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Abstract

The area of multivariable linear systems is very rich in linear algebra
problems and numerous algorithms have been derived in that area. Be-
cause of the increasing complexity of the problem being tackled, some of
them have become challenging from a numerical point of view as well.
The cooperation between researchers in numerical analysis and in linear
system theory is increasing significantly the last few years. In this paper
we give a survey of recent results of this joint research area.

1 Introduction

Since the very formulation of the numerical problems arising in linear system the-
ory, numerical algorithms have been derived, leading in a later stage to software
implementation as well (see e.g.[1] [2] [3]).

The numerical results obtained by some packages were not always satisfac-
tory, especially when used on tough cases as e.g. large scale systems or ill-posed
problems. The reasons for these failures could be of different types. Sometimes
one would implement a straightforward method on computer but straightforward
methods very often do not perform so well in the presence of rounding errors. In
other cases appropriate methods were chosen but were implemented incorrectly.
Finally, in some cases there was a total absence of reliable numerical software
or even methods for the problems to be solved, which e.g. led to simplifying
assumptions and thus less general algorithms.

It is only recently that these difficulties became apparent because the devel-
oped software was being used on tougher problems and the results did not meet
the requirements anymore. The last few years numerical analysts have started
to focus on the linear algebra problems arising in linear system theory (see e.g.
[4]-[17]). Around the same period, researchers in the area of linear system the-
ory turned their attention to advanced numerical software and tried to modify
these methods or use their principles for the development of reliable software



dealing with their specific problems (see e.g. [18]-[22]). This cross fertilization
has been largely promoted by the availability of software packages (e.g.[23]-[25])
and also by recent developments in numerical linear algebra (e.g. [26]-[28]). The
increasing interest in this joint area also appears from special issues and recent
conferences (e.g.[29]-[33]). In this paper, we try to give a survey of some recent
results and trends in this joint research area. We put the emphasis on the nu-
merical aspects of the problems/algorithms which is e.g. why we also spend some
time in going over the numerical tools and techniques in this context (Section
2). In the next section we discuss a number of problems using the previously
mentioned techniques. In Section 4 we try to point out some related problems
where a collaboration between researchers of the two areas would be fruitfull or
has already started.

2 Numerical background
In this section we review some concepts of basic importance in numerical linear
algebra by discussing a typical matrix problem that is used in the sequel.

a) Conditioning, stability and error analysis.

Let us consider the singular value decomposition of an arbitrary m x n matrix A
with coefficients in R or C [34]

A=U.¥.V* (1)

Here U and V are, respectively, m X n and n X n unitary matrices and ¥ is a
m X n matrix of the form

z:l =R ];E,:diag{al,---,ar} (2)

with the singular value o; being positive and satisfying o1 > o9--- > 0, > 0.
The computation of this decomposition is, of course, subject to rounding errors.
denoting computed quantities by an overbar, we generally have for some error
matric B4 :

A=A+E,=U-Z- V' (3)

The computed decomposition thus corresponds exactly to a perturbed matrix A.
When using the SVD algorithm available in the literature [34], this perturbation
can be bounded by [34][35] :

[Eall<m-e | Al (4)

where € is the machine precision and 7 some quantity depending on the dimen-
sions m and n, but reasonably close to 1 (see also [16]). The error E, induced

2



by this algorithm — called backward error because it is interpreted as an error
on the data — has thus roughly the same norm as the input error E; performed
when e.g. reading the data A into the computer. When such a bound exists
for the perturbations Fx induced by a numerical algorithm, it is called backward
stable [35][36]. Notice that backward stability does not guarantee any bounds on
the errors in the result U, Y and V. This depends indeed on how perturbations
on the data (namely £, = A — A) affect the resulting decomposition (namely
Ey=U-U,Ey =Y —Y and Ey =V — V). This is commonly measured by the
condition k[f(A)] of the computed object X = f(A) :

KA =l sup [@] X = 5(A) 8
=0 4y(4,2)=6

where d; (.,.) are distance functions in the appropriate spaces [37]. When x[f(A)]
is infinite, the problem of determining X from A is ill-posed (against well-posed).
when k[f(A)] is finite and relatively large or relatively small, the problem is said
to be badly conditioned and well conditioned, respectively.
Notice that backward stability is a property of an algorithm while conditioning
is associated with a problem and the specific data for that problem. The errors
Ex in the result depend on both the stability of the algorithm used and the
conditioning of the problem solved. A good algorithm therefore is supposed to be
backward stable since the size of the errors E'x in the result is then mainly affected
by the condition of the problem, not by the algorithm. An unstable algorithm,
on the other hand, may yield a large error EFx even when the probllem is well
conditioned.
Bounds of the type (4) are obtained by an error analysis of the algorithm used
(see [35] for the state of the art). The condition of the problem is obtained by a
sensitivity analysis (see [35][38][39] for some examples).

b) Some typical difficulties.

