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Abstract

Cow

In this paper we give a numerical method to perform deadbeat control

on a multl input system. The method constructs, in a recursive manner,

a unitary state-space transformation ylelding a coordinate system in
which the feedback matrix is computed by merely solving a set of
linear equations. Moreover, in this coordinate system one easily
constructs the minimum norm solution to the problem. Along the way,
the algorithm also computes orthonormal bases for the controllable
subspaces of an (A,B)-palr, independently of the invertibility of the
matrix A. Partial results of numerical stability are also obtained.

1. Introduction

We consider the linear system

x = Ax +Bu (1)
141 b i

vhere n is the state dimension and m the input dimension. The
problem of deadbeat control is to find a state feedback u =Fx +v
such that nsr resulting system: ! bt

x = (A4BF)x +v (2)

141 1 1
k

has a nilpotent matrix (A+BF), 1.e. (A+BF) =0, for some minimal
power k. The solution of the homogenous part of the system (2) then
"dies out” after k steps {[7). This problem has been considered by
several authors and several efforts have been undertaken recently to
come up with numerically reliable methods to solve the problem [3][4)
(51091{101[19). The method presented in this paper is very similar to
the one developed in [9)[10]). In our special case though a simplified
algorithm can be obtained which allows for an analysis of the
numerical behavior of the method and permits the construction of the

minimuam norm solution to the problem.

2. Problem formulation

The method described in this paper is based on the use of unitary
transformations only. These transformations are chosen because of

their property of norm invarlance with respect to certalin norms:

PTuULAL VD = Al for U,V unitary, 1.e. U'U=UU =1 V'V=VV':=1I
where {).!! stands for both the spectral and Frobenius norms [14],
and .  denotes the conjugate transpose of a matrix. As shown in the

next section, this guarantees that the errors performed by the
algorithm do not blow up -therefore resulting in a numerically
stable algorithm- and also that the feedback matrix in the trans-
formed coordinate system has still the same norm.

To start with, the (A,B)-pair is transformed via a unitary state-
space transformation V to the block form (see e.g. [2)[3][61[13]

(1510171(181):

i !
! B | A X
V'B ! VAV = c | ¢ = (3a)
! o ! 0 A_
H H c
[ B | A A PR .. . A A Tir
1 1,1 1,2 1,k 1,ke+1 1
!
PoA A e .. . A A Ir
! 2,1 2,2 2,k 2,k+1 2
! . . . .
! . . . .
!
i
|
o | 0 . . . . (3b)
| . . . .
A A A Ir
! kK,k-1 k,k K, k+1 k
|
o | 0 A In
L | k+1,k+1] k+1
et —— —— — ———— ——
L r r r r n
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Here B and the A off-diagonal blocks have full row rank r by
1 i,i-1 i

construction. The modes of A_ are clearly uncontrollable and no feed-

c
back will affect their location. Let us define the {-th reachable

subspace as:
2 i-1
R (A,B) = <B>+ACB>+A <(B>+...+A <B> (u)
i

~

where <.> denotes the 1m:mm.cn a matrix. One easlly checks that (with

r zm, r =0 for 1>k) [161(17)):
0 i
dim.R (A,B) = dim.R (A ,B ) = w r 1=0,... (5)
i 1 e ¢ J=1 3
The remaining subsystem (A ,B ) is thus controllable because of the

c ¢
above rank properties and its controllability indices are given by

there are (r -r ) controllability indices ¢
1¢1 4 3

equal to i for i=1,...,k

Notice that a system with m inputs always has m controllability

indices [2']. The number k of indices r , on the other hand, does
: i
not depend on m but is equal to the largest controllability index:

k = ¢ (7

In the sequel we assume A_ does not exist and we thus identify (A,B)
[
with (A ,B ).,
[
Consider now the spaces (called i-th controllable subspace in [8]):

i i-1

S (A,B)= { x } A x €A B> + ... + <B> } iz1,...,k (8)
i

This linear subspace is the set of all initial conditions x to (1),
-1 0
that can be driven to zero in time 1. Let A denote the functional

inverse of a map. Applied to a subspace S this thus means :

A S5 = { x| Ax€S ) (9)
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It is shown in [1][12] that the spaces S satisfy the recursion :

i
-1
S = A (S +<B>)
1e1 i
(10)
{0) =S Ccs C...CS =358 = ...
0 1 1 141
where
1 zmin { 1 } S =S } (1)
i i+1

