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ABSTRACT 

We develop a recursive algorithm for obtaining factorizations of the type 

where all three matrices are rational and R,(A) is nonsingular. Moreover the factors 

R,(A) and R,(A) are such that either the poles of [R,(A)]-’ and R,(A) are in a 
prescribed region r of the complex plane, or their zeros. Such factorizations cover 
the specific cases of coprime factorization, inner-outer factorization, GCD extraction, 

and many more. The algorithm works on the state-space (or generalized state-space) 
realization of R(A) and derives in a recursive fashion the corresponding realizations 

of the factors. 

1. INTRODUCTION 

Several problems occurring in the literature of linear systems theory can 

be rephrased as a factorization problem for some rational matrix R(A). In this 
paper we consider a certain class of such factorizations, namely where the 
p X m rational matrix R(A) is factored into a product of two rational 
matrices: 
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where: 

(i) R,(A) is p X p nonsingular, i.e., R;‘(A) exists. 

(ii) Given a region I of the complex plane, one of the following two 

conditions is satisfied: 

(a) the poles of R;‘(h) and R,(A) lie in I; 

(b) the zeros of R,‘(A) and R,(A) lie in I. 

(iii) The (McMillan) degree 6 of R,(A) is minimal, which is shown to imply 
that, according to the choice (iiXa) or (iiXb), either 

6( R,) = # poles of R(A) outside I ( 1.2a) 

or 

6( R,) = # zeros of R(A) outside I. (1.2b) 

We will show in the sequel that there always exist such factorizations for 
any region I and that they are in fact far from unique unless some additional 

conditions are imposed. Notice also that to each factorization of the above 
type there corresponds a duul factorization where the roles of R,(A) and 

R,(A) are interchanged. These are easily obtained by working as above on 

the transpose of R(A), and transposing the obtained factors. It is common to 
call the above factorization a “left” one and the dual type a “right” one, but 
in the sequel we will only work with left factorizations and therefore drop 
this adjective. The above class of factorizations is rather general and covers 
the following special cases, which are well known in different application 

areas: 

(1) copri7rl.e facttizatio?z. Given a p X m rational matrix R(A), one 
wants to find polynomial matrices D(A) and N(A), with D(A) nonsingular, 

such that 

R(A) = D-‘(A)N(A). (1.3) 

This fits into the above formulation with condition (iiXa), where I = (ml. The 
condition (I.2a) is usually replaced here by the less restrictive condition that 
(I.2a) should only hold for the determinantal degree (see e.g. [ll]): 

G(det D(A)) = # finite poles of R(A). (1.4) 
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We will see in the sequel that the stronger constraint 

S( D(A)) = # finite poles of R(A) (1.5) 

is always satisfied by our constructive algorithm. 
(2) All-pass extraction. Given a p X m rational matrix R(z), one wants 

to find an alLpass transfer function R,(z), i.e., 

[fh(z- *)l*Rlw = 1, (1.6) 

[where . * denotes the conjugate transposed and . - * means ( * *I- ‘1, such 
that R,(z) = R, ‘(z)R(z) is stable in the sense of discrete-time systems (i.e., 
all poles are inside the unit circle). This can always be obtained by a stable 
factor R;‘(z), and the problem thus clearly fits into the above formulation 
with condition (ii)(a) where r is the closed unit disc: r = (z 1 IzI < 1). 
Equation (1.6) is an additional condition to the general ones, but can easily 
be incorporated in the method presented in this paper, as will be shown in 
the sequel. 

There is also a continuous-time analogue to the previous problem, where 
now “all-pass” means a transfer function R,(s) satisfying 

[R,(-s*)]*R,(s)=I,, (1.7) 

and where the stable region r is now the closed left half plane: 1 = 
{s IRe(s) G 01. 

(3) Inner-outer factorization. Here a stable (in the discrete-time sense) 
transfer matrix R(z) is given, and one seeks to extract a factor R,(z) which is 
all-pass-i.e. satisfies (1.6)-and such that the resulting factor R,(z) has all 
its zeros inside the unit disc. The “inner factor” R,(z) can always be chosen 
to have zeros inside the unit disc as well, which then clearly fits into the 
above formulation with condition (ii)(b) where r is the closed unit disc. 
Again, the additional condition (1.6) is easily incorporated in our method. 
This is the rational matrix version of what is usually called the “inner-outer 
factorization” [8] in functional analysis. In systems theory the factor R,(z) is 
also often called the “minimum-phase” factor of R(z) [Zl]. Here also there is 
a continuous-time analogue to the problem of inner-outer factorization, which 
should perhaps be termed “left-right factorization,” since now the stability 
region r for the zeros of R(s) is the closed left half plane. The factor R,(s) 
now satisfies (1.7), and R,(s) has all its zeros in r. 
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(4) GCD extraction. Let Pi(h), i = 1,. . . , k, be a set of polynomial 
matrices of dimensions p X m,. Then their greatest common (left) divisor 
(GCD) is defined as the nonsingular polynomial matrix D(A) such that 

P(A) = D(A)Q(A) (1 Sa) 

where 

(1.8b) 

~0) = [Q,(A)~...~Q~A)I~ (1 .Bc) 

and where the quotients Q,(A) form together a polynomial matrix Q(A) with 
no Smith zeros [ll]. Hence, both D-‘(A) and Q(A) have all their McMillan 
zeros at m, which is thus condition (ii)(b) with r = {CO}. The additional degree 
condition usually imposed is 

6( det D( A)) = # finite zeros of P(A), (1.9) 

which is less restrictive than (Ub). When P(A) has normal rank r < p, this 
degree condition is crucial for restricting the class of possible solutions. 