According to the above criteria a safe procedure seems to be to reformulate the
problems arising in linear system theory as a concatenation of subproblems for
which numerical stable software is available in the literature. Unfortunately one
can not ensure that the stability of the subalgorithms carries over to the stability
of the total algorithm. This requires a separate analysis which e.g. could rely on
the sensitivity or conditioning of the subproblems. In the next section we show
that delicate (i.e. badly conditioned) subproblems should be avoided whenever
possible; a few examples are given where a possibly badly conditioned step is
circumvented by carefully modifying or completing existing algorithms (see also
[27][12]]40]).

A second type of difficulty is the ill-posedness of some of the problems occur-
ring in linear system theory [41]. Two approaches can be chosen here.

Either one develops an acceptable perturbation theory for such problems, making
use of notions such as restricted conditioning which is the conditioning under
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perturbations for which a certain property is holding (fixed rank etc. [42][12]).
One then looks for restricting assumptions that make the problem well-posed. An
other approach is to delay any such restricting choices to the end and eventually
leave it up to the user what choice to make by looking at the results. The
algorithm then provides quantitative measures that help him make this choice
(see e.g. [18][20][19]). By this approach one may avoid artificial restrictions of
the other approach that sometimes do not respect the practical significance of
the problem.

A third possible pitfall is that many users almost always prefer fast algorithms
to slower ones, while it is also often the case that the slower ones are more reliable
(see e.g. [5][78]).

3 Linear system theoretic problems

In this section we survey a number of linear algebra problems arising in linear sys-
tem theory. The survey is by no means complete since this interdisciplinary area
is quite extended and developing fast. Uppercase is used for matrices, lowercase
for scalars.

Many of the scalar alorithms we discuss do not extend trivially to the matrix
case. If they do, we only mention the matrix case. We only discuss the numerical
aspects here; for the system theoretical background, we refer to the literature.

a. Identification ([43][44] and references therein)
al. Realization ([5] and references therein).

Let R(z) be a m x n transfer function of a discrete time causal system, and let
its impulse response be given by

R(z) = i H; 2™ (6)

The realization problem is to find the transfer function R(z) in e.g. polynomial
description D(z) N7'(2) or state space description R(z) = J + H(z2I — F)™'G,
when the impulse response {H;} is given. In a later stage one might also be
interested in the poles and zeros of R(z), etc.

In the scalar case this poblem is in fact the Padé approximation problem, for
which fast methods exist (see [5][10] for a survey). In [5] it is shown that these
methods are unstable and that they all boil down to factorizing the Hankel ma-
trix :

H, Hy, --- H,
H=| " . (7)
Hn H2n71



where n is an upper bound for the degree of R(z). In [5] a stable but slower
algorithm is given for finding a polynomial and a state-space description of R(z).
A typical state space method based on the Singular Value Decomposition of
H was given in [45] and shown to be stable in [21]. As shown in [20][21] the
realization {R, G, H, j} computed is balanced, which has the nice property of
being less sensitive to rounding errors in H; than the models used in [5]. Here a
typical example can be given of the first difficulty discussed in Section 2b. For
computing the poles of R(2) one could compute its Padé approximation and then
compute the zeros of N(z). The construction of this intermediate result can be
very sensitive to rounding errors in H;, which endangers the computation of the
zeros of N(z). As reported in [20][21] the method using the eigenvalues of F is
less subject to rounding errors.

