it to the form II. This operation 
preserves the full column rank, s,, of A,,,_ r. Also there exists a row transfor- 
mation “normalizing” A,,,_ 1 to ZZ_ r, though affecting Bl_l,I_-l. This process 
of normalization can be continued throughout the whole matrix and yields 
the desired result. n 

These three lemmas and our algorithm thus construct the equivalences 

and 

(3.14a) 

A’B,-Aa--A’B,-A,--X’B,,-A,,. 

As a consequence we have 

(3.14b) 

PROPOSITION 3.5. l7~ indices {si} given by Algorithm 3.1 completely 
determine the structure at a of the pencil AB -A: 

AB-A has (s~--s~+~) = ar elementay divisors (h - a)l (i=l,...,Z). 

Proof. From (3.14) it is easy to see that X’B,, 1 - A,, 1 is strictly equiv- 

~enttodiagP’&+r,I+,-AI+,,r+,P XB,, - A,,}. Keeping in mind the transfor- 
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mation X - cr = A’, this also gives 

(h-a)B-(A-c&) 

(A-cu)B~+1,1+1-Al+,,1+1 

(A- 4.6 
-K,_, . 

0 

-K, (h-a)& 

(3.15) 

Since AI+,J+, has full rank, the top pencil has no eigenvalues at (Y. The 
bottom pencil (separated by Algorithm 3.1) has all its eigenvalues at CY, and 
its structure is easy to retrieve. This is indeed a pencil of the type XI- A 
with A in quasi-Jordan form. According to (2.12) this pencil has 

( sI - si + i) = uj Jordan chains of size j (for j=Z,...,l) n 

REMARK. It is easy to see that Algorithm 3.1 is essentially 
Kublanovkaya’s algorithm when applied to the regular n X n pencil XI - A. 
Since the Z? matrix is the identity matrix in this situation, the second 
compression (done by Pb U,* in Algorithm 3.1) is done by V* in Algorithm 
2.1. Because of this choice of similarity transformations, B remains the 
identity matrix (which also appreciably reduces the amount of work). 

Hence the reduced matrix is similar to (2.10): 

(X-a)Z-(A-uZ) 

X x . . . (La)Zs2 0 
X X ... -A,, (A- a, 

n (3.16) 
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Algorithm 3.1 applied to the eigenvalue (Y of AB - A thus “deflates” the 
structure of the pencil at (Y. In the next step one proceeds on the deflated 

pencil (A- o)G+i.r+i -Al+i~+i with a second eigenvalue. After processing 
all the finite eigenvalues we end up with 

(3.17) 

where (A - CXJB,, - A,, has a specific “staircase” structure [see (3.8)] yielding 
indices { si} for the eigenvalue oi. The matric_es P and Q are unituy by 
construction, and the remaining pencil hB--A has no finite eigenvalues. 
Consequently, this last pencil has all its elementary divisors “at infinity.” We 
now show how to proceed with this special point. 

Let us therefore compare the canonical form of the elementary divisors 
at IY and at infinity: 

h-a -1 
-1 . A . 

. * . . 
. - , . . 

, . . . 

-1 A-o A -1 

(3.18a, b) 

The structure of the first block (3.18a) is reconstructed by working on the 
expansion at (Y: 

cO 
1 . 

(h-cw)B,,,-A,,,=(A-a)I- . : . . 
. . 

1 0 

The rank deficiency of A,,, (and of successive deflated Aj,i blocks) will tell 
the nature of the elementary divisor at (r. Analogously we could inspect the 
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rank deficiency of B,,, in the expansion of the second block (3.18b), 
r 7 

0 
1 * 

W,,-4*1=~ * : . - 1, 
. . 

1 0 

in order to study its structure at infinity. This is done by following algorithm: 

ALGORITHM 3.6 

comment initialization ; 
j:=l; A1,l:=A; B1,,:=B; nl:=n; 

step-j: comment compute the S.V.D. of the ni X nj matrix Bf,/ ; 
cd SVD (BJ result ( U,, Z,, V,) nullity ( si); 
if si = 0 then begin 1: = j - 1; stop end; 
comment compress Bi, i to full column rank and partition ; 
[ Bi+l 1 0 ] : = Bi,&; [ Ai+l ( Ai ] :=A&,; 
comment also update and partition blocks in column i ; 

. . 