The spaces R and S are known to be invariant under feedback [1][12]

i i
R (A,B) = R (A+BF,B)
1 1
(12)
S (A,B) = S (A+BF,B)
i i
One proves for a controllable system (A,B) that :
1 = k
i (13)
dim.S5 = dim.R =d = § r
i i i =1 3

This immediately follows from the fact that A=A+BF can be chosen to

be invertible [21] and that then :
R =4S (14)

This property will be used 1n the sequel. A feedback matrix F is now

solution to the deadbeat control problem iff [1)[12]:

(A+BF)S C S
1 1-1

1=1,...,k (15)

Let U be a unitary transformation partitioned in k blocks of r
k
columns :

(16)

(=1
"
<|
<



such that :

u > (17)

(%]
n

~
<

Let then F be a solution of (15) then one proves that :

[ 0 & .. N | Yir
1,2 T 1,k 1
0 . . Ir
. . . 2
U (A+BF)U = . . (18)
0 . .
. A Ir
. k-1,k k-1
- o J w—l
N — —— k
r r r
1 2 Kk

This follows from the fact that in the new coordinate system (1i.e.

after the similarity transforwmation U’.U) the spaces S are spanned
i

I
d
S = < il > 1=1,...,k (19)
i
) 0

by :
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3. A recursive method

We now describe a method for constructing U and F such that
U (A+BF)U has the above form (18). The algorithm 1s recursive and
consists of k steps, where k is as defined above in (3b). We will

show that at the end of each step i the following form 1is obtalned:

i 1
A X jd= § or
d 1 3=1 3
U°(A+BF )U = 1 (20)
i 11 0 A } n-d
s 1
1
B } d
d i
u's = (21)
i i
B ) n-d
s i
i i
Here the subsystem (A ,B ) 1s already "beaten to death":
d d
[ 1! i 1 ]
B 0 A Co A ir
1 1,2 1,1 1
! . . .
o0 . . .
1) i P . . .
B | A = P . i (22)
d | d 1 . A ir
} . 1-1,14 i-1
i) .
B | 0 Ir
L 1 J 1
i 4
and the subsystem (A ,B ) is in staircase form :
s s
F 1 1 i 7
B HE e e A Ir
1+1) 147,441 1+1,k 1+1
Vo1 i
A . A Ir
i i 142,141 . 142,k 142
B | & = 0 . . . (23)
s | s . . .
i i
A A }r
L k,k-1 k,k 1 «x
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i i
where the leading blocks B and A J=1+42,..,k have full row Here again the result was paritioned conformably with A . Then solve
141 3. 5-1
rank. At the beginning of step 1 (il.e. at the end of step 0) this is the equation
indeed satisfied since this is merely the staircase form (3). We now § i-1
R = -B . X (28)
derive step 1 of the recursive algorithm. At the beginning of this i,1 i
step we thus have the configuration (20)-(23) with 1 decremented by 1-1
This equation has a solution since B has full row rank and thus
1. We then construct transformation and feedback matrices i
- has a left inverse (14}. A minimum norm solution G 1is given by
1 0 i
" d - i .
U = i-1 i R F = 0 F (24) 1-1 i
i 0 U i L] G = -B .R (29}
s 1 1 i,1
1-1 i-1 +
that only affect the subsystem (A ] ). We are thus trying to where . denotes the Moore Penrose inverse of a matrix. Notice that
i i s s
find matrices F and U such that: this is a minimum norm solution in the spectral norm and moreover the
E] s
unique minimum norm socolution in the Frobenius norm [14]).
0! X }r
17 1-7 1-1 41 { R s -- i Using the feedback:
U (A +B Fu = | (25)
s s L] s s [V X In-d i i
H i F = G 0 ... ... 01U (30)
— hEanaaa s i s
r n-d
i i i-1 1-1 14 i
or equivalently: it i3 easily seen that (A +B F JU 1is equal to
s L] s s
. '
1-1 i-v 1 i |
(A +B F)H)U =] 0! X (26) 1 i 1 g
s s s s i 0 R Coe R Ir
i 1,141 1,k i
— — i i
r n-d R . . . R Jr
i i 141,841 1+41,k 1+1
1 -1 1-1 4 4
This is obtained as follows: let U be a unitary transformation (A +B F o = . . . (31)
11 s s s s s . . .
triangularizing A ( with r  ,3=4,...,k as in (3) ): . . .
s 3 i .
R }r
[ 1 1] K,k k
R . . . . . . R Ir T e —_—
1,1 i,k i r r . . . r
. . . i 141 k
1-1 1 i . . .
A U = R = . . . (27)
s s . . .
. . . and thus satisfies (26).
i .
R Ir
| k, k) k