Recently, the connection of this problem was made with an approximation prob-
lem over the unit circle [46]. This link might lead to a sensitivity analysis of
the realization problem (see [47][15] and references therein) and also gives new
insights in the connection with other problems. It is important to remark here
also that the algorithmic approach based on the SVD of H easily extends to the
matrix case. This has led to a renewed interest in the matrix Padé approximation
problem and the partial realization problem [73].

a2. Linear prediction([48] and references therein)

The problem here is to model a given time signal {y,} with z transform Y{(2) as
the output of a linear time invariant system

g
Y(2)=——=.U(z 8
0= 506) )
where a(z) = 1+ a1 27"+ ---a,27? and U(z) is the z transform of a periodic
pulse train or of white noise, depending on the application [48]. The so-called
autocorrelation method converts this problem to one of factorizing or inverting
the positive definite Toeplitz matrix

7«(0) r(p)
T=| :+ - |:ir@)= ; YnYnti (9)
r(p) oo r(0) :

where 7(7) is the autocorrelation function of the signal {y;}. The Choleski fac-
torization of this matrix requires O(n3) operations, while the Levinson-Durbin
algorithm only requires O(n?) operations by efficiently exploiting the Toeplitz
structure of 7. For quite some time the stability and conditioning issues of this
approach have been a point of controversary (see [8]) until recently a numerical
treatment of the problem has shown that the algorithm is reasonably stable, but
that the problem is quite often badly conditioned [8][49]. We ought to notice that
the problem (8) is in fact an approximation problem, whose solution is given by
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the above Toeplitz factorization. The error analysis of [8][49] only refers to the
errors in the factorization, not to the approximation error. We point out that
the lattice algorithm of Itakura & Saito [79] — which computes the same Choleski
factor by directly working on the data {y;} arranged in a Toeplitz matrix — is
also stable in the same sense [80]. Moreover, it avoids the construction of the
Toeplitz matrix T which could lead to problems in extremely badly conditioned
cases (see [80] for more details).

a3. Spectral factorization (see [43][50] and references therein).

An alternative to (8) is to allow for a more general type of transfer function
between Y(z) and U(2) :

V() =g-——= U(2) (10)

This now can be converted to a spectral factorization problem [43][50] of the

rational transfer function

8(:) = Ry(e) + By () = g o) (1)

where R,(z) is a p-th order approximation of the impulse response R(z) :
r(0)

R(2) ~ - +r() 2zt +r(2) 2+ (12)

Again here the original problem is one of approximation for which (11)(12) is a
proposed solution. A polynomial approach would yield a(z) during the realization
step (12) and b(z) during the spectral factorization step, which can be converted
to a polynomial spectral factorization problem (see e.g. [51]) :

Dy(z) = g°b(z 1) b(2); (13)

where

Dn(2) =@pz P4 o+ Pz + B+ Dyz 4o+ D2 (14)

is derived from ®(z).
Bauer has shown that b(2) can be obtained from the rows of the Choleski factor
B of the infinite (positive definite) Toeplitz matrix



P D P 0 (1) (1) )
5, B, ( A b
. . (2) 4(2) (2)
Tp=| =B"B; B= b” b E
q)P
L 0
. 0 -

(15)
Unfortunately, the convergence of b@(z) to b(z) and the conditioning of the so-
lution b(z) is rather bad when some of the roots of b(z) get close to the unit
circle. The same problems occur with the improved Bauer algorithm [52] and
with Vostry’s Newton type scheme [53] :

B (2) = S0 (2) + 29 (2)] (16)
where
bD (272D 4 bD(2).2D (271 = 205 (2) (17)

The solution of (16)(17) requires O(p?) operations per iteration step and the
convergence of b (z) to b(z) is quadratic when no roots of b(z) are close to the
unit circle. The stability of Vostry’s method is good since it is a method of
iterative refinement using the original data ¢y(z) for computing the correction
[35]. A third method - suffering from similar problems of convergence - is the
one described by Henrici using the FFT algorithm [54], but it also allows for an
implicit stability criterion.

A completely different and conceptually very simple approach is to compute the
roots of 2P - ¢n(z) and perform the factorization by grouping the roots inside
the unit circle. This method is quite fast — O(n?) operations independently of
the location of the zeros — and backward stable when carefully implementing the
deflations [55]. A similar approach in the state space domain has been developed
recently and is based on the computation of a stable deflating subspace of the
pencil [40]

0 0 0 F 0 G
20 F o0 |- 0 I H (18)
0 G 0 H 0 J+.J

where R,(z) = H(zI, — F) 'G + J. Backward stable software for solving this
generalized eigenvalue problem can also be found in [40]. The method also applies
to the matrix case and avoids the construction of ¢y (2). Especially in the matrix
case, this approach is to be preferred over the matrix generalization of (15) and
(16-17) — such as described in [81] — since those then imply computational schemes
that preclude any guarantee of numerical stability.
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b. Analysis