f”~~~~l~~:i~~~~]:‘~,iVh; [ Ai+l,i 1 Ai,, ] :=Ai,iVb end; 

comment compute the S.V.D. of the ni X si matrix 4 ; 
cull SVD (4) result (U,, Z,, V,) rank (So); 
comment compress 4 to full row rank, permute and partition ; 

q+1,j+1 

i I 

Aj+ l,j+ 1 

B,+ 1,j 
:= PaU,*Bi+l; 

[ I 

0 

Ai+ l,j 
:= PaU,*Ai+,; 

I 1 Ai,i 

: = PJJ,*Ai; 

comment update ; 

n/+1 :=ni-si; i:=i+l; go to step _i; 

Analogously to (3.8), this algorithm results in 

AB 1+1,1+1 -4+~l+l 0 
P(AB--A)Q = 

X Mm-A, I 

‘~z+1,1+1-4+1,z+1 0 . . . 0 0 11 “I+1 

X -A,,, a-- 0 0 

n1+1 81 

(3.19) 
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where 

(1) Pr+LL+, has full rank, 
(2) the&,, havefullrankq (is1 ,..., I), 
(3) the II,, i _ 1 have full column rank S, (i = 2, . . . , I). 

PROPOSITION 3.7. The indices {si} given by Algorithm 3.6 completely 
determine the structure at infinity of the pencil AB - A: 

M-A has (sj-si+J=df ekmentuy divisors of degree j (i=l,...,Z) 

Proof. By using similar lemmas to 3.2, 3.3 and 3.4 it is easy to prove that 
AB - A is strictly equivalent to 

AB 1+1,2+1 -4+1.1+1 

-h 

(3.20) 

with 

&=I, and I-$= s,. 

Here again a separation of structure elements is performed by the algorithm: 
the top pencil only has finite eigenvalues, since Bl+ 1,1+ 1 has full rank and the 
bottom pencil has all its eigenvalues at infinity. This last pencil is in 
quasi-Kronecker form and can be brought to canonical form by permutations 
only (this is carefully done for a more general case in Proposition 4.3), 
yielding the required result. n 

in 

COMMENTS. 

(a) In order to determine an elementary divisor, the algorithms described 
this paper need an expansion in the associated eigenvalue. For finite 
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eigenvalues, the expansion is 

(h-(Y)B-(A-~B)=A’B,,,-A,,,, (3.21) 

and thus knowledge of (Y is required. For infinite eigenvalues, though, we 
can consider 

hB-A=AE+,-A,,, (3.22) 

as an expansion around h = cc, and no a priori knowledge is required (this 
can be interpreted as “infinity being always known”). 

Algorithms 3.1 and 3.6 use these expansions to determine the eigenstruc- 
ture at the concerned point. This is done by inspecting the rank deficiency of 
(3.21) and (3.22) respectively. Some authors define the structure at cc as the 
structure at the eigenvalue zero of the transformed pencil B,, r - A’A,,, 
(implying the transformation X= l/A’ which maps h= cc into x’=O). This 
again illustrates the analogy between the two algorithms: their only dif- 
ference is the interchange between A and B. 

(b) When using Algorithm 3.6 on the deflated pencil U?- A” of the form 
(3.17), one completes the structure analysis of the pencil AB -A. This first 
pencil indeed has no finite eigenvalues and thus will be transformed to the 
staircase form AB, -A, yielding the structure at infinity. For numerical 
purposes it is preferable to start with the point at infinity. The recommended 
path is 

(i) transform XB -A to the form 

XB--A-[~%qx&q] (3-W 

yielding the infinite elementary divisors and a deflated pencil MIf - Af with 
only finite eigenvalues. 
(ii) separate from hBf - + the Jordan structure of each eigenvalue, starting 
with the smallest one in norm. 

By keeping this schedule the “shifts” A - cuB are performed in increasing 
order, which guarantees better results [in step (i) no shifts are required]. At 
that stage, the Kronecker canonical form of XB -A is “recognizable” and 
only stable transformations have been used. If the transformation matrices 
that bring M3 - A to its canonical form are needed, then one must proceed 
beyond the staircase form and perform transformations as described in 
Lemmas 3.2 and 3.3. These are Gaussian-type eliminuticms without @ding. 