We now prove that

Indeed, when writi

it follows that th
i-

since those of A
17 s

s 1
Thus the blocks R

then multiplying t

we obtain:

tion U does not affect the independence of the rows of the matrix R .
, J=141,...,k 1n (27) are invertible. Let S be
3.3 1
the upper triangular inverse of the (n-d )x(n-d ) bottom part of R ,
i i
he bottom n-d rows of (33) with S from the left,
1
1-1 1-1 7
A N A ‘r
f+1,141 141,k 141
= (34a)
1-1 1-1
A A Ir
k,k-1 k,k k
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1 i-1
U has the same block structure as A , 1.e.:
] s
u e U Tir
i,i+1 i,k i
u e u Ir
i+1,141 141,k 1+1
L (32)
u u ir
k,k-1 k,k K
r r
i+ k
ng (27) as :
i-1 1 1
A = R .U (33)
s s

e bottom n-d rows of R
1 1

are linearly independent

are, and since the invertible column transforma-

i
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ﬁ ] U ... v Jir
11,1 f1+1,i+1 1+1,k 1a1
(34p)
U L. U U r
[ k,i k,k-1 k,k ] k

Since S is an upper triangular invertible matrix we indeed find that

the blocks U with }>1+1 are zero and that the blocks U have
3.1 AR ER
linearly independent rows, which completes the proof.
i
Because of the above structure of the transformation U , we have
s

that, after this step 1, the following form 13 obtained:

1-11 1 i-1 1-1 1 i
B U (A +B F )U =
s 3 | s K s s s
I Y [
B t 0 1A PR A
i ! H 1,141 1,k
ccec e e mmmmc i acme—eme—————
1 | | 1 i
B ) VA PR A
f+1} | 141,141 i+1,k
! HEE ¢ i
1 A . A (35)
t0 1 142,140 . i+2,k
o] ! i . . .
! | . .
! ! . .
i i 1 1
| ! A A
L ! ! k,k-1 k,k J
11 | )
F U = G H 0
s s 1 J
Moreover the identities:
i 1-1 1 i
B = U .B s A = U .R yJziel, L., k=1 (36)
141 1s1,1 4 AT S IO R

follow from (31)(32) and these imply that the blocks in (36) have

full column rank.
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Embedding this in (20)-(23) for i decremented by 1, we clearly re-
trieve the form (20)-(23) at the end of step 1. The updating of the

transformation and feedback matrices are easily checked to be :

u =1 .U (37a)

FU =F U ?F U =F u + F U (37b)
i1 i-1 4 i1 i-1 11 i1

The last equality follows from the fact that the feedback matrices

F U have their last (n-d ) columns equal to zero and are there-
1-1 -1 i -
fore unaffected by the subsequent transformations U , for j>i-1.

J

After k steps of this recursion, one finally obtains:

[ x|} k k )
B 0 A ...A
14 1,2 1,k
k | .
B | . .
2 . .
! . .
Lo .
U (A+BF HU = . . (38)
3 k k P k
i . A
. ! . k-1,k
k |} .
B ! 0
L ki p
where
U=zUU...U (39a)
k 12 k
1 0
- d
U = 1-1 4 (39b)
i 0 u
s
F =F «F « ... + F (39¢)
k 1 2 3
F U = 0 ... 0G0 ... 0 (39d)
i X 1

This is now clearly in the form (18) as requested in section 2.
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4., Numerical Considerations
In this section we discuss the numerical stability of the above
method and show that it ylelds a minimum norm solution to the

problem when solutions are not unique.