The results here hold for both discrete time (where A will stand for the shift
operator 2) and the continuous time case (where A will stand for the differential

operator D). The transfer function R(\) is given by a polynomial representation
V(NT Y NU(N) + W(X) or by a state space model C (M — A)~' B+ D.

bl. Polynomial case. (see [51] and references therein)

One is interested in a number of structural properties of the transfer func-
tion R(A) such as poles, zeros, decoupling zeros etc. In the scalar case — i.e.
{T'(X),U(N),V(N),W(N)} are then scalar polynomials — all this can be found
with a GCD extraction routine and a rootfinder, for which reliable methods exist
([51][55][28][54] and references therein). In the matrix case the problem becomes
much more complex and the basic method for GCD extraction - the Euclidean
algorithm - becomes unstable (see [12]). Moreover more structural elements (null
spaces etc.) are added to the picture, which makes the polynomial approach less
attractive than the state space approach [12][56][57].

b2. State-space approach (see [41][12] and references therein)

The structural properties of interest are poles and zeros of R()\), decoupling zeros,
controllable and unobservable subspace, supremal (A, B)-invariant and control-
lability subspaces, factorizability of R(\), left and right null spaces of R(\).

These concepts play a fundamental role in several design problems and have re-
ceived considerable attention over the last few years [9][12][13][16][18][19][20][30][56].
In [12][82] it is shown that all the concepts mentioned above can be considered
as generalized eigenstructure problems and that they can be computed via the
Kronecker canonical form of the pencils :

[ A — A ] [ M—A|B ]

] ]

or from other pencils derived therefrom. Backward stable software was also de-
rived to compute the Kronecker structure of an arbitrary pencil [27][83].

A remaining problem here is that several of the structural elements listed above
may be ill-posed in some cases and that one has to develop the notion of restricted
conditioning in these cases (see [12]). Sensitivity results in this area are still sparse
but are slowly emerging [27][84].

A completely different approach is to reformulate the problem as an approxima-
tion or optimization problem for which quantitative measures are derived, leaving
the final choice to the user. Results in this vein are obtained for controllabil-
ity, observability [20][13], (almost) (A, B)-invariant and controllability subspaces
[18][84].

c. Design



Some of the problem treated here could as well be included in Section 3b but
were moved to this paragraph because of their design implication.

cl. Lyapunov and Riccati equations.

The Lyapunov equation in the continuous and discrete time case :

AP.+ P.A"=—-BB' A'P,+ P,A=-C'C

20
FP.F' — P, = -GG F'P,F —P,=—-H'H (20)

frequently occur in analysis/design problems of linear system theory. The solution
of the matrices P. and P, of (20) can be obtained via the Schur decomposition
of the matrices A and F [4][7].

The stability of the method has been analyzed in [7]. Although only a weak
stability is obtained, this is satisfactory in most cases. When A and F' are stable,

the solution of the above equations are also equal to the grammians P, (T) and
P, (T) for T = ¢ :

P.(T) = [FeMBB eMtdt ; P(T) = [l eM'C'CeMdt

21
PAT) = Yl ,AKBB'A* ; P(T) = I, A*C'CAF )

These can be used via some additional transformations (see [20][21][58]) to com-
pute so-called balanced realizations {A, B,C} and {F,G, H} in the continuous
time and discrete time case, respectively. For these realizations both P, and P,
are equal and diagonal. These realizations have some nice sensitiity properties
with respect to poles, zeros, truncation errors in digital filter implementations etc.
[20][21][59]. They are therefore recommended whenever the choice of realization
is left to the user.

When A and F are not stable one can still use the finite range grammians (21)
for T < oo for the purpose of balancing [20]. A reliable method for computing
integrals and sums of the type (21) can be found in [11][2]. A sensitivity analysis
of the matrix exponential can be found in [38]. It is also shown in [20] that
the controllable subspace and the unobservable subspace are the image and the
kernel of P.(T) and P,(T), respectively. From this sensitivity properties of these
spaces under perturbations of P.(T") and P,(T) are derived. A comparison of this
approach and the one discussed under b2 is given in [12].