The computation of this information may thus be very unstubk. 
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This problem arises when eigenvectors or eigenspaces related to an 
eigenvalue are needed. When dealing with the pencil Al- A, Golub and 
Wilkinson [4] suggest restarting Kublanovskaya’s algorithm on the original 
pencil for each eigenvalue, in order to obtain an orthogonal basis for each 
eigenspace independently. This demands a larger computational effort but 
avoids the unstable eliminations mentioned above. The same procedure can 
be applied to regular pencils using present algorithms. 

(c) When the eigenvalues cxi are not known, one can still perform step (i) 
of (b) and determine the structure at infinity of AB -A. In a following step, 
the QZ algorithm can be used on the deflated pencil xBr - AT This is a safer 
path than using QZ directly on the pencil hB - A. Indeed, if infinite 
elementary divisors of degree higher than 1 occur in the pencil, they will not 
be recognized as such [l]. Worse, if their degrees are rather high, the 
corresponding infinite eigenvalues may be recognized numerically as finite 
ones. 

EXAMPLE 2. Suppose M3 - A has one finite eigenvalue at h =20 and one 
elementary divisor of degree 15 at infinity: 

M-A-A 

0 
1 . 

. . 
. . -L . . 

1 0 

1 

-16 

Under perturbations of size E (i.e. ]]E](,/]]BJ],<.s and ]]F]]a/]]A]]2<~), the 
pencil h(B + E) - (A + F) may have perturbed eigenvalues as 

(A,‘]=e-1/15 for i=1,...,15 

x;,=20+ 77 with ]?I] < 20&. 

On a computer with machine precision E = lo-l5 the 
may thus wander off severely and become in a certain 

infinite eigenvalues 
sense more “finite” 

than the remaining eigenvalue hi6 =20. This phenomenon is inevitable when 
computing the eigenstructure of V(m -A) V-where U and V are arbitrary 
unitary matrices-with the QZ algorithm. With Algorithm 3.6, on the other 
hand, we can first try to identify the structure of this pencil at co. Even 
when thereby only part of the structure is recognized, this is of considerable 
help for the problem. 
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TABLE 1 
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Algorithm 3.1 Dual Algorithm 

(A-@i,i--Ai,i (A-Oi,i-Al.1 
u It 

step1 step 1 

@-a)[ 4 1 B1 ]-[ 43 

Sl 

(d) D ua a on 1 Zg ‘th m. We can obtain dual forms for both Algorithms 3.1 
and 3.6 by replacing column compressions with row compressions, and 
conversely, in each of these algorithms. This is pictured in Table 1 for 
Algorithm 3.1 and its dual form (compressions are indicated by arrows). In 
both cases the nullity of A,, r is computed and thus si = s1i. In the first case si 
eigenvalues at (Y are deflated at the bottom [as ,(A- r~)B,,i], while in the 
second case this is done at the top [as (X- a)B,,,]. The smaller pencils 

(A- o)R,,z-A,,, and (X - (~)&a - & are then processed as in the first 
step, etc. The sequence {ii} can again be proven to yield the structure at (Y 
through the same formulas as for the { si} sequence. Therefore s, = .$, and 
thus the resulting staircase shape in each of the two algorithms is the 
pertranspose of the other. The same holds for Algorithm 3.6 and its dual 
form. Although these dual algorithms do not bring in anything new when 
applied to regular pencils, they play an important role in the singular case. 

IV. SINGULAR PENCILS 

As shown in Sec. II, the structure of singular pencils is more complex 
than that of regular pencils because of the occurrence of an additional 
structure element: the Kronecker indices. In this section we demonstrate 
how with minor changes in Algorithms 3.1 and 3.6 we can cope witb singular 
pencils. 

For better understanding, let us again look at blocks in canonical form 
and examine the action of Algorithm 3.6 on each of them. The structure 
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are 

1 

-1 
A 

9 

h-a 

. . 

A -1 

(4.la, b) 

-1 
x . 

. . . . . . . . 
-1 x -1 

h_ 
(4.112, d) 

Algorithm 3.6 reacts on pencils with defective column rank in B,,,, the 
coefficient of A in the expansion XB,,, -A,,,. Thereby only (4.lb) and (4.ld) 
are detected. The dual algorithm reacts on the defective row rank of B, i and 
therefore retrieves (4.lb) and (4.1~). Thus, in both cases column or row 
Kronecker indices are carried along with the infinite elementary divisors. 
Algorithm 3.1 looks for defective column (row for the dual algorithm) rank in 
A l,l, the constant term in the expansion (A - a)B,, 1 -A,, 1. Again this algo- 
rithm suffers from the same disease, since column (row) indices are carried 
along together with the finite elementary divisors at (Y. 

