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The  Generalized  Eigenstructure  Problem 
in Linear  System  Theory 

I. PRELIMINARIES 

HROUGHOUT this paper we use  the  following nota- 
T t i o n  and conventions.  Uppercase is used for matrices 
and lowercase for vectors and both are defined over the 
field of complex  numbers 02 unless  otherwise stated. We 
use AT and A* for the transpose and conjugate transpose 
of A and diag{A,, A,, .  , A,}  denotes a  block diagonal 
matrix  whose  blocks Ai are not necessarily  square.  A 
constant polynomial or rational matrix is called regular 
when it is square and has a  nonzero determinant. It is 
called singular otherwise. The matrix norm 11 - 11 stands for 
both the Frobenius norm 11 - 11 and the spectral norm 
11 - 11 *, which are both invariant under unitary transforma- 
tions,  i.e., llUAVll= IIA 11 if U*U= I and V*V=I. The 
results stated in the text hold for both norms if not 
specifically  mentioned.  Sans  Serif is  used for vectorspaces. 
im A and kerA denote, respectively,  the  image and the 
kernel of A ;  AX is the image of X under A .  X + Y and 
X@Y are the sum and direct sum, respectively, of the 
spaces X and Y. The orthogonal complement of X based 
on the natural inner product in a given coordinate system, 
is denoted by X I. An invariant  subspace X of A satisfies 
AX C X  where c denotes the inclusion; a deflating sub- 
space X of a  regular  pencil A B-A satisfies dim(A X + BX) = 
dimX  where  dim stands for “dimension of.” It is easy to 
check that deflating subspaces generalize the concept of 
invariant subspaces to  arbitrary regular  pencils.’  System 
models of the type 

i T ( A ) x ( t ) =  U(A)u( t )  

A t ) =   V ( A ) x ( t ) +   W ( A ) u ( t )  
(1) 

where T(A), U(A), V( A), and W( A)  are polynomial 
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matrices in h and where T(A) is regular (i.e., det T(A)ZO), 
are briefly  denoted as {T(A), U(A), V(A), W(A)}. The veo 
tors u ( t ) ,   y ( t ) ,  and x ( t )  are, respectively, the input, out- 
put, and state of the polynomial  system (1); A can be the 
differential operator d /d t  or the advance operator z, de- 
pending  on  the type of equations described by (1). The 
transfer function and Vstem matrix of the system (1) are 
defined,  respectively, as (we use 2 when defining some 
thing in an equation) 

R ( h )  A V(A)T-’ (A)U(A)+W(A);  

Additional notation is explained in the text. 
In this paper we discuss numerical algorithms that 

compute  some structural elements of some  specific  system 
models (state-space model,  generalized state-space model, 
etc.) of a linear time-invariant system.  These structural 
elements are of basic  importance  in  most of the problems 
encountered in linear system theory and  their  computa- 
tion  can be viewed as a  “generalized eignenstructure prob- 
lem” [l]. This leads us to the analysis of these  system 
theoretic problems and of the algorithms that solve  them, 
using  methods and criteria that  are familiar from the 
“classical  eigenvalue  problem.” The numerical back- 
ground we  will  use  is  briefly surveyed in  Section I1 and is 
more  extensively treated in [2]-[4]. 

In the next three sections we discuss  the  computation of 
the structural elements  connected to state-space and gen- 
eralized state-space models.  Each of these structural e le  
ments  is  given  by the Kronecker canonical decomposition 
of an appropriate pencil AB - A : 

S ( X B - A ) T  

=diag{ L,,; e ,  LIS, LE; * e ,  LC, I - A N ,   A I - J }  (2) 

where  i) S and T are constant invertible row and column 
transformations; ii) L, is the (k + 1) X k bidiagonal pencil 

L ,  , -I , -I!  
k 

and iii) N is nilpotent and  both N and J are in Jordan 
canonical form. 
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Using this canonical form, we  call  the elementary di- 
visors of A I -  J the finite elementaly divisors of A B - A ,  the 
elementary  divisors of p I -  N the infinite elementary di- 
visors of AB - A ,  and the index sets { l , ,  e - , l,} and 
{ r l ,  - , rt} the left and  right  Kronecker  indexes of A B - A .  
The  Kronecker canonical from (2) can be  considered as 
the generalization of the Jordan canonical form of a 
pencil A I - A  (see [5 ]  for an extensive  discussion). 

From  a  numerical point of view  [6]  the computation of 
the canonical form (2) is not recommended because of the 
possible  bad conditioning of the transformations S and T, 
whence  numerical  stability  cannot  be ensured. Instead, 
using unitary transformations U and Y one can always 
reduce an arbitrary pencil AB-A to the  form 

U(AB-A)V 

AB, -A ,  0 0 
ABf -Af  0 * x x ABi -Ai 0 

* * X AB, : I  -A, 

(3) 
where  i) A B,  -A, and A B, -A,  are nonsquare  pencils  with 
only left and right null spaces,  respectively, and containing 
the  corresponding Kronecker  indexes of AB - A ;  and ii) 
A Bi -Ai  and A B, - Af are regular pencils  which  have  only 
infinite and finite elementary divisors, respectively,  which 
are those of AB-A.  

Furthermore, the form (3) can  be obtained with  a 
backward stable algorithm [6] which at the  same  time 
determines the Kronecker  indexes and the infinite elemen- 
tary divisors of AB - A through the fine structure obtained 
in AB,-A,, AB, -Ar ,  and ABj-Ai .  This algorithm, de- 
scribed in [6],  will be  referred to as the pencil  algorithm. 
The eigenstructure of ABf -A, (generalized  eigenvalues 
and eigenvectors)  can  be  computed in a stable way  using 
the QZ algorithm [7] which constructs unitary transforma- 
tions Q and Z that reduce a regular pencil-in this case 
AB, -A, -to a lower triangular form (see [9], [61] for 
more  details) 

The ratios A i  =aii /bii  are called the generalized  eigenual- 
ues of AB, - A, and the vectors xi satisfying ( A i  Bf - 
A, )xi = 0 are the corresponding generalized  eigenvectors. 

In the Sections 111, IV, and V we  show  how to use 
modifications of these  algorithms in order to compute 
several structural elements of state-space and generalized 
state-space models. In Section VI we take  a  look at linear 
systems  represented  by  polynomial or rational matrices. 
We  discuss  some  classical algorithms from  a  numerical 
point of  view and give alternative algorithms for comput- 
ing  the structural information contained in the  Smith and 
Smith-McMillan canonical forms. In the last section we 
give  a  brief  historical  review of the algorithms that lead to 
or are related to the ones mentioned  in  this paper. We 
also give  some general comments and conclusions. 

Most of the algorithms in this paper  rely  on  a  system 
theoretical background that is not completely elaborated 
here but adequate references are given  where  needed. 
Instead, we spend  more  time in discussing the numerical 
implications  and  difficulties  since  they are relatively un- 
known to researchers in ths  area. 

11. NUMERICAL BACKGROUND 

We  briefly  review concepts such as stability and condi- 
tioning  by  discussing  a  classical  matrix  problem that we 
will often use in the sequel.  We intentionally delete tedious 
detads and refer to the literature for a  more  rigorous 
discussion  when needed. Instead we focus on the ill-posed 
nature of the problem  because of the important role this 
plays in later sections. 

Let A be an arbitrary rn Xn matrix.  There  always  exist 
unitary transformations U and V such that 

P V  

where A,  and A ,  have, respectively, p independent  rows 
and columns (p is then clearly  the rank of A).  We  call 
such transformations a row and column  compression of the 
matrix A ,  respectively. A,  and A ,  are said to have full row 
rank, respectively, full column rank. These  decompositions 
can, e.g., be  computed  with the singular  value  decomposi- 
tion (SVD) of the matrix A [8]: 

A A U . 2 .  P (64  

where i) U and V are, respectively, m X m  and n Xn 
unitary matrices and ii) X is an m X n  matrix of the  form 

with ai being  positive and satisfying uI 2 - * > up >O. 
It may  be readily verified that U*A and A V  yield, 

respectively,  a  row  compression and a  column  compres- 
sion of A .  The  computation of such  a decomposition is, of 
course, subject to rounding errors. Denoting  computed 
quantities by an overbar, we generally  have, for some 
error matrix EA, that 

A 2 A + E ,  = UW*.  (7) 
_- - 

Hence, the computed decomposition does not correspond 
exactly to the given matrix A but rather to a “perturbed” 
version A +EA.  When  using the SVD  algorithm available 
in the literature [8], [9], this perturbation EA can be 
bounded by 

A 

I I E A I I < E A = n A * E ‘ I I A I I  (8) 

where E is  the  machine accuracy and HA is  some  poly- 
nomial  expression  in m and n [8]. Very often, this is a 
rough  upper  bound and  one may  prefer to replace IT, by 
some  statistical estimate e,, usua~y “fairly”  close to 1 
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(see,  e.g.,  [2],  [SI). The error EA induced by  this  algorithm 
-called “backward error ” because it is interpreted as an 
error on the  data-has thus roughly  the  same norm as the 
input error Ei performed  when  reading in the data A in 
the  computer.  When  such a bound exists for the perturba- 
tion EA induced  by a numerical  algorithm,  it is called 
backward stable [2]. 