(5) Polynomial factor extraction. Given a p X m polynomial matrix 
P(A), one wants to find a p x p nonsingular divisor P,(A) which contains all 
the zeros of P(A) inside a region rf not containing the point at infinity: 

P(A) = P,(A)P,(A). (1.10) 

The factors P,‘(A) and P,(A) h ave thus their zeros in the complement 
r = r;, and this factorization thus satisfies (ii)(b). The additional degree 
condition 

G(det I’,( A)) = # zeros of P(A) in lYf (1.11) 

again makes the factorization essentially unique when the normal rank r of 
P(A) is smaller than p. The determinantal conditions (1.5), (1.91, (l.ll), 
which are less restrictive than (l.Zb), are easy to fulfill by our algorithm, as is 
shown later on. 
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2. A RECURSIVE APPROACH 

In the development of our algorithm we were strongly inspired by ideas 
found in Belevitch 123 and more elaborately in the work of Dewilde and 
Vandewalle [5, 14. There it is shown that it is always possible to find a 
nonsingular p x p rational transfer function C(h) of degree 1, i.e. with one 
pole y and one zero 6, such that in the product R,(A) = C(A)R(A), either 6 

cancels with a pole (say a,) of R(A), or y cancels with a zero (say pi> of 
R(A). For such a cancellation to occur, one of course needs 6 = cri (respec- 
tively, y = pi), b u in the matrix case some additional vector conditions are t 
required and can always be satisfied as shown in [5]. In some cases, when 
both S=a, and y =pi, it can happen that both y and S cancel, but this is 
inessential for our present discussion. 

Let us represent the rational matrix R(A) via its poles {ai 1 i = 1,. . . , I} 
and zeros (pj 1 j = 1,. . . , k}. Then the product R,(A)= C(A)R(A) can be 
represented as either of the following two: 

(2.Ia> 

[ f ] ( $:::::“a:) = (:;,:;rrr:,:J 
(2.lb) 

Here we have chosen to use square brackets for nonsingular rational 
matrices and round ones for (possibly) singular rational matrices. The 
number of poles is by definition the McMillan degree of the (nonsingular or 
singular) rational matrix. Notice that for nonsingular rational matrices, this 
also equals the number of zeros, while for the singular case, the number of 
zeros can be less than the McMillan degree [20]. Moreover, the inverse 
C-‘(A) of a nonsingular rational matrix has its poles and zeros interchanged. 
Therefore, from (2.1) one obtains for R(A) = C-‘(h)R,(A) = R,(A)R,(h) 

or 

(2.2b) 
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It is shown in [5] that in the construction of C(A) in (2.la) the pole y can be 
chosen arbitrarily, while 6 is fixed, since it must cancel with oi. Now if (pi 
had been the only pole of R(A) outside a given region I, then the 
factorization (2.2a) with R,(A) = C-‘(h) would correspond to a factorization 
as described in Section 1. All conditions (i), (ii), and (iii)(a) would indeed be 
satisfied iff y were chosen inside I as well, which is always possible as 
indicated above. The same holds for (2.Ib), where now y = pi cancels a zero 

P1 of R(A). If P1 were the only zero outside r, then (2.2b) would satisfy all 
conditions (i), (ii) and (iii)(b) of the factorization described in Section 1, 
provided 6 was chosen inside I. The factor C(A) in (2.1) has thus “dis- 
located’ one pole or = 6 (respectively, zero pi = r) outside I to a pole y 
(zero 6) inside I, using a factor R,‘(A) = C(A) which itself has a pole y 
(zero S) inside I. 

When several poles {cr, 1 i = I,. . . ,1,} (zeros {pj ) j = 1,. . . , k,}) are outside 
I, they can be dislocated recursively one after the other by such first-degree 
sections C,(A) as are described in (2.11, (2.2). This then yields 

6 ,,....6k,,Pk,+l,...~Pk 
= 

oi,a 
. (2.3b) 

a,...> ffl 

Considering the product of the nonsingular factors Ci(A) as R;‘(A) and the 
right-hand side as R,(A), this certainly satisfies the imposed conditions, 
since (i) R,(A) is constructed to be nonsingular, (ii) the poles (zeros) of 
R,(A) and R;‘(A) are in l? by construction, and (iii) the degree of R,(A) 
equals the number of poles (zeros) to be moved inside I. 