These problems are to be expected, since both algorithms look for rank 
deficiency (in columns or rows) of a constant matrix, obtained from an 
expansion at the eigenvalue considered. For Kronecker blocks this matrix is 
nonsquare and thus rank-deficient (in columns or rows). (Some authors use 
this argument to say that any point in the complex plane is an eigenvalue of 
such a Kronecker block.) It appears now that previous algorithms, adapted 
for singular pencils, yield the required information together with the 
Kronecker indices. The only modification of Algorithm 3.6 required when 
dealing with singular pencils comes from the nonsquareness of the diagonal 
blocks & The rank compression of the block Ai results in a +,( of full row 
rank 1;, which may now be different from sj. 

ALGORITHM 4.1 

comment initialization ; 
j:=l;A,,,:=A; B,,,:=B; m,:=m; nl:=n; 
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step-j: comment compute the S.V.D. of the mj X nj matrix Bj,i ; 
cuZ2 SVD (Bj,,) result (U,, Z,, V,) column nullity (sj); 
if sj=O then begin l:=i--1; stop end; 
comment compress Bj,i to full column rank and partition ; 
[B[+l 1 O]:=Bi,jV,; [Ai+l ( Aj]:=Ai,jV,; 

comment also update and partition blocks in column j ; 

f ori=lstepluntili-ldo 
begin [‘/+I,, 1 Bj,i]:=Bj,iVb; [Aj+l,i 1 Af,i]:=Ai,iVb end; 

comment compute the S.V.D. of the mi X si matrix 4 ; 
cull SVD (AJ result (U,, Z,, V,) rank (rj); 
comment compress 4 to full row rank, permute and partition ; 

Bj+ 1,j+ 1 

I I 

0 

Bj+ 1,j 
:= PaU,*Bi+l; 

Aj+1,j+1 

[ I 
Aj+1,j 

: = PaU,*Ai+l; 
[ Ai.i 

:=PJJ,*A+ 
comment update ; 
m~+,:=mj-rj; ni+r:=nj-sj; j:=j+l; go to step _i 

Note that the stopping rule of the algorithm is when Bj,i has full column 

rank (then sj=O and Z=j--1). 
Hence we have constructed unitary matrices P and Q that reduce XB - A 

to the following form: 

where 

(1) Bz+1,1+1 has full column rank, 
(2) the + have full row rank ri (i = 1,. . . , Z), 
(3) the Bi,i _ 1 have full column rank si (i = 2,. . . , 1). 
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From this it clearly follows that (putting s,, i = 0) 

si - ri =e,>o for i=l,...,l 

ri - ‘i + 1 =dj>O for i=l,...,Z 

LEMMA 4.2. The pencil M-A is strictly equivalent to the pencil 

diag{AB~+,,,+,-A,+,,,+,,~“-A,}y where 

-11 
w-1 . 

XB,,-A,= . . (4.3) 

3 -11 

and 

Proof The proof is similar to those of Lemmas 3.2, 3.3 and 3.4. It is 
easy to check that in each of these steps the blocks &,i considered only need 
to have full row rank (instead of being invertible). This is also the reason for 
the new definition of the blocks 4 and Ji. These extensions make use of the 
left or right invertibility of the blocks considered [see (2.3)]. n 

PROPOSITION 4.3. The indices {ei} and { di} given by Algorithm 4.1 
completely determine the Kronecker column indices {Ed} and the infinite 
elementary divisors with their degrees { Si}. 

Proof. Using Lemma 4.2 on the form (4.2), we have that M3 -A is 
strictly equivalent to diag{XB~+,,,+,-A,+,,,+,,AB,-A,}. Since Bl+l,l+l has 
full column rank, the first pencil has no infinite elementary divisors and no 
Kronecker indices. Below, we show that by choosing appropriate permuta- 
tions, M” - 4, consists simply and solely of these two structure elements. 
This is proved inductively: 

In M3” -A,, there is a A under each - 1 and a - 1 to the right of each A. 
This is because 

(4.4) 
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From this pencil we extract 

(1) cZr infinite elementary divisors of degree I, 
(2) e, blocks &_ 1 with Kronecker column index I - 1 as follows. 