The algebraic Riccati equation in the continuous and discrete time cases :

Q+ AP+ PA'— PBR'B'P =0
(22)
Q+ F'PF — P— F'PG(R + G'PG)"'G'PF =0

appears in several design/analysis problems such as optimal control, optimal
filtering, spectral factorization etc. (see [14][22][40][60][61][63] and references
therein). Several algorithms have been proposed via various approaches [3][14][40][60][62][63].



The (generalized) eigenvalue approach relates the solution of (22) to the compu-
tation of specific subspaces connected to the (generalized) eigenvalue problems :

il TR ol R

0 1 —Q —A 0o F -Q I
(23)

I 00 A 0 B I 0 0 F 0 -G

AMOT O|—-|-Q —A" 0];X|0 F 0|—-|-Q I 0

000 0 B R 0 G 0 0 0 R

for which stable software has been developed (see [40][60][61] and references
therein). Stability and conditioning of these approaches are e.g. discussed in
[40][60][39]. An analysis of other methods has been considered in [63][85][86].

c2. Feedback control.

Linear state feedback can be considered as an inverse eigenvalue problem [33] :
given a pair (A, B), one looks for a matrix F' such that the eigenvalues of the
matrix A+ BF lie on specified locations or in specified regions. Several approaches
have been proposed but the emphasis is shifting towards numerically reliable
methods which at the same time might tell something about the sensitivity of the
problem [64][87][88][89]. Special cases are e.g. deadbeat control (where A + BF
is supposed to be nilpotent) [22] and observer design [90].

c3. Cascade factorization.

In filter design the problem of cascade factorization plays an important role for
purposes of sensitivity (see e.g. [66][69]). In [65] a general solution is given to this
problem via state space techniques. The problem is shown to be equivalent to the
computation of chains of invariant subspaces of two matrices, whose eigenvalues
are the poles and zeros of the rational matrix to be factorized. The sensitivity of
the approach can be found in [65][39]. Stable software for the problem is being
developed [91].

cd. Frequency response methods.

The last few years there is a revived interest in frequency-response methods for
design/analysis of linear systems (see e.g. [67] and the Special Issue [30]). Special
attention is paid to the computational issues such as reliability, speed and sen-
sitivity [30][68]. The singular value decomposition and its particular robustness
properties are frequently used here (see [30] for recent developments). There is
also a growing interest for reliable numerical methods in H.-control [92].

4 Alternative directions

In this concluding section we briefly go over a number of research topics in linear
system theory where numerical linear algebra is infiltrating and numerical analysis
in a broader sense if of great importance.
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a. Ordinary differential equations.

The development of numerical methods for ODE’s has been of great concern in cir-
cuits and system theory for purposes of computer aided design (see [6][70][29] and
references therein). They are being used also for some analysis/design problems
of control theory such as computing admissible initial conditions of descriptor
systems, optimal control etc. [9][31]. A growing interest is observed [31].

b. Sparse and structured matrices.

Very often descriptions of linear systems are very sparse (e.g. [9][71]) or lead to
solving structured matrix problems (e.g. Hankel, Toeplitz as seen earlier) and
algorithms should be adapted to exploit this structure if at least possible without
harming too much the stability of the algorithm. The numerical literature is
quite rich in methods that are especially devised for dealing with such matrices
[25][72] and some methods start to be applied in linear system theory [9][28][31].

c. Fized point arithmetic.

In many engineering situations (e.g. digital signal processing) the user is forced
to use fixed point arithmetic in order to meet some imposed restriction.

Some numerical algorithms have been tested on stability for fixed point arithmetic
(see e.g. [8]) but the classical methods for fixed point error analysis [35] do not
perform so well when very small bit ranges are considered (see [66] and references
therein).

d. Approzimation.

The approximation problem occurs on different places (such as filter design,
speech processing); the area is quite extended in numerical analysis [74].

e. Optimization.

In computer aided design e.g. specific optimization problems occur which have
not been treated yet in the numerical literature (see Special Issue [29] and [93]).
f. Parallel algorithms.

With the fast development of VLSI technology, the interest in parallel processing
is also increasing. Fast parallel algorithms are being developed but the interest
in reliable numerical software remains present (e.g. [28][86]).

g. Software packages.

Many numerical software packages [23][24][25][75] have been developed and are
widely distributed. Special purpose packages for system theoretic applications
are also being developed [3][76][77]. There is a growing need for unification and
cooperation in that area [31][91].
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