Notice that backward stability does not warrant any 
bounds on the errors in the result U, Z, and This 
depends indeed on how perturbations on the data (namely, 
EA) effect  the  resulting  decomposition  (or  the  differences 
Eu = U -  U, E ,  = Z-Z, and E ,  = V- V) .  This is com- 
mody measured  by  the condition .[f,(A)] of the com- 
puted object X = f , ( A ) :  

- -  

A -  A -  A -  

d z ( A ,  x)=8 

(9) 
where d l ( . , . )  and d , ( . , . )  are distance functions in the 
appropriate spaces [ 101. When ~[f,(A)3 is infinite the 
problem of determining X from A is  called ill-posed (versus 
well-posed). When K [ ~ , ( A ) ]  is finite and “relatively  large” 
or “relatively  small” the problem is said to be badly 
conditioned and well conditioned, respectively. 

Notice that backward stability is a property of an 
algorithm while conditioning is  associated with a problem 
and the  specific data  for  that problem. The errors E, in 
the result  depend on both the stability of the  algorithm 
used and the conditioning of the  specific  problem. A 
“good” algorithm therefore is supposed to be  backward 
stable since  the  size of the errors E, in the result is then 
mainly  affected  by  the condition of the  problem, not by 
the algorithm. An unstable algorithm, on the other hand, 
may  yield a large error E, even  when  the  problem is well 
conditioned. 

About  the  singular  values of any  matrix A it is  known 
that [ 111 

KC f,(-4)] = 1. (10) 

Hence,  from (7) the diagonal  elements 4 of are EA-close 
to  the  exact ai. Generically, i.e., for random EA, all  the 
diagonal  elements of 2 will be perturbed and the rank of 
Z then  equals k A &(my n).  Yet if in (6), p< k,  then the 
( k -  p )  last diagonal  elements of X are €,-small. 

The number of > e A  is called the numericai  rank or 
€,-rank of A (more sophisticated definitions of €-rank are 
given in [12],  [13D. When putting the  €,-small  singular 
values  equal to zero,  one obtains thus an cA-close matrix 
A^ whose rank is the numerical rank of A .  

While in  general there may  be little justification for 
putting the  cA-srnall  singular  values  equal to zero,  it is 
indeed a sound  choice in several  applications. A typical 
example is the determination of im A and ker A,  which, 
e.g., plays a fundamental role in least-squares solutions of 
the equation A x =  b [ 141. Notice that orthonormal bases 
for im A and kerA are given  by  the  first p columns of U, 
respectively,  the last ( n -  p )  columns of V in (6). The 

- 

condition of im A and ker A is thus connected to the 
sensitivity of the transformation matrices U and V of the 
SVD. Consider, for example,  the computation of i m A  
(where we assume m > n ) .  As distance function between 
two  spaces X and Y we use the gap y(X,Y) 11 Px - Py 11 
where P. is  the orthogonal projector on the  indexed  space. 
If A has ful l  rank n, then 

K[imA] =o,’ 

as illustrated by the  following  example (al = 1, a, = a  < 1): 

with a A d m  , c a/Z,  s A S/Z .  The second basis 
vector of im A is rotated in im over an angle 8, where 
sin 8=s, and one may  check that y(im zim A )  = s whence 
(9) indeed  converges  to 

K[imA]=a-’=fJ , - ’ .  

In other words, the smallest singular value a, of A says 
how  sensitive im A is to perturbations in A .  When a, tends 
to zero  the condition of im A gets  infinitely  large.  When 
rank ( A )  < n < m, im A is therefore ill-posed. Arbitrarily 
small perturbations can even  change  the  dimension of 
im A as is seen in  the  following  example (al = 1, a, = a ,  
0, = 0): 

Lo o O J  
A &perturbation of the (3, 3>element in A causes im 2 to 
have  dimension  three. Therefore, y(im xim A ) =  1 no 
matter how  small 6 is, and K[im A ] =  03. Yet,  when re- 
stricting us to  those EA such that p = rank( A )  = rank( A + 
EA), then ~,[im A]  becomes finite. Indeed, this “restricted” 
condition number equals [4] 

A 

K,[imA] 2 lim sup 
y(im(A + E A ) , h A )  

8-30 IIE,4112=8 6 
rank(A+E,)=p 

=a,-? (12) 

This is,  e.g., obtained by 6 perturbing the  (3,  2)-element in 
A .  We are then  indeed in the same situation as in the 
previous  example. The smallest  singular  value of A which 
is not zero  says thus how sensitive im A is to perturbations 
in A preserving its rank p;  im A is thus well conditioned in 
the restricted  sense if all its singular  values are either 
€-small or close to 1. Then the  €-rank p of A is  well defined 
and KJim A] = 1 according to (12). 
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Numerically this reflects  the fact that EA-small  singular 
values  should  be put equal to zero in order  to  have  a 
“robust”  numerical  definition of im A .  Indeed, in practi- 
cal computations one cannot distinguish  between  -small 
and zero  singular  values  [see  (6)-(8)] and the  determina- 
tion of im A might  be  ill-posed  or will be at least very 
badly  posed  [see  (1 l)] when such  pathologically  small 
singular  values  occur. Fixing the rank such that the smal- 
lest  singular  value up is  sigmficantly  larger  than c A  makes 
~ , [ im  A ]  well bounded. In case p would  have  been  the 
exact rank of A ,  the computed  im 2 would  be  “close” to 
the  real  im  A;  in  case  rank A was not equal  to p it  would 
be impossible to compute  a  reasonable  approximation of 
im A with  a  computer  using eprecision. 

The above  analysis  was  given to justify in a certain 
sense the computation of an “nongeneric”  result  for  the 
system  theoretic  problems  considered  hereafter.  Since 
arbitrarily  small  perturbations  change this result  to  a 
“generic”  one, and therefore  cause  drastic  changes in this 
result,  the  related  problem is ill-posed  (compare to the 
above  example  where A has defective  rank). In such  a 
case,  computed  results  only  make  sense if they are “cho- 
sen”  to  be  nongeneric. If the  choice  happens to be correct, 
the  error of the  computed  result  can  eventually  be 
bounded;  otherwise  this  is  impossible  because of the  finite 
precision of the  computer. In some  applications we will 
see that nongeneric  results  yield  useful  information  even 
when  the data were  generic but close  to  nongeneric  data. 
Similar  observations  have  been  made in the  numericai 
literature  for  possibly  ill-posed  problems  such  as  the  com- 
putation of multiple roots, generalized  inverses, Jordan 
form,  Kronecker  form,  least-squares  solution,  etc.  (see [3], 
[15],  [6],  [14]), and successful  algorithms  were  derived 
using  these  principles  (see  [15],  [6],  [16],  [3]). 

Unitary  transformations  certainly  deserve  some  prefer- 
ence in the development of numerically  stable  algorithms 
and are extensively  used in this  paper.  Exceptions  have  to 
be  made,  however,  for  cases  where a special  structure is 
apparent  in  the data. When, e g ,  the  elements of a matrix 
vary  sigmficantly in size, a “preconditioning” [64] or “bal- 
ancing”  [8]  might  be  recommended first, in order to 
neutralize  a  possible bad scaling of the variables  involved 
(see  also 1461). In the case of sparse  matrices one might 
prefer  to  use  stable  elementary  transformations  since  they 
are more  likely  to  preserve  sparsity and they  also  save 
computing  time. In some  special cases, such as, e.g., 
canonical  forms,  a  completely  different-and  probably 
better-approach  may be found because of the special 
structure of the data. 

111. C ~ N T R O L L A B I L ~  AND OBSERVABILITY 

In several  applications  a  linear  time-invariant  system  is 
described  by  a  state-space  realization 

{ X I n - A ~ n , B n ~ y C ~ n y D ~ ~ ( X ) }  (13) 

where A ,  B, and C are constant and D(A)  is polynomial 
(the  indexes  here denote the dimensions of each  matrix). 

A .  Controllable  and  Unobservable  Subspaces 

The controllable  subspace C ( A ,  B )  and the unobsemable 
subspace a ( A ,  C )  of the  system  (13) are subspaces of the 
state-space X defined,  respectively, as [ 171,  [18] 

C ( A , B )  2 inf{SIAScS;imBcS) 

- 
O ( A , C )  2 sup{SIAScS;SckerC}. (14a) 

The above infimum and supremum can be  proved  to  exist 
by standard techniques and  are also  equal  to [ 171 

C ( A , B ) = d [ B I   A B 1  I A “ - ’ B ] ;  
- - 

C 
CA 

b( A ,  C )  = ker 7 

1 7 1  
When C ( A ,  B )  = X  the ( A ,  B)-pair  is  called controllable; 
when b( A ,  C ) =  (0) the ( A ,  C)-pair is  called obsewuble. 
When  both  controllability and observability are satisfied 
the system  (13)  is  called irreducible or minimal. Note that 
generically  (13)  is  indeed  irreducible (see, e.g.,  [17]). If, 
on the other hand,  dim C ( A ,  B )  2 c < n and/or 
dimb(A, C )  2 O>O, then  these  two  spaces  play  a  funda- 
mental  role in the state-space structure of the system (13) 

Let the  last c columns of the  unitary  matrix T span 
C ( A ,  B ) ;  then  after  the  state-space  transformation T, we 
have that C(T - ‘AT, T - ‘ B )  is displayed  as 

(see,  e.g., [W, 1181). 