We start with the d, = q ones of .I1 and separate, with permutations only (by 
extracting a 1 from each Ji and KJ dl blocks of the type 

I 
-1 
A . 

. . 
. . 

. . 

x -1 

By doing this, each r, and si in (4.4) decreases by q, and thus rr becomes zero. 
Hence in AK,_ 1 there are e, = (s, - rJ A’s remaining. With these we analo- 
gously separate e, blocks of the type 

1 
x -1 

* * . . Z-l. 
. . 

x -1 11 

After these two steps Jr and Kl_ I have disappeared in hB,, -A,, and the 
remaining block sizes ri and si are lowered by s,. The inequalities (4.4) are 
preserved, as well as the differences e, = sj - rj and di = ri - sj+ 1. We thus 
have a pencil ABi -A,!, satisfying (4.4), but with 1 reduced by one. This 
completes the induction step. n 

COROLLARY 4.4. The indices {e,li=l,..., Z} and {dili=l ,..., Z} de- 
termine the following structure elements of the pencil M - A: 

(i) there are di infinite elementary divisors of degree i (i = 1,. . . , I), 
(ii) thereareei KroneckerbIocksL,_,ofsizei-l(i=l,...,Z). n 

EXAMPLE 3. Algorithm 4.1 applied to Example 1 transforms the matrix 
into the staircase form shown in Fig. 4. Here the bottom right matrix has 
already the form AB, -A,, and the indices are d, = 1, d, = 1, da=O; e, =2, 
e2 = 1, ea = 1. By Corollary 4.4 we thus have 8, = 1, 8, = 2; q = 0, e2 = 0, .sg = 1, 
Eq==2. 
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The recovery of the original blocks in M?,, -A,, as explained in Proposi- 
tion 4.3, is also indicated in Fig. 4. 

The idea of the algorithm is easily seen in this example. Here we have 
separated recursively the structure elements whose coefficient of A has 
defective column rank from the others. The dual algorithm has a similar 
effect by acting on the row rank of the coefficient of X. Thereby the row 
Kronecker indices are detected together with the structure at infinity [the 
blocks (4.1~) and (4.lb) indeed have deficient row rank in the coefficient of 
A]. The duality of the algorithm thus lies in the interchange of row and 
column compressions: 

ALGORITHM 4.5. 

comment initialization ; 

j:=l; Ar,r:=A; &:=B; m,:=m; nl:=n; 

step _j : comment compute the S.V.D. of the mi X nj matrix Bl,i ; 
call SVD (BJ result (U,,Z,,V,) nullity (Q; 
if ii = 0 then begin k : = i - 1; stop end; 
comment compress B,,i to full row rank, permute and partition ; 

comment also update and partition blocks in row i ; 

“;:;; w::;;i;;+ [2] : = f’bU;Ai,l &; 

comment compute the S.V.D. of the si X ni matrix Ai ; 
call SVD (4) result (V,, Z,, V,) rank ($); 
comment compress 4 to full column rank and partition ; 

[ Bj+r,i 1 Bj+~,i+~ ]:=Bj+J5; [ Ai+~,i 1 $+I,~+I ]:=A,+,v,; 

[ A,,j 1 0 ]:=A&; 

comment update; mj+l:=mi-ij; ni+l:=n/-?i; f:=j+l; go to 

step _ i; 

This “dual” algorithm reduces XB - A to the following form (the staircase 
shape is “pertransposed” to the one resulting from the actual algorithm): 

P(AB-A)Q= [_I 
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-A,,1 0 . . . 0 0 1 
m2.rA2.1 -A,,2 *** 0 0 I 

1 ?&,,-A,,, ABk,2-Ak,2 ” * -A,,, 0 
1 

X X **’ x hBk+l,k+l-Ak+l,k+l 
---7--J- 

,_I 

;, 

*a 

9 

’ %+I 

where 

(l) Bkl+l,k+l has full row rank, 
(2) the h,i blocks have full column rank ?i, 
(3) the Bi,i _ 1 blocks have full row rank ii. 

Hence relying on the duality between both results, we have 

COROLLARY 4.6. Algorithm 4.5 applied to a singular pencil AB- A 
determines its Kronecker row indices (qi) and infinite elementary divisors 
{S,} as follows: 

(i) there are di = (4 - ii+ 1) infinite elementay divisors of degree i (i = 
1 ,...,k) 

(ii) there are gi = ($ - +i) Kronecker blocks Li’_ 1 of size i - 1 (i = 1,. . . , k) 

Algorithms 4.1 and 4.5 together yield the following result. 