To analyze the stability of the algorithm, we first remark that the
transformation matrix U obtalined by the algorithm is independent of
the feedback matrix F and that 1t satisfies (16)(17), i.e. the first
d columns of U span the i-th controllable subspace S 1in the coor-
awzwnm system of awv. This can be checked by »:a:Oo»o” on the
algorithm but it also follows from (15)(16)(17) and the fact that
the spaces S are defined independently of the feedback matrix F
(see e.g. »:»Amv or (10)).

Let us now look at the problem in the coordinate system of (A ,B ),

u u
partitioned conformably with the original (A,B)-pair :
[ u u ] [ u ] [ & ]
A P A B B
" 1k 1 1
A = UTAU = . . i Bz U'B = . = . (40)
u . . u . .
u u u k
A PR, A B g B
'3 kk | | & L &

Since in this coordinate system there exists a feedback matrix F

u
such that A +B F has the form (18), we have that:
u uu

u u

A B
i1 1

< . > ¢ (£ . > (51)

u u

A B
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Because of the special structure of the transformation matrices U stable manner but one can not guarantee [14] that there exists single
1 — — - —
(39b) 1t follows that: € perturbations A and B of A and B , respectively, such that
e e u u
" v [ u ] " 1-1 ) 1 — - _
B A B R (A + B .F) (45)
i 11 i i1 . e e u
. . 0 0
” ” = U"...U". ” ” (42) has exactly the zero structure described by (18). Yet one can show
. Lol k i . .
u u . ) (the proof is omitted here in the interests of brevity) that there
B A 0 o] — -
|l k] L kt L J L ] exi1st perturbations A and B satisfying (45) with the weaker bounds :
[3 e
i1 N U.1 T " 1 1
with B of full row rank. The minimum norm solution G 1in (29) of A= U.A LU, A = A+BA ,  11aAlY = € 1AM Ie e HIBIYLULIFLY (u6a)
1 i L] a bf
the system (28) is thus also the minimum norm solution of - -~ -
B =U.B , B =B+088, 1188} = € |!B}! (46b)
e b
u u E—
A B F = F U (46c)
11 1 u
” - ” .G =0 (43) where € , € and € are of the order of €, and where m and M are
. . i a b bf u
u u the exact matrices stored in computer (notice that we do not have F
A B
k1 K 1n computer). Moreover,
_ - k
and this {s thus the corresponding 1-th submatrix of F . Let us now [(A+0A)+(B+4B)F U"] = 0 (a7)
u u

write the analagous perturbed equations, where computed and there-

Although we can not prove backward stability for this part of the
fore perturbed quantities are denoted with an upper bar. Unitary k

algorithm, one obtains for the norm of ﬁ>¢w.m ﬂ.u bounds that are

u
of the same order than those that would be obtained for a stable

transformations can be performed in a backward stable manner [18][20]

and thus equation (4%0) yields :
algorithm. This method does therefore not behave worse than a stable

YT , B =0'B (4a) method in this sense. .
u u
with _
U = UsdU, U'U=I y 11AUVY = ¢ (4sb)
n u In order to prove that the obtained feedback matrix F is the unique
and with € of the order of the relative precision ¢ of the computer, minimum (Frobenius) norm solution to the problem we observe that
u
Kotice that in fact G 1s not computed in this coordinate aystem but this is the case by construction for each of the submatrices G of
i i
rather by solving the equivalent equation (29). Each separate column F in (83). Since for the Frobenius norm we have
u

of the computed solutions m 1i=1,...,k i3 then obtained in a backward 2 2 2

' VIFID = P ML = ] e 1 (48)

u i i
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this then also holds for F and F in their respective coordinate
u
systems.

We terminate this section with an example.

Example
Let 10 1 o~ 1 0
A = 0 1 1 , B = 0 1
o 1 0 0 0

This is already in staircase form (r =2, r =1) .We then find

1 2
10 0
-1 -1 0 [-1 0 -1
F = , U = 0 0 -1 , F =
u 0 -1 1 L 0 -1 -1
o 1 0
0 0 o0 0o 0 0]
A4+BF = o 0 o , A +B F = 0 0 -1
u uu
o 1 o0 0 0 0 ]
g
Notice that the general solution F to the deadbeat problem is
° u
0 0 d
g -1 -1 d g
F = ,» A +B F = 0 0 -1
u 0 -1 1 u uu
0 o 0

Clearly F 1is the minimal Frobenius norm solution, but this can
u
be checked not to hold for the 2-norm on this example (take e.g.

d=172).
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