4 e l  
and (see [ 171) 

(15) 

where ( A c ,  B,) is  controllable.  The  eigenvalues of A ,  are 
called  uncontrollable  modes or also input  decoupling  zeros 
[ 181, [ 191. A dual  result  holds for b ( A ,  C ) .  Let the first 5 
columns of a  unitary  matrix T span a ( A ,  C ) .  Then after 
the state-space transformation T we have that 
O( T - ‘AT, C T )  is  displayed as 
- 

i,[ ;] 
and (see [17D 

, XZ, -A, j * 1  
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where (A,,,  C,,) is  observable. The eigenvalues of A ,  are 
called the unobservable  modes  or also output decoupling 
zeros of the (A,  C)-pair [18], [ 191. 

Because of the duality of both problems (the decom- 
positions (15) and (16) are  one another’s conjugate trans- 
pose) we only  focus  on the computation of C( A ,  B). Let 
U, be a unitary transformation compressing  the  rows of B 
and let p1 be the rank of B; then A,, B,, X,, Y,, and 2, are 
matrices of appropriate dimension  defined  by 

u u  

where Z ,  has  full  row rank pl. Notice that a state-space 
transformation of the type 

applied to (17), will only  effect A,, B,, and X,. If B, has 
neither zero rank nor full  row rank, then we can  use U2 to 
compress  the  rows of B, and repeat a partitioning of the 
type (17) on U,*A,U2 and U;B,. Algorithm 1 continues 
this recursion until a matrix Bk is obtained with either 
zero rank ( P k  = 0) or full  row rank ( T ~  =O). This algorithm 
can be viewed as a stabilized  version of Rosenbrock‘s 
minimal realization procedure (see also the  Conclusion). 

Algorithm 1 

comment initialization; 

c: = O ;  T =In; A,: = A ;  Bo: =B; j: = 1; 

step j: comment construct a unitary transformation 
to  compress  the  rows of Bj- , as follows (pi and 
3 are defined  by  the  compression); 

- 

comment transform and partition analogously 
Aj- , .  and rename obtained blocks as follows; 

v u  
7 Pj  

comment update; 

T : = T [ q - ] ;  c :=c+p j ;  

exit 1: 
exit-2: - 

j :=j+l ;  goto step j ;  - 
comment k is the number of full rank “stairs” on 
ending of the algorithm; 
k:=j-I; C:=rk; c:=n-C; stop; 
k: =j; 2,: =Bk; Y k :  =A,; 2 =o; C :  =?Z; Stop 

V V V  

Note that we allow T and c to be  replaced by their new 
value in the  recursion. The state-space transformation T 
constructed by this  algorithm  reduces the pencil [ A I  - A I B] 
to the form (at exit 1 with &+ , = 0) - - 

1 I 
I 

(18) 

If 7 k  =O would have been  the stopping rule (exit 2), then 
the obtained decomposition  would be similar t r ( l8 )  but 
without the uncontrollable part. The Zi have  full  row rank 
by construction, whence 

[ A 4  -4 I B c ]  

in (18) has full  row rank for  any value of A. According to 
the Popov-Hautus test [I71 the pair (Ac ,  B,) is thus 
controllable and (18) is the required decomposition (15). 
Moreover,  one can check that the rank property of the Zi 
ensures that 

. j=l ; - . ,k- l  (19) 

whence the Kronecker  indexes of the  (Ac, Bc)-pair-and 
thus also of the (A, B)-pair-are  determined by the index 

Remarks:  Several remarks ought to be made about the 
above  algorithm  (see also [l], [21],  [46]). 

0 In its actual form the algorithm computes the state- 
space  transformation T that  reduces C ( A ,  B)  to 

C(T-!AT, T - ’ B )  = im [ :] and hence computes an 

orthonormal basis for C ( A ,  B ) ,  namely,  the last c columns 
of T. This is done implicitly by transforming [ A I - A  I B] 
to  the  “staircase form” (18), but its irrelevant elements 
(denoted by X )  are not computed. A simple  modifi&tion 
of the  algorithm will also compute these  elements if 
required, but this  was left out in the interests of brevity. 

0 The numerical stability of the algorithm can be 
proved. The key idea in the proof is that each unitary 
transformation V, can be  implemented in a (backward) 
numerically stable way  [2]. A sequence of such transfor- 
mations is also  backward stable because  the norm of each 
transformation uj equals 1 (the choice of unitary transfor- 
mations is  thus of basic  importance). For more details we 
refer to [ 13.  We then have that the right-hand side of  (18) 
is the  exact  decomposition of a slightly perturbed pencil 

set { P i }  (see 161, [VI). 
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with 

Moreover,  is  nearly  unitary  (although not close  to T ) ,  
and its  last c columns  form  a  nearly  orthonormal  basis for 
C( A, E) [ 1 I, P I .  

0 Numerically,  the ( A ,  B)-pair  is only known up to an 
uncertainty  region  depending - -  on the  machine  accuracy e. 
If in that region  there  is an ( A ,  B)-pair  with  uncontrolla- 
ble - -  modes  (thus, E f O )  it  makes  much  sense  to  accept 
( A ,  B )  to  be the “true”  value of ( A ,  B )  since any of the 
e-neighbors of ( A ,  B )  would at least  have C modes that are 
“hardly”  controllable.  Any  attempt, e.g., to move  these 
“e-controllable”  modes  by  feedback  would  indeed  req-aire 
a feedback  matrix F of approximate norm 1/e!  Moreover, 
when  accepting this nongeneric  result, i.e.,  when  neglect- 
ing  €-small  singular  values in the compressions of Algo- 
rithm l, the  resulting  decomposition (IS) can  be well 
defined. This is illustrated  by  the  simple  example 

- -  

where C ( A ,  B )  = im . For any  e-perturbation (x E) 
preserving  the  dimension of the - -  controllable  subspace we 
have that y(C(A, B ) ,  - -  C ( A ,  B ) )  % e. Indeed, since 
dimC(A, - -  B)=d imC(A,  B ) = l  we have C ( A ,  B)=imB 
and C ( A ,  B )  = im E. Moreover, im B is  well  conditioned 
according  to (1  1) since its  unique  singular  value is 1. The 
transformation T reducing (21) to its  staircase form is also 
well conditioned  since  its  two  columns are spanned by 
im B and im B, respectively. In general, C( A ,   B )  will be 
well conditioned in this restricted sense (of preserving  the 
dimension of the  controllable  subspace) if in Algorithm 1 
the im Bj are well conditioned  in that sense,  i.e., if the 
“nonzero”  singular  values of the Bi are close  to 1. Indeed, 
im Bi- determines  the  span of the  last pi columns of V,  
for j =  1 , - - - , k and together  these  determine the span of 
the last c columns of T, hence also C ( A ,  B) .  

0 We  finally  stress  the  importance of working  directly 
on the ( A ,  B)-pair  instead of on the  controllability  matrix 

[:I 

cni[B A 3  ... ~ n - 1 ~  1 
or even  the  “infinite  controllabihty  matrix”  when A has 
eigenvalues  bounded  by 1 (see,  e.g., [20D 

Cm = [ B A B  A ~ B  . - -  1. A 

For the following  example, 

both C, and C, have one singular value of the order of 
€ ‘ I 2  and one of the  order of E, which  suggests that some 
€-perturbation of (22) might  yield dimC( A ,  B )  = 1. Yet, 
one can prove that this  requires  perturbations in A and B 
of the  order of e’ /2!  This shows that arbitrary E- 

perturbations of C,, and Cm (e.g., those making them 
singular)  cannot  be  induced  by  appropriate  €-perturbations 
of A and B because of the  specific  structure of C,, and C,. 
Therefore,  it  is important that an algorithm  evaluating 
C ( A ,  B )  respects  this  structure  which  is, e.g., done  by 
directly  working on the ( A ,  B)-pair. 

B. Irreducible Realization and Kalman Decomposition 

- -  

Suppose  the  system (13)  is not irreducible and one 
wants an irreducible  state-space  model  having the same 
transfer  function as (13). This can be done in two steps 
using  Algorithm 1 [21]. Let  the  state-space  transformation 
T, satisfy (15). Then applying  it  to  the  system  matrix of 
(13) we obtain 

(23) 

The system {AI ,  -Ac,  B,, C,, D(A) )  is now  controllable 
and has  the  same  transfer  function as (13). Let To now be 
a  state-space  transformation  extracting  the  unobservable 
part of the (A , ,  C,)-pair as in (16); then  with 

we have 

The system {XI,, -A,,,  B,,, C,,, D(A)}  is now controlla- 
ble and observable,  hence  irreducible, and has the same 
transfer  function as (13) (see, e.g.,  [19]). Notice that the 
decomposition (24) yielding  this  irreducible  system  can  be 
obtained  by  unitary  state-space  transformations on the 
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original system. Therefore, one can again  ensure that it 
can be obtained in a backward stable way. This means 
that the computed  decomposition (24) holds for d e  slightly 
perturbed matrices A, B, C and a nearly unitary matrix T 
( D ( A )  is unaffected)  where 

- - -  

IIx-XII < E ,  = II,-E.IIXII forX=A, B ,  C .  (25) 

The Kalman  decomposition [ 171, [ 181 displays the  four 
fundamental parts of an  arbitrary state-space  system (13). 
Let the state-space X be  decomposed into the linearly 
independent subspaces Xc,, Xc6, X,,, and X,, defined  by 
(n denoting the  intersection) 

A 

i) X,, A C(A, B)nB(A,C) 

ii) X~,CBX~,  O ( A ,  C )  

iii) X,,CBX,, A C ( A ,  B )  

iv) x ~ ~ ~ ( x ~ ~ c B x ~ ~ c B x ~ ~ )  L X (26) 

and let c0, G, coy and Co denote their respective  dimen- 
sions.  When  choosing a coordinate system in which Xc, is 
spanned by  the first EO unit  vectors, Xz, by the next 20 
ones  etc.,  then the corresponding state-space realization 
{AI, -At, B,,C,, D(A)}  has the following  form  (see,  e.g., 
181): 

- 
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R(A)  when P(A) is regular and irreducible [26], the 
pole/zero structure, and the  left and right null space 
structure of R(A)  when P(h)  is irreducible [23],  [25]  (a 
discussion of this last property is postponed  to  Section V). 