PROPOSITION 4.7. It is always possible to construct unitay transfm- 
tions that put an arbitrary pencil in the following foTn: 

P(AB-A)Q= 
-I- 

3 (4.6) 

where 

(i) xBr--Af is a square regular pencil containing the finite elementary 
divisors of B-A. 
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(ii) XB, -A, is a square regular pencil containing the infinite eleven- 
tuy divisors of hB- A. 

(iii) ?$-A,, and ME-A, are singular pencils containing the Kronecker 
row and column structure respectively. 

Proof. Observe that M3 -A is unitarily equivalent to (4.2). In this pencil 
the top block US,+ r,r+ 1 - A,, i,r+ i has only two structure elements: 
Kronecker row indices and finite elementary divisors. Only the first of these 
two elements has defective rou, rank in the coefficient of A [see (4.1~) and 
(4.la)] and will thus be detected by Algorithm 4.5. Applying this algorithm 
thus yields the separation of these two structure elements: 

Similarly G-A” is transformed by Algorithm 4.5 to 

in which the infinite elementary divisors are separated from the remaining 
AB, -A,. Inserting (4.7) and (4.8) in (4.2), we obtain the desired result. n 

Ih4ARKS. 

(a) Algorithms 4.1 and 4.5 do not only perform the separation between 
the four structure elements, as shown in (4.6), but they also yield some 
internal information. Indeed, in (4.7) UT -A.,, will have a specific shape 
yielding the Kronecker row indices. The “residual’ Mr - Ar has no special 
feature other than the invertibility of BP Since G-A” already gives the 
Kronecker column indices and the infinite elementary divisors, the reduction 
(4.8) can be omitted. At that stage, the only structure element to be 
recovered is the Jordan information of the pencil hBr- AT This problem is 
discussed in a previous section. 

(b) On the other hand, when a_decomposition as in (4.6) is indeed 
required, the reduction (4.8) of hB - A must also be performed. When using 
Algorithm 4.5 for that purpose, the extracted part AB, - A, is maintained 
in staircase form, but the residual AB, -A, is not. Algorithm 4.1 can then be 
used again on M$ -A, in order to “rebuild” its staircase. It is possible to 
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avoid this by adapting Algorithm 4.5. This is omitted here in the interests of 
brevity. 

(c) When starting with A!gori’,thm 4.5 on hB-A and next applying 
Algorithm 4.1 to the pencils U-A and XBk+l,k+l-Ak+l,k+l [see (4.5)], we 
obtain similarly 

i(AB-A)0 = -w,I^-> (4.9) 

whereby the regular pencils AB, - A, and U$- Af still remain in the 

middle but are interchanged. 
(d) The remarks above yield that the form (4.6) [or (4.9)] can be obtained 

by unitary equivalence transformations only, and that thereby one can ask 
for all the structure blocks to be in their staircase form. This reflects the 
numerical (backward) stability of the proposed algorithms for the determina- 
tion of the structure of an arbitrary pencil. 

(e) Algorithm 3.1 and its dual form can both be adapted to singular 
pencils also. This again yields algorithms to compute the Kronecker structure 
(row and column) together with finite elementary divisors at the considered 
point (Y. Hence when an expansion is used at a point which is not an 
eigenvalue of the pencil, these algorithms only extract the Kronecker column 
or row structure. They are not given here, in the interests of brevity. 
Moreover, from a numerical point of view, Algorithms 4.1 and 4.5 should be 
preferred because of the absence of any shift (Y. 

V. APPLICATIONS 

a. 

The eigenvalue problem of a square pencil UI - A is currently regarded 
as “ill posed” when det (W - A) -0 [6, 71. The present algorithms, though, 
show that it is always possible (even in the nonsquare case) to reduce such 
pencils to the form (4.6) and thus extract a “regular part” hB, - A, with 
nonvanishing determinant. This regular part contains, in our language, the 
finite and infinite elementary divisors of the pencil. 
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We do not want to emphasize thereby that this part of the problem is 
well conditioned. On the contrary, it is easy to show that almost any 
perturbation of a square singular pencil will turn this pencil to a regular one. 
The Kronecker indices thus disappear and induce additional eigenvalues 
which can be anywhere in the complex plane, except that for real pencils the 
complex eigenvalues will of course be paired. Hence, generically (i.e. for 
random coefficient matrices) a square pencil is regular. 