A. Sqremal (A, B)-Znvariant  Subspace in ker C 

Let us first  consider D=O (i.e., R(A) strictly  proper), 
The subspace W, is den  called an (A, B)-invariant  subspace 
in ker C if there  exists a feedback matrix F such that 
V, = a ( A  + BF, C ) .  It is known that there  exists a unique 
(A, B)-invariant subspace v in ker C including  all  others. 
It is therefore  called  the supremal (A, B)-inuariant  subspace 
in ker C (see  [17],  [23]). Its computation can be obtained 
as follows.  We  show  constructively that there exists a 
unitary state-space transformation T that transforms the 
system 

(AI, - A ,  BY C,O} (29) 
to d e  form 

L - L - 1  A I , - T - ‘ A T  T - ~ B  

- - A - _ - _ _ _ - - _ _ _ _ _ _ _  1 A1~it~~ 1 AIsXA,,  I g 1 
- c s o  

- 

It can be  proved that, in general,  the  state-space transfor- 
mation T transforming {AI, -A ,  B, C, D ( A ) }  to a decom- 
position of the type (27), cannot  be chosen unitary (see A 

[22] for  an “optimal” T ) ,  while  the  decomposition (24) 
can be obtained by a unitary state-space transformation. 
If one is only interested in computing an irreducible 

preferable (both for the  numerical stability as for the where imck cim Dk and the matrix 
transformation, the earlier  decomposition (24)  is  therefore 

- I - Yk - 

- - 

- - (304 

number of computations). 

IV. SYSTEM MATRIX OF A PROPER TRANSFER 
FUNCTION 

has  full  column rank for all A .  Since imC, cim &, the 

where 0: is the Moore-Penrose  inverse of Dk [14]. 
Applying  the  feedback 8 A [jl 01 in  the coordinate 

Let ‘mn7 Dmp} be a system With equation Dk$, = -C ,  has the solution & -D,‘Ck 
“proper” transfer funchon R(A)  (i.e., R(m) = D is bounded 
[42]). The eigenstructure of its  system  matrix 

(28)  system of  (30a)  we obtain 

yields information such as the supremal (A, B)-invariant 
subspace c/ in ker C and the supremal ( A ,  B )  - 
controllability subspace I? in  ker C when D =O [ 17, [23], 
the invariant zeros of P( A)  [ 191,  [24], the  factorizability of 1 0 
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Because of the full column rank of (30b), the (A,,,  Cs0)- 
pair is observable (Popov-Hautus test [ 17). Hence, Vi, = 

im [ I ; ]  is  the  unobservable space of (31). Moreover, no 
feedback can affect (30b) in (30a) and thus neither  the 
observability of the (A,,,  C,,)-pair,  whence Vk =vt. In the 
original coordinate system 0 is spanned by the wo first 

columns Of T since O= T -  im [ I ; ] .  The subsystems 

{AIso -A,,, ~,,,C,,,O} and {AIwo -A,,, B,,,C,,,O} are 
sometimes  called  the strongly obseroabh and weak&  ob- 
servable part of the system,  respectively (see [27], [28] for 
an extensive  discussion).  Algorithm 2 will be  shown to 
construct the  state-space transformation T in  (30a)  recur- 

comment compress  the  columns of c-l with 
(8 0, =O then of course c- = q- 

[0 $1 :=c-l%; ifpj=Othengutoexit 1; 
*- - 
vj PJ 

comment update T and stop if c-l has full 
column rank; 

T :  = T-diag{ 5, V,, Z6. } ; 
I - 1  

pJ:=pj+uJ; SJ:=8J-*+7j; 

if vi = 0 then go to exit 2; 
comment update; 

- 

sively  by  implicitly reducing (29) to (30a). This algorithm 
can also be  viewed  as a stabilized  version of several 
algorithms  available in the system  theoretic literature (see 
the Conclusion). 

u u  
1 1  v. p .  

Algorithm 2 

comment initialization: step j =  1 ; 
begin comment compress the columns of c 
with VI to SI with full  column rank p 1  and 
apply the state-space transformation V,; j :  =j+ 1; go to step j ;  

comment k is the number of steps  completed on 
ending of the algorithm; ;: :[ 2 =: 1 4:] :=[q-][A#][%]. - exit 1: k : = j - 1 ;  wo:=yk;  so:=n-wo; stop; 

0 Sl 

' exit 2: k:  =j; wo: = 0; so: =n;  stop - vvv - -  
v1 PI 

After the initializing step 1 we obtain the form 

T :  = V,; 6,: =o; & : = P I ;  j :  =2 

end; 
step j :  comment check if imq.- cim Dj-l and stop if - 

so; 
compress the rows Of OJ- 1 with This satisfies (3Oa),  (30b) with 6, = 0, Yl =SI. If  at this 

and transform simUltaneOusly the rows Of stage im C, cim Dl the algorithm stops.  Otherwise, an 

now prove  inductively that the from (30a),  (30b)  is  main- 
tained in each step of  Algorithm 2. Let  (30a), (30b) hold 
for k -  1 but im Ck-lI t im & - ] e  Then a state-space 

q.- 1; additional state-space tansformation is performed. We 

if? =O thengo  to exit 1; transformation Tk A diag{Vk, u k ,  I ~ , - , >  is performed: - 

I 

0 i -'k-l I -%1 I 

*k- 1 

D k -  1 

- - -  

- - -  
0 

0 

* I *  x I 
I 
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This is again of the form (30a) and rank condition (30b)  is 
satisfied  because s k  has full  column rank and because 
(30b)  holds for k -  1. This  recursion is continued until 

0 (exit 1) im C, cim Dk and 0 is then spanned by the 
vk first  columns of T; or 

0 (exit 2) vk = O  and G= (0). 
One orthese two situations must  occur after a finite 

number of steps  since vk decreases  each  time that 
im Ck Cim Dk. 

Remarks: 
e 0 is  computed  by constructing a unitary state-space 

transformation T that reduces the system (29) to the 
special  form (30a),  (30b), but irrelevant  elements in this 
form  are not  computed. Indeed, only Ai, Bj, q, and q. are 
carried  along  in  the  recursion but the algorithm can easily 
be  modified  in order to compute completely  the final form 
(30a) if requested. The feedback matrix 

[ -D,'C, 1 01 

is easily  seen  to  be a minimum  norm  feedback 4 (both in 
Frobenius and spectral norm) satisfying vt = a(T -?a T+ 
T - 'Be). Since T is unitary, the feedback P A E -  T -' in 
the original coordinate system  has also minimum  norm 
for v = a ( A +  BF). Notice that in the construction of a 
basis for 0 we did not use any feedback operation since 
their  norm can be  very large (if 0: is large  in norm). 

0 Numerical  stability of Algorithm 2 can again  be 
proved  because of the choice of unitary state-space trans- 
formations (see [I]). We thus have that (30a)  holds  exactly 
but for slightly perturbed matrices A ,  By and c satisfying 

Ilx-Xll  < I I ; e - l l X l l ;  forX=A,B, C .  (33) 

Moreover,  the computed matrix T is nearly unitary and 
its first wo columns  form a nearly orthonormal basis for 
0( A, B, C ) .  Again  it  is known that generically 0 is (0) 
when m > p  and ker C when m < p ,  whence any different 
result for 0 is ill-posed [17]. Yet, in applications such as, 
e.g., disturbance decoupling [17], nongeneric  results do 
make  sense  numerically. Indeed, let Du(t) be an input 
disturbance to the  system (29); then it can  be  decoupled if 
im D C G  [11. In the w e  m > p  one  expects  generically 0 
to be (0) whence  nothing can be decoupled.  Yet if the 
computed G(A,  B, C )  is nonempty and contains im D the 
input noise Du(t)  can - - -  be decoupled for the slightly  per- 
turbed system {XI, - A ,  By C,O} and the  feedback P de- 
coupling Du( t )  In this perturbed system will also E -  

decouple, i.e.,  severely  lower in norm  the  influence  of, the 
disturbance Du(t)  in the true system (29). In the  case 
m < p  generically 0 = ker C and hence a disturbance with 
im D=ker C could  be  decoupled.  But a computed 

- -  

- - -  

- - -  

v(x E, c) smaller than ker C indicates that this  would 
require a feedback P of approximate norm I / €  for the 
true system (29). 