EXAMPLE 4. The following pencil has Kronecker indices &r= 1 and 

A possible perturbation of this pencil is e.g. (with 
machine precision) 

x -1 
EJ+&s -1 

1 
E2 x -1 * 

CO El A 
1 

/ei] smaller than E, the 

(5.2) 

Its determinant is &,A4 + &,A3 + &,A2 + sib + ea. Up to a scalar factor we can 
thus construct any polynomial and also any characteristic roots (infinity also, 
by choosing s4 = 0). 

When applying the QZ algorithm to this pencil (or to any unitarily 
equivalent pencil), we would end up with a pencil (where x represents an 
arbitrary complex number) [6] 

where one of the ratios ai/ bi has both a, and bi close to 0 and is thus ill 
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posed. This signifies [7j that the pencil considered is very near to a singular 
one (e.g. because ai and bi are equal to 0). From then on, all other ratios 
should be distrusted, since they may correspond to “fake” eigenvahres. In 
the pencil (5.1) there are indeed three such eigenvalues X = 0. These “fake” 
eigenvalues belong to Kronecker blocks with size larger than zero (see 
Example 4). Moreover, when a square singular pencil has a regular part, the 
QZ algorithm is not able to distinguish “regular” eigenvalues from “fake” 
ones. Worse, it is possible that none of the ratios corresponds to a “regular” 
eigenvalue, as shown in this example: 

EXAMPLE 5. The pencil 

(5.4) 

is in the form (5.3) and has apparent eigenvalues O/l, O/O, O/O and O/l. 

Another drawback of the QZ algorithm is that the pencil treated can be 
close to a singular one even without the occurrence of such ill-conditioned 
ratios. 

EXAMPLE 6. The pencil 

has four eigenvalues X = 0, and the diagonal elements bi are all considerably 
larger than E, the machine precision (take E = 10-16; then &I/* = 10e4). Yet, 
the perturbed pencil 



136 P. VAN DOOREN 

is strictly equivalent (by a row transformation) to 

‘;.“Tz---;‘- 0 d4 -1 lx 0 cl/4 -1 

0 $/4 ’ 
(5.6) 

which has Kronecker indices ei = 3 and vi = 0. 
We believe that the algorithms presented here can be of considerable 

help when dealing with such examples. Indeed, Algorithms 4.1 and 4.5 
would at least detect the existence of a Kronecker structure when working 
on the pencils (5.1), (5.4) and (5.6) or on any s-perturbation of each of these 
pencils. On the other hand, the algorithms will not necessarily retrieve the 
exact Kronecker indices, because the algorithms are based on the recognition 
of the rank deficiency of certain blocks. The singular-value decomposition, 
used for this purpose, is known to be a reliable tool, since even when the 
original matrix is not singular, this algorithm tells the user if there is any 
singular matrix in an s-neighborhood of the original one. After (say) i - 1 
steps of our algorithm, though, rounding errors induced in previous steps 
may affect seriously the left-over pencil U?,,, - A,,i. The rank search of this 
part thus relies on previous computations. Experiments have shown that this 
effect is amplified when the “rank-carrying stairs” (by which we mean the 
diagonal and off-diagonal blocks with full row or column rank in our 
staircase form) have small singular values. In (5.1) e.g. these blocks are all 1 
and rounding errors will have no consequences, while in (5.6) some are s1j4 
and the index &I = 3 will not be retrieved. A detailed investigation of this 
phenomenon is in progress. 

In the rectungulur case the problem is very similar: for almost any 
perturbation most of the Kronecker structure disappears. This results from 
the fact that, generically, a nonsquare constant matrix has rank equal to its 
smallest dimension. Hence, when running Algorithm 4.5 on a “random” 
m x n pencil (with m > n) the following results are obtained. Let cx = m - n, 

and let the integers P and k be defined by n = (k - Z)CX + /3 (with 0 < P <a). 
Then all constructed stairs will be square and of size (Y ($ = ?i = CX) except for 
the last two stairs, for which C$ _ i = (Y, Fk _ 1 = p and & = /?, Fk = 0. The pencil 
will be completely processed after this. The structure of such a pencil then 
consists of: 

1 
s~_~-?~_~=(Y-/? row indices equal to k-2, 
& - $ = p row indices equal to k - 1. 