Nongeneric  results are thus meaningful since  they  yield 
relevant information about the system under some  uncer- 
tainty of the data (which  is unavoidable in the  computer). 
Moreover,  as  discussed in Section 11, nongeneric  results 
can be well conditioned in a restricted sense,  namely, if all 
the  compressions in Algorithm 2 are well conditioned in 
this sense. 
e Define A",, A A,, +BwoFl in (31) and let V be a 

unitary transformation compressing the columns of  Bs, 
to [KO 01. Then the input-space transformation V ap- 
plied to (31) gives 

It is clear that E,, can now be used for  an additional 
feedback operation in order to freely  assign part of the 
spectrum of the  weakly  observable part A",, and yet  keep 
it  decoupled  from the output. In how far this is possible  is 
determined  by  the controllable subspace C(A",,, E,,). The 
corresponding subspace 

of the  state-space X of (34) is  called  the suprernul (A, B)- 
contollability subspace in ker C. 6 is thus the largest 
( A ,  B)-invariant subspace that can be decoupled  from  the 
output and in  which, at the  same  time,  modes can be 
freely  assigned [ 171. The computation of C( A",,, E,,) using 
Algorithm 1 yields thus a basis for it but the construction 
of A",, requires a feedback operation which  may  be 
numerically  unstable. In Section IV-C we show how to 
circumvent  this  difficulty. 

B. Zeros of a  State-Space  System 

Suppose R(A)  is proper and let P(A), given in (28), be 
its system  matrix. The Smith  zeros of this  polynomial 
matrix are called the invariant zeros of the  system {AI, -A,  
By Cy D}. We  show  in the sequel  how  to compute these  in 
a numerically stable way.  If the system is not irreducible 
then its input and  output decoupling  zeros can be  com- 
puted using  Algorithm 1 and an irreducible  system 
{AIco -A,,, B,,, C,,, D }  can be obtained at the  same  time. 
The invariant zeros of the latter system are the finite 
McMillan zeros of R(A)  [19] or, also, the  transmission 
zeros of (28)  [24]. They can thus be computed  by  combin- 
ing  Algorithm 1 and  a method for computing invariant 
zeros. This method is conceptually  close to Silverman's 
structure algorithm [49] as modified by Moylan [50], al- 
though  these authors have a  different application in  mind. 
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Algorithm 3 

comment initialization; 

A,:=A; B, :=B;  C , : = C ;  D o : = D ;  
v , : = n ;  S o : = O ;  j : =  1; 

step j :  comment compress the rows of Dj- with and - 
transform simultaneously the rows  of q.-l; 

ifT=Othengotoexit - 1; 

c o y e n t  compress the columns of with 
Tyc,-l=q-l if9=0); 

[ 0  $1 :=c-lq; gpj=othengotoexit 1; 

ifvj = O  then go to exit 2; 
v -  

J J  

- 
v. p .  - 

comment update; 

p . : = p j + o j ;  J p s j - l + p j ;  

Pj { - - -  X * 1 Dj ' I ] : = [  I I ,  J J  1 vj { 

V j  Pj P 

j :  = j +  1 ; go ro step j ;  - 

exit 1: comment {XI ,  - A, B,  C,  D }  and {AInr- A,, - 
B,, C,, 0,) have the same invariant zeros; 

k :  = j -  1 ;  A, :  =A, ;  B,: =B,;  C,: =Ck; 
- 

- 
D,:=Dk; nr: = v k ;  m,: =T; p,:   =p;  

stop; 

zeros; 
k:  = j ;  n,: = O ;  stop 

exit 2: comment {AI, -A,  B ,  C, D }  has no invariant - 

v v v  
Step j of the above algorithm reduces the system  matrix of 
{ X I v j - ,  -Aj-], Bj- l ,  Cj-l, to the form 

where S, has full column rank p j .  Using as pivot, (35) 
can  be transformed by  unimodular row and column trans- 

t i o J  
and the systems  {AI-A,, Bk,Ck,  Dk} for k = j -  1, j have 
the same  Smith  zeros,  hence the same invariant zeros. 
Using (35) and (36) recursively we deduce that Algorithm 
3 constructs unitary transformations Q, and Q, such that 

Q f [ - y g ] [ % ]  

(37) 

where the $ have full  c o l u m n  rank. Hence, we have 

1 

L ; 0 1  

Note  that since D, has ful l  row rank m,, the system matrix 

(39) 

has no left null space. A "dual"  Algorithm 3* can now be 
defined by interchanging the role of rows and columns  in 
Algorithm 3 and would  yield  a  system matrix 

with the same  transmission  zeros as P(A)  but now with 0, 
of full  column rank. This dual algorithm consists  basically 
of Algorithm 3 running on P * ( h )  yielding P,!(A). When 
running this Algorithm 3* on P,(h) we obtain a  system 
matrix 

P,,(A) 2 [ -1 (41) 
- c r c  

with D,, square invertible (0, has full row rank to start 
with,  which  is not affected by  Algorithm 3*). Hence, 
Prc( A) is invertible and has the same  Smith  zeros as P( A). 
These are known to be the eigenvalues of 2 2 A,, - 
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B,,  Dr; ’C, as is  easily seen from 

[ ‘ 1  - B r $ . “ ] - P r c ( A ) = [ w . ] .  (42) 

Unfortunately, this may be an unstable transformation. It 
is preferable to use a unitary transformation Z com- 

pressing the rows of to E (which, of course, will be 

invertible): 

(43) 

It is easy  to  derive  from  (42) and (43) that B” is invertible 
and  that 

(AI-a)=i-’(AB”-A”). (44) 

Hence, Ag-2 cames the same information as Â  but can 
be obtained in a numerically stable way. The generalized 
eigenvalues of A i - 2  are all finite since B” is  invertible 
and can be computed using the  backward stable QZ 
algorithm.  Embedding (4)  in  (43)  gives ( k  A nrc) 

Z,Pr,( A)Z, A AB, -A,  

(45) 
where Z, and 2, are unitary and Ai =Aii /bi i  are the zeros 
of Prc(A). 

Remarks: 
0 Numerical stability of Algorithms 3 and 3* can be 

proved  again  because of the  use  of unitary transforma- 
tions.  Although the transformations do not preserve  the 
coefficient of A [ see  (37)],  only A ,  By   C,  and D in P(A)  are 
used in the algorithms.  Hence,  the transformations of the 
coefficient of A can be assumed to be exactly  computed  in 
the decomposition (37) since  they are never actually per- 
formed.  Therefore,  one can prove that (37) holds exactly 
for slightly perturbed matrices A,   B ,   Cy  and 5 satisfying 

- - -  

A similar  result  holds for the dual decomposition obtained 
by Algorithm 3*. Note that A ,  By C, and D are trans- 
formed as a compound  matrix  whence (4s, does not hold 
for X = A ,  By C, D separately. In the decomposition (45) 
the coefficient of A is effectively  transformed but because 
its rank is  thereby  preserved, one can still  prove that (45) 
holds  exactly for the perturbed matrices Xrc, gC, cc, and 
07, satisfying 

Together, (46) and (47) say that the computed zeros 
Ai = a i i / b . .  are the exact  zeros of the perturbed system 
{AI, - A ,   B ,   C y   D }  with 

- J L  - - 

0 Remarks about restricted conditioning for zeros of a 
system can only be made with a specific application in 
mind. We  will  see  how  they are connected to the supremal 
( A ,  B)-controllability subspace in ker C .  See also  Section 
VI for an illustrative  example. 

C. Suprema1 (A, B)-Controllability Subspace in ker C 

Algorithm 3 is clearly similar to Algorithm 2 and could 
be  used for the computation of v when D= 0. Similarly, 
we  now  show that Algorithm 3* running on the form 
(30a), obtained by Algorithm 2, yields a basis for a (see 
[17] or Section IV-A for a definition). Without loss of 
generality we can assume that (30a) is in the form 

where D,, is square invertible (this situation can al- 
ways  be obtained by updating (30a)  with unitary state- 
space and  input-space transformations). A straight- 
forward  method  would  be now to  perform  the  feedback 
F= -[ow,’ O]C,, on the  system  (49) and  to compute the 
subspace C(A,, + BwoDw;O’Cwo, i,,) (see IV-A). D e  
pending on the conditioning of the  inversion of 5,,, this 
procedure may  be  unstable.  Below, we  show  how the 
feedback operation can be  avoided in order to yield a 
stable method for computing 8. 

Algorithm 3* applied to the  reduced  system {A I,, -A,,, 
[Ewo I I?,,], c,,, [E,, I 01) constructs unitary transfor- 
mations P and Q giving [dual form to (37)] 

- 

- -  
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(51) 

where B", = O  because of (50). We  now  prove that there 
exists  a  feedback F such that 

(52) 

where (A"22,  $) is controllable. According to the discus- 
sion in Section IV-A we would  _then  have constructed a 
coordinate system in which C(Awo,  iwo) is displayed as 

im [ e]. In order to prove the existence of F in (52) we 

define a unitary matrix E: 

and use (51) to rewrite (50) as 

Equating the  coefficient of X in (53) we find that E can be 
written as 

for some  matrices W and Z.  From the invertibility of i i w o  

and E and from 

it follows that X is  also  invertible. Indeed, Xy = 0 for some 
y # O  would  imply that EwoWy = 0 and hence Wy = O  which 
finally  would contradict the invertibility of E. Since X and 
E are invertible we can write,  with F= WX - I  and the 
invertible matrix z 2 Z -  WX - I S :  

E =  [+I. 
I- 

From (53) we then define 

h - A 1 1  I I 0 

This satisfies (52) with F defined as above and (A"22, i2) 
being controllable since 

[AI , -A", ,  I i2]=[AX-YI iC][ 
* - I  4 1 

has full  row  rank for all A. 
From  the  above it follows that the unitary state-space 

transformation T =  diag{P, Iso} reduces (49) to a coordi- 
nate system in which 

0 } c  
R=im I, i 0 11 so- 

The last c columns of P appropriately completed with 
zeros thus constitute an orthonormal basis of I? in the 
coordinate system of (49). The feedback Factually decou- 
pling  this  subspace  can  be  computed  directly  from (52) as 
F= -EW;'C2 and can again be  checked to be minimum 
norm.  Remarks  similar to those made  for 0 yield that the 
computed  basis is a nearly orthonormal basis of 
a(Z, - - -  E, c>, where  the  slightly perturbed system {XI, - 
A ,  By Cy 0} satisfies (48). 
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It can be  checked (see, e.g.  [27D that the invariant zeros 
of the  subsystem [*] (54) 

in  (52) are the  transmission  zeros of the  system {AI,  -A, 
By C,O} [and are the uncontrollable modes of the 
(A”,,, &,)-pair in (34)]. The form is indeed dose to  the 
“‘zero pencil” P,,(A) in  (41) as one would  expect  from  the 
connections of 0 and I? with Algorithms 3 and 3*.  Com- 
ments on “restricted  conditioning” for I? and the occur- 
rence of zeros in the different  cases m { = } p can again  be 
given in the  same  spirit as those  for v in  Section IV-A. 

D. Invariant Pole/Zero Directions 

Let {AI,  -A,  By Cy D }  be an irreducible state-space sys- 
tem of a regular transfer function R(A) and assume for 
the moment that D=R(oo) is  regular. The system  matrix 
P ( h )  of such a system  is  regular and identical to its “zero 
pencil” PJX) deduced in (41). 

The poles  (respectively,  zeros) of R(A) are then finite 
and n in number,  multiplicity  counted, and are the eigen- 
values of A (respectively, 2 A A - BD -‘c); n is then also 

the  McMillan  degree of R(A). One  can  associate to A 
(respectively, 2) so-called invariant pole  (respectively, 
zero) directions which are  the eigenvectors, or in the 
defective  case  the principal vectors, of A (respectively, 2) 
(see  [24D.  These  vectors,  or more  generally, the invariant 
subspaces of A and 2 (which are spanned by  them)  play a 
fundamental role in the problem of minimal cascade 
factorization of R(h):  

N V = R , ( A ) - R * ( A )  

where the degrees of &(A) and R,(A) add  up  to the 
degree of R(A). Indeed, to each pair of subspaces X, Y 
satisfying 

AXCX; ~ Y c Y ;  X@Y=C” (55) 

there  corresponds  such a factorization and conversely  (see 
[26]). Stable methods for the computation of orthonormal 
bases for invariant subspaces are available in the  numeri- 
cal literature [29] but the construction of Â  requires a 
transformation that can be unstable as shown in (42).  On 
the other hand,  the  regular  pencil  defined in (43), 

AB”-A”=i(AI-2), (56) 
can be obtained in a stable way as shown  there.  One 
easily  sees that because of  (56) a subspace Y is invariant 
under Â  iff 

dim(B”Y+A”Y)=dimY 

whence it is also a deflating subspace of AE-2. In order 
to compute all  possible deflating subspaces of AB”-A” one 
can  make use of the QZ algorithm and of an appropriate 
updating of the  decomposition (4) obtained by this  algo- 
rithm [30]. 

When D is singular but P(A)  is  still irreducible and 
invertible then R(A) has some infinite zeros. The pencil 
AB”-A“ obtained in (43)  is then still regular but B” is not, 
whence it has infinite generalized  eigenvalues  which are 
the infinite zeros of R(A)  (see  Section V-B for more 
information). The generalized  eigenvectors  corresponding 
to these  infinite  eigenvalues  of A j - 2  could be defined as 
“infinite  zero directions” (compare [24D. The condition 
(55) for factorizability can also be adapted by requiring Y 
to be a deflating  subspace of AE-2 instead of an in- 
variant subspace of 2. 

V. GENERALIZED STATE-SPACE SYSTEMS 

State-space  models can be generalized to models of the 
type  [31]-[33] 

(’En, - A n n  7 Bnp 9 Cmn 9 Dmp} (57) 

with  A, B, Cy D, and E constant  and AE -A regular but 
no such  assumption  on E. Any rational transfer function 
can be represented  by  such a generalized state-space model 
(GSSM),  whereas state-space models  in  general  require 
D(A) to be polynomial [31]. Moreover, a GSSM  is  easy to 
derive  when, e.g., the system is given by a polynomial 
system {TJA), <,(A), Vm,(A), Wmp(A)}. Let indeed d be 
the  highest  power  of A occurring in these  polynomial 
matrices and let q, y, K, y. be their  coefficients of 2. 
Let us define 

Then a GSSM for the transfer function of {T(A), U(X), 
V(A), W(X)} is given  by  the  system matrix 7Qo - I  1 1 ;  A ,  

(58b) 
AI A ,  Bo 

... - - 
This can be  derived  using  system  equivalence  techniques 
explained  in [I91 and is omitted here in the interests of 
brevity.  Notice that the role of state-space transformations 
is here replaced  by  invertible transformations P and Q 
giving a GSSM { P ( h  E -  A)Q,  PB, CQ, D }  with the same 
transfer function [31]. 

A. Controllable and Unobsercabie Subspace 

Definitions of controllability and observability of a 
GSSM  may differ in the literature (see,  e.g.,  [31]-[34], 
[571) because of the different contexts in which  these 
concepts can be defined  (discrete  time  versus continuous 
time,  allowing  impulsive  solutions,  etc.). Below  we  give 
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definitions which  follow  more the work of Verghese [33], 
[34], because of its elegant implications described in S e c -  
tion V-B. Nevertheless, the procedure described below 
could very  well  be  modified to meet the definitions given 
by other authors (e.g., [31], [57]), using  the decomposition 

The controllable and unobservable subspace of the 
state-space X of a GSSM {AE,,  -A,,,  B,,, C,,, Dm,} can 
be defined, respectively, as 

(3). 

C(E, A, B)=inf{SJdim(ES+AS)=dimS; 
imBcES+AS} 

- 
O(E, A , C ) = s u p { S l d i m ( E S + A S ) = d i m S ;  

SckerC}. (59) 

That the above infimum and supremum  indeed  exist can 
be  proved  with standard techniques.  When E = I  these 
definitions coincide with the controllable subspace 
C( A, B )  and unobservable subspace b( A, C )  of the state- 
space system { X I ,  - A ,  B ,C,  D } ,  since the deflating sub- 
spaces of XI-A are nothing but the invariant subspaces 
of A. 

Let c be the dimension of the controllable subspace C 
and let V and U be unitary transformations whose last c 
columns  span C and  EC+AC, respectively. Then we can 
transform the ( X E -  A, B)-pair as 

C C 

(60) 

since the transformed (A E, -A,,  B,)-pair has the proper- 
ties 

imB, cE,C+A,C=C=im 

Note that both X E,- -A, and XE, -A, are regular  since 
XE-A is regular. The (XE, -Ac ,  Bc)-pair  is said to be 
controllable since its controllable subspace  has full dimen- 
sion c. 

Analogously,  let 0 be  the  dimension of the unobservable 
subspace b and let V and U be unitary transformations 
whose first 0 columns span b and E a  +AG,  respectively. 
Then  the (X E- A, C)-pair can  be transformed to 

because for this transformed (XE, -At ,  C,)-pair  we  have 

im[ ~ ] = E , C j + A t ~ = b c k e r C , ,  

Again X E5 -A, and X E, - A ,  are regular and the 
(A E, -A,,  C,)-pair is called obsercable since its unob- 
servable  subspace has zero dimension. 

The  decompositions (60) and (61) can  be obtained by 
the  following procedure. Since  both  forms are dual we 
only treat the first one. 

Let us compress the rows  of B in the ( A E - A ,  B)-pair 
to B ,  of fu l l  row rank s: 

n 

Since h E - A has no left  null space, neither does A E, -A2 
and according to (3) the latter then has a  decomposition 
(obtained by the pencil algorithm [61): 

- 
C n-F 

(63) 

where A E,- -A, is regular (contains the  finite and infinite 
elementary divisors of XE2 -A2)  and XE, -A, has only 
right  Kronecker  indexes.  Embedding  (63) in (62), we 
obtain, with U U, diag { U,, I,} and V 2 V, 

This is the required decomposition (60) if we can show 
that the subsystem 

is controllable, which we now prove  by contradiction. 
If the  (AE,  -Ac,  B,)-pair  defined in (65) is not control- 

lable, then an additional reduction of the  type  (60) can be 
performed on it, 
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where X& -& is regular.  Let us assume that fi - -  is chosen  given  by the system matrix [ 191 

to compress at the same  time & to the form 
B ,  as given  in  (65) fiecause of (65) this can always be 
satisfied  by updating fi in (66)J. A comparison of (65) and 
(66) then yields that fi is of the form diag { fi, Is}, whence 

I:,] with 

[q - ] [?g! !y ; ] [ .q - ]  
A&A”, 0 =[-++]. * Bl 

This also says that Ij*(AE, -Ar)F has  a regular part 
A,!?? -A”,- and thus contradicts the construction of XE, - 
A,, which according to (3) has no elementary divisors or 
regular part. 