A similar result holds for the case m <n. Hence, generically nonsquare 
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pencils have either only column indices (when m<n) or only row indices 
(when m >n), and these indices are determined by the dimensions of the 
pencil only. Results in this vein were also obtained by Wilkinson [23] and 
wonham [24]. 

b. 
Recently [17-191 attention has been given to the eigenvalue problem 

associated with the polynomial matrix 

P(A) = PO + P,X + 

One common procedure is to “linearize” this matrix to the pencil 

h 

,[_ .I. :.Y :1’ 
*-- +P’h’. (5.7) 

*. 

Z 

- P, 

=AS-T. (5.6) 

2 

This pencil is regular when P(h) is regular [detP(A) #O] and has the same 
finite elementary divisors as P(h) [19], though the infinity structure can be 
quite different [16]. The current theory and algorithms for pencils can be 
used to reduce hS - T to a “minimal” pencil having the same structure as 
P(h) [16]. Thi s p rocedure also applies to arbitrary polynomial matrices and 
produces a “minimal” singular pencil with the same structure as P(A). These 
principles are based on the Smith-Macmillan degree theory [16, 141. 

C. 

A well-known problem in systems theory is the reuZiz&on of the “polar 
section” [ZO]: 

R,(h) = -!LL + . . . + __L% + R_, , 
(h-a)’ (X-c+ (A-4 (5-g) 

The problem is to find minimal constant matrices {A,, B,, C, } such that 

R,(A) = C&Z-A,)-??,. (5.10) 

Here the Jordan structure of A, reflects the polar structure of R,(h). A 
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nonminimal solution is given by [12]: 

I 
az I 

. . 
. . 

A= 

1 

0 

_ 0 > B= : 

Z 0 ’ 
ffZ Z 

c+_, . . . . . . R-1 1. (5.11) 

The extraction of a minimal realization from (5.11) can be viewed as the 
extraction of the Jordan structure at (Y from the pencil [20]: 

Our algorithms provide an efficient method for performing this extraction. 

d. 
A combination of the previous two applications leads to the construction 

of a singular pencil having the same structure (i.e. finite structure, infinite 
structure and Kronecker indices) as a general rational matrix [16]. This can 
be viewed as a valid generalization of the eigenvalue problem to rational 
matrices. A perturbation analysis for rational matrices can e.g. easily be done 
through the study of this “strict equivalent pencil.” 

VI. CONCLUSION 

In this paper we have presented a set of algorithms for the computation 
of the Kronecker canonical form of an arbitrary pencil. By exclusively using 
unitary transformations, the backward stability of the algorithms is guaran- 
teed. Under such transformations we can obtain a “Schur type” decomposi- 
tion (see Proposition 4.7) revealing its Kronecker structure. Since the de- 
termination of the Kronecker canonical form of a pencil is an ill-conditioned 
problem, the backward stability of our algorithms does not guarantee that 
the computed structure indeed corresponds to the pencil that was originally 
processed: any small error may affect this structure. 

In each step of the algorithms we make in fact a specific choice: 
elements of smaller size than the machine accuracy are disregarded in order 
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to obtain minimum rank for each stair. This fixes part of the Kronecker 
structure we are evaluating. While, in general, there is really little justifica- 
tion for such a choice, it makes sense in several applications. In the 
applications of Sec. V.b and c, e.g., this results in lower-order models for a 
given transfer function [16,20]. Such small corrections are needed when one 
wants a “nongenerical result” such as a multiple eigenvalue at X= 60 (Sec. 
V.b) or any eigenvalue in the nonsquare case (Sec. V.c). For such applica- 
tions, the problem could be formulated as an optimization problem: one is 
looking for a structure which is as degenerate (nongenerical) as possible. A 
similar approach to the classical eigenvalue problem has been shown to 
improve the conditioning of the problem [22]. Such policies again can only 
be justified through their use in certain applications. 

Although the picture is still far from complete, we believe that the 
approach chosen in this paper will be helpful for understanding the nature of 
singular pencils. 

The author is grateful to Professor P. Dewilde of the University of Delft 
fm supervising the development of this work. Thanks are also due to Professor 
G. Golub and Professor J. H. Wilkinson for their helpful conment.s during the 
author’s visit at Stanford University. 
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