Since (64) is the required decomposition  (60)  we thus 
have that the last c columns of Y constructed by  this 
procedure, span the controllable subspace C(E,  A ,  B) .  
Dual  results  hold for the space 8( E ,  A ,  C )  and the de- 
composition (61). In analogy to Section III-B one  can use 
the previous  results to construct an irreducible GSSM 
{X E,, -A,,, B,,, C,,, D} with the same transfer function 
as the  given GSSM {XE-A,  B, C, D}, by  using  only 
unitary transformations 

- - 

A - - 

- 
(67) 

That the GSSMs {XE,,  -A,,, B,,,C,,, D} and {XE-  
A ,  B, C,  D} have the same transfer function can be proved 
with standard techniques [19]. 

Due to the  use of unitary transformations it is  possible 
to show that this decomposition holds  exactly for slightly 
perturbed matrices A ,  B, C ,  E (and nearly unitary Uand 
V )  satisfying 

- - - -  

1lF-X 11 Q II,-E. 11 X 11 for X = A ,  B ,  C ,  E .  (68) 

Similar  results hold for the decompositions (60) and (61) 
and for the computed bases for C ( E ,   A ,  B )  and 
O( E ,  A ,  C.). The  decomposition (67) can also be elaborated 
more in a  Kalman  type  decomposition  displaying the four 
fundamental parts of the system (see [34J) but the trans- 
formations required for that will in general not be unitary 
as discussed in Section  III-B. 

Notice that the decomposition (67) can  also  be  used to 
construct an irreducible GSSM for the inverse transfer 
function R-’(A) when R(A) is  regular. Indeed, let {AE-  
A,  B, C ,  D} be an arbitrary GSSM  with transfer function 
R(X);  then a  GSSM  with R - ‘ ( X )  as transfer function is 

- - -  
- - - -  

[ A E - A  B I o 7 

Extracting an irreducible GSSM of this can  be  done with 
the above  method. This iuustrates the  elegance of the 
GSSM approach: the numerical tools  needed for handling 
GSSMs are much the same as those used for state-space 
models but the above  problem of inversion is, e g ,  much 
more delicate when restricting oneself to the use of state- 
space models  (see  [49]). 

B. Pole/Zero Structure and Null Space Structure 

Definitions of pole/z&o and null space structure of an 
arbitrary rational matrix are based on the Smith- 
McMillan canonical form [35] and on the concept of 
minimal  polynomial  bases  [36],  [37]. 

Following  McMillan [35], every m Xn rational matrix 
R(X)  of normal  rank r can be  decomposed at any point X, 
of the  complex plane as 

where M(h)  and N(A) are rational matrices  which are 
regular at A, (i.e., M(X,) and N(X,) are regular) and the si 
are nondecreasing.  The  index set {sl; , s,} is uniquely 
defined  by this decomposition and describes the pole/zero 
structure of R(h)  at A,: the  positive  indexes  reflect the 
zero structure and the negative  indexes the polar struc- 
ture. The pole/zero structure at A =  m is defined as above 
by replacing A- A, by y 2 1/A in (69). Many authors 
seem to be  unaware of this and give  more  involved but 
equivalent definitions of the structure at infinity [38]. 

The left and right  null spaces of R(A)  are vectorspaces 
over the field of rational functions @(A) with  coefficients 
in @, defined, respectively, as 

N I ( R )  A (u(A)JuT(A)R(X)=O} 

N,(R) 2 { u ( X ) J R ( X ) U ( A ) = O }  

and have  dimensions m - r and n - r ,  respectively,  where r 
is  the  normal rank of R(A) .  It is always  possible to choose 
a  polynomial  basis 

{ P l ( A ) , *  * - , P , ( A ) }  (70) 

for any  vectorspace S over @(A) [36]. Let us define the 
index di of a  polynomial vector p,(X) as the maximum 
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polynomial  degree in its  components;  then (70)  is called a 
minimal polynomial basis of S if the s u m  of the  indexes di 
is minimal  over all polynomial  bases  for S. These  indexes 
are invariant  for a given  space S, except  for  their  ordering. 
When  corresponding  to  the  spaces N, (R)  and N r ( R )  they 
are called,  respectively,  the left and right  minimal  indexes 
or R(A)  (see  [371 for an extensive  discussion). 

Applying  the  above  definitions  to a pencil A B - A  with 
Kronecker  canonical  form  (2)  it  is  easy to prove  the 
following  (see,  e.g., [ln. 

i) The sizes si of the Jordan blocks at A-A, in  the 
Jordan matrix J are the  structural  indexes at the  zero 

ii) The sizes si ,  reduced by one, of the Jordan blocks at 
p = O  in the Jordan matrix N are the nonnegative  struct- 
ural indexes at d e  zero X = 00 of X B - A .  

iii) The negative  structural  indexes at the  pole A =  co of 
A B - A  are all equal  to - 1 and are k rank  B in number 
(notice that this  is  the  only  pole). 

iv) The left and right  Kronecker  indexes are the  left 
and right  minimal  indexes,  respectively, of A B - A. 

Using the  decompositions (3) and (4) we can thus 
compute  the  pole/zero  structure and the  null  space  struc- 
ture of an arbitrary  pencil in a stable way (this, of course, 
does  not  mean that the  problem  is  well-posed [ln. The 
following  discussion  now  shows  how  important the con- 
struction of an irreducible  GSSM is in  the  computation of 
the  structural  elements of its transfer  function. In [l] we 
show that the  controllability of the ( AE,, -A,,, B,,)-pair 
and the  observability of the (AE,, -A,,,  C,,)-pair  imply 
the  absence of finite and infinite  zeros in the  pencils 

A=A, of AB-A. 

In [25],  [33] a  GSSM  which  satisfies  conditions  (71)  was 
termed strongly  irreducible which  is  thus  implied  by  the 
previous  definition of irreducibility (the  contrary is not 
true). For a  strongly  irreducible  GSSM  the  following 
important connections are proved in [25] between  the 
structural  elements of 

(72) 

on one hand and the  transfer  function R ( A )  of the GSSM 
{AE,,  -A,,,  B,,, C,,, D }  on  the  other  hand. 

i) The polar  structure of R ( A )  is isomorphic to the  zero 
structure of AE,, -Aco (at all points,  infinity  included). 

ii)  The  zero  structure of R(A)  is isomorphic to the  zero 
structure of P,,(X) (at all points,  infinity  included). 
iii) The null spaces of P,,(A) and R(A) are isomorphic 

and their minimal indexes  are  equal. 
Starting  from an arbitrary  GSSM  it  is  thus  possible  to 

construct a strongly  irreducible  GSSM  (72) and then 
compute  the  structural  elements of its  transfer  function  by 
using  the  decompositions (3) and (4) on the  pencils (72). 

Note that this is also  possible  for  irreducible  state-space 
models {AI -  A ,  B, C ,  D }  when D is  constant, but one  is 
then restricted to proper  transfer  functions. The structural 
elements of irreducible  state-space  models are also  closely 
connected  to  the  objects  discussed in Section IV [l]. 

VI. POLYNOMIAL AND RATIONAL MATRICES 

The  structural  elements  of  polynomial and rational 
matrices can be  computed  through  the  Smith  canonical 
form and Smith-McMillan  canonical  form,  respectively. 
Every  rational  matrix R(A)  of normal  rank r can be 
decomposed  as  [35] 

(73) 

where M ( A )  and N ( A )  are unimodular,  the ei(X) andJ(A) 
are relatively  prime  monic  polynomials, e,(A) divides 
e, ,  ,(A), and .f+ ,(A) divides &(A). Every  polynomial  ma- 
trix P ( A )  can be  decomposed  similarly but with  the &(A) 
all  being  equal to 1. The finite  pole/zero  structure of 
R(A) follows  immediately from (73)  by computing  the 
elementary  factors ( A - X , > s i  from  each ei(A)/f;:(X) [35] 
[ 191. For the  pole/zero  structure at A = 03 one may  trans- 
form A to l /p  and apply (73) to R(l/y) (see [35], [ 191 for 
more  details).  Similar  results  hold  for  a  polynomial  matrix 
P(A) .  

Polynomial  bases  for N, (R)  and Nr(R)  are obviously 
given  by  the  last m - r rows of M(h) and the  last n - r 
columns of N(A) ,  respectively.  Reducing  these  bases  to a 
row  proper and column  proper  form  then  yield  the  re- 
quired  minimal  polynomial  bases for N,(R) and N,(R), 
respectively  (see  [37], [42]). The same  method  applies  to  a 
polynomial  matrix P(A)  also. 

The construction of the  Smith-Mch4illan  form and the 
reduction  to  row/column  proper  form are both  based on 
elementary  column and row operations on some  poly- 
nomial  matrix  (see [5] ,  [35], [42] for  the  actual  algorithms) 
but these  transformations are numerically  unstable  as 
shown in the  following  example. A typical  row  operation 
to  be  performed  in  the  construction of the  Smith  canoni- 
cal form of 

(with 6 small  but  nonzero)  would  be 

The coefficients in the transformation and in the trans- 
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formed  matrix- and therefore also the numerical errors 
in these  matrices-blow  up  when 6 becomes  very  small. 
Similar  examples can be  given for the reduction algorithm 
to row/column proper form. In each of these algorithms 
the choice of the pivot  is  determined by the powers of A 
and  not by  the numerical coefficients,  hence precluding 
any  proof of numerical  stability. 

On the other hand, for the computation of the structure 
of the  above  example we could as well  use the QZ 
algorithm since it is  a regular pencil, thus avoiding the 
unstable construction of the Smith  form of P(A). In the 
numerical literature it is  shown [59] how to reduce a 
regular  polynomial matrix of arbitrary degree to a pencil 
with the same zero structure, thus again avoiding the 
unstable construction of the Smith canonical form. It is  in 
fact a  special  case of the results  given in [25] and dis- 
cussed in Section V: there a  method  is  given to construct 
pencils  with  the  same structural information as a  given 
polynomial matrix or even as a rational transfer function 
described by  a  polynomial  system {T(A), U(A),  V( A), 
W(A)}.  The  main reason why  these  extensions  were  never 
tackled in the numerical literature is,  we  believe, the 
possible  ill-posedness of these  extensions. In system  theo- 
retic applications the restricted conditioning described in 
Section I1 allows us to circumvent this difficulty. A simple 
example for this  is  due to Wilkinson [43],  [62]. The pencil 

1 but  an  arbitrary c-perturbation of it 

will have  normal rank 2 and  can have  very different zeros. 
Taking, e.g., c 7 = c 8 = O  we have that det.P,(A)=(c,A- 
e 4 ) ( c 5 h - c 6 )  - and then P,(A) has the rather arbitrary zeros 
A, =c4/c3,  A2=c6/e,. On the other hand, P,(A,) has 
c-rank 1 for almost  any  value A, whence  one  is  tempted to 
take r =  1 as its “numerical”  normal rank. Once  making 
this  choice  the “numerical” right and left null space of 
P,(A,) are eclose to [ y ]  and [0 11, respectively, for 
almost  any A, whence it is again sound to assume  these 
are constant. The  only  remaining structural element  is 
then, according to the decomposition (2),  a  single zero 
which is indeed  c-close to 2 (P,(2) has indeed  c-rank  equal 

When  restricting  oneself thus to perturbations maintain- 
ing a  left and right  null space of index 0, all structural 
elements, i.e., the only zero and the direction of the left 
and right  null  vectors, are well conditioned. The  “re- 
stricted condition number’’ for these  elements  is thus close 
to 1.  For the differential system 

- 

to 0). 

the answers obtained in such a  way are acceptable. In- 

deed, any input signal parallel to [ y ]  will almost be 

blocked  completely-whence N,( P,) =im is logical 

-and inputs parallel to [ A ] will  almost be blocked 
completely  only if multiplied  by  eZr-whence A=2 is a 
logical  zero.  Note finally that the algorithms for the de- 
compositions  (3) and (4)  would indeed give  these  “logical” 
answers, although they are only  well conditioned in a 
restricted sense.  Even  when running on the perturbed 
pencil the decomposition  (3)  gave  c-close  results to the 
expected  ones  since the appropriate rank decisions are 
made in the algorithm (see [l] for numerical experiments). 

Finally, we want to make  some  remarks about the 
stability of the algorithms applied to the computation of 
the structure of polynomial and rational matrices. Once a 
GSSM for the given transfer function is  given,  say,  e.g., in 
the form (58), the reduction process to the form (67) and 
the decompositions (3) and (4) of the pencils  (72) are 
backward stable since they  use  only unitary transforma- 
tions.  But in fact, the backward errors induced in the 
original  model (58)  do  not respect the special structure, 
i.e., the 0 and I blocks, in this GSSM. Yet,  one can prove 
numerical stability in  a stricter sense,  namely, that the 
computed structure corresponds exactly to a  slightly  per- 
turbed polynomial  system { ?;( A), G( A), V(A), @A)}. For 
this perturbed system the coefficients of F(A) and X(A) 
are c-close  where X stands for each of the polynomial 
matrices T, U, V, and W (see, e.g., [l], [60]). 

When  the transfer function is originally not given  by  a 
polynomial  system  model then numerical stability in such 
a strict sense  cannot  be  proved  in  general, because some 
parameter representations of rational matrices are not 
flexible  enough  (see [l] for a  discussion).  Some of these 
parameterizations of rational matrices even  allow one  to 
determine the structural elements through different tech- 
niques  (see, e.g.,  [MI) but this is beyond the scope of this 
paper. 

[:I 

VII. CONCLUSION 

In this paper we  have treated a  number of system 
theoretical problems  from  a numerical point of  view. The 
given  algorithms  were  shown to be  “reliable” because of 
their controlled numerical behavior in  the  presence of 
rounding  errors. The mere  use of unitary transformations 
indeed allows us to give backward  bounds for the round- 
ing errors performed during these  algorithms.  We  also 
commented on the possible  ill-posedness of some of the 
tackled  problems and showed  how to deal numerically 
with this delicate aspect of the problems. 

viewed as appropriate adaptations of the “pencil algo- 
rithm” given in [6] to the specific  “pencil  problems” 
occurring in linear system theory. The kind of pencils 
encountered in that area have  a  special structure which 
unfortunately is not respected  by the general  algorithm. 
The  adapted  algorithms  given in this paper are therefore 

The  given algorithms for state-space models can be , 
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strongly  inspired  by  other  approaches  from  the  system 
theoretic  literature. 

The  basic  idea of Algorithm 1 can be  recognized  in an 
algorithm  given by Rosenbrock [ 191 and since  then in 
several  other  algorithms [45]-[47],  [21],  [22],  [48],  [63]. We 
believe  that  a  backward  stable  version of this  algorithm 
was  first  given  in [21]. The  application to the  Kalman 
decomposition  is  extensively treated in [22]. 

Algorithms 2 and 3 are  very  close  to  Silverman’s  struc- 
ture  algorithm  (compare [27],  [28],  [49], [50D and to 
Wonham’s recursive  definitions  (see [17],  [48], [51], [52]). 
These  approaches  use  special  types of transformations 
precluding  any  proof of numerical  stability,  while  here we 
restrict  ourselves  to  unitary  transformations  (see  also [21] 
and [48, Remark 141). Some authors [40],  [53],  [54],  [20] 
have  started  to use numerically  reliable  software to tackle 
several of the  previous  problems but their  approach is 
rather  different  from  the one described  here.  Their  meth- 
ods  yet do not always  respect  the  specific  structure of the 
processed  pencils and are less  elegant  in  some  cases. 

Special attention was  also  paid  here  to  generahzed 
state-space  models  because of their  importance  in  numeri- 
cal  computations. The numerical  tools  needed  for  han- 
dling  these  models are indeed  basically  the  same as those 
needed  for  state-space  systems  but  these GSSMs allow us 
to tackle  several  additional  problems  @ole/zero  structure 
and null  space  structure of polynomial and rational  trans- 
fer  functions,  inverse  problem) in a rather  elegant  way. 
The algorithms we  use for  their  computation [6],  [7] have 
been  proved  to  be  numerically  stable  in  contrast to some 
alternative  algorithms  from  system  theory [41],  [42],  [55], 

In this  paper we have put the  emphasis  on  the  use of 
stable  transformations in the solution of our problems but 
we have  not  detailed  the actual implementation of the 
algorithms.  In our discussion on row and columns  com- 
pressions-which are a  basic  tool  in  all  the  algorithms- 
we suggested  the  use of the  SVD  because  it  is  the  only 
reliable  tool  for  the  determination of the  +rank [3]. Unfor- 
tunately,  it is more  expensive  in  computing  time  than 
other  methods  such  as, e.g., Householder  reductions  with 
pivoting [8]. The latter method  is an acceptable  alternative 
for the SVD since the examples  where  it  fails  in  its 
numerical  rank  determination, are rather  pathological [ 131. 
In the  case of large  sparse  systems-which, e.g., often 
occur in network  theory-it  might  be  interesting  to  switch 
to  elementary  transformation  with  pivoting  because of 
computing  time and possible  preservation of sparsity. 
Other  schemes  exploiting  sparsity of the  models,  such  as 
the Lanczos  procedure,  can  also  be  appropriate in some 
cases [22]. In each of these  alternatives  there  is  a  tradeoff 
between  computing  time and reliability of the  rank  de- 
termination. 

We  feel that the rather  “theoretical”  approach  chosen 
here  helps  to  develop  better  insights  in  the  numerical 
problems occumng in  the  class of problems  treated  here 
or  even in other  related  problems of system  theory. 
Numerical  experiments  would, of course,  be  appropriate 
for illustrating ths new approach.  But  for this we refer  to 

~ 5 1 .  

separate work  since we want to keep this (already  long) 
paper  within an acceptable  length.  Algorithm 1 is imple- 
mented  in [22] and illustrated  by  numerous  examples. The 
same  is done for  Algorithms 3 and 3* in [SI,  but specifi- 
cally  aimed at the computation of zeros. A comparison 
with two other  methods [40],  [53] is also  given  there. The 
implementation of Algorithms 2 and 3 for  the  computa- 
tion of 0 and I? has not been  completed  yet. The number 
of operations  performed by the given  algorithms  depend 
on the  type of transformations  used  for  the  compressions, 
but they  normally  grow  cubically  with  the  size of the 
processed  pencil  (see  [21], [58] for  more  precise  figures). 
For some  additional  numerical  experiments about the 
computational  method  described  in  Section V, we refer to 
V I .  
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