REMARK 2.1. Notice that the latter also sheds some light on condition 
(iii). This condition restricts the possible solutions R,(A) to those having 
minimal degree. Indeed, any solution R,(A) to conditions (i) and (ii) will 
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have degree at least equal to (1.2) as is easily seen from the above 
discussion. 

The above recursive scheme thus allows us to generate factorizations of 
the type described in Section 1, for any given region r. Things can be 
different, though, when additional conditions are imposed on any of the 
factors, such as the condition of R,(h) being all-pass. AS shown e.g. in [2], 
this implies that the poles yi and zeros ai are each other’s mirror image with 
respect to the unit circle (ri = Sip *) or to the jw-axis (+yi = - Si*). Since 
either y or 6 has to cancel with a point outside I, the other will be inside r 
(for both the discrete-time and continuous-time cases), and thus this does not 
contradict our requirements. Moreover, it is shown in [2] that these special 
conditions can be incorporated in factors that satisfy the cancellation prop- 
erty of (2.3). The other types of factorizations discussed in Section 1 imply a 
relaxation of some of the standard conditions and thus cause no trouble, 
except that our algorithm will only generate a restricted (but nonempty) set 
of all possible solutions. 

On the other hand when R(A) is real and one imposes the factors R,(h) 
and R,(A) to be real as well, problems will occur when R(A) has complex 
poles or zeros. When the region I is symmetric with respect to the real axis, 
such real factorizations do exist, but are not necessarily obtained by the 
above recursive scheme using first-degree factors, since some of these factors 
will be complex. On the other hand, when using real second-degree factors 
C,(A) with complex conjugate pairs of poles and/or zeros, one can still 
completely follow the above reasoning and thus derive real factorizations 
recursively, but then using second-degree factors whenever needed. In [14] 
the general formulas are given for constructing such real second-degree 
canceling factors. 

The major disadvantage of the above “transfer-function” approach is its 
complexity. First one has to compute the poles (or zeros) of R(A) in order to 
know which ones have to be canceled. Then one has to compute a partial- 
fraction expansion of R(A), and from the coefficient matrices of this expan- 
sion one derives certain vectors needed for the construction of the factors 
C,(A) [a process that can be very complicated when R(A) has coinciding 
poles and zeros]. Moreover, after each pole/zero cancellation with a factor 
C,(A), the expansion has to be updated. Finally, the process becomes even 
more involved when extracting real second-degree sections with complex 
conjugate poles and/or zeros, as is easily seen from the formulas given in 
[14]. This disadvantage suggests the use of another approach. Apparently, the 
most appealing methods for calculating poles and zeros use state-space 
models [9, 151. Since one has a compact description of the system, one could 
as well try to solve the problem using this parametrization. The necessary 
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and sufficient conditions of pole/zero cancellations using state-space models 
are derived in the next two sections and indeed turn out to be much simpler. 

3. DISLOCATING POLES IN STATE SPACE 

Here we first assume for simplicity that the matrices R(h), R;‘(h), and 
R,(A) only have finite poles. These conditions will be removed later on, 
but can always be obtained via a first-degree conformal mapping A = 
(a~ + b)/(cp + d) which does not affect the degree of rational matrices. 
The region I’(A) f o course has to be transformed accordingly to I(p). Since 
we assume now (without loss of generality) that R(A) has no infinite poles, it 
has a realization quadruple {A, B, C, D}, i.e., 

R(A)=C(AZ-A)-‘B+D, (3.1) 

which we will denote as 

R(A)- “c ; . 
H--l 

Let also 

R,‘(A)- F G . [-tl H I 

(3.2) 

(3.3) 

In order to construct a quadruple for the product R,(A) = R, ‘(A)R(A) we 
make use of the following lemma. 

LEMMA 3.1. LA 

be realizations of two transfer matrices. Then a realization of the product of 
the two corresponding transfer matrices (in that order) is given by the 
constant matrix product 
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Proof. See Appendix. W 

The right-hand side of (3.4) is often found in the literature [3], but it is 
rarely mentioned that it can be written as a product of two matrices as well 
(see also [6]). This is an elegant feature of working with realizations and will 
be exploited in the sequel. Notice also that these realizations need not be 
minimal. 

Using this lemma, we now derive necessary and sufficient conditions for 
canceling the poles of a transfer function R(h). Let us choose a minimal 

realization (3.2) for R(h) where A is in (upper) Schur form and where the 
eigenvalues of A outside f are all grouped in the top left comer A,,. Let us 
assume that the blocks Aii have dimensions IZ~ X ni for i = 1, 2 (where 
n = n1 + 72,): 

(3.5) 

(such a realization can always be obtained by updating (3.2) with a unitary 

state-space transformation [13, 191). Th en the canceling factor R,(A) will 
have degree nl according to condition (iii). Let its minimal realization be 
given by (3.31, h w ere F has order n,. Following Lemma 3.1, a (nonminimal) 
realization for R,(h) is then given by 

F G 
1 0 “I L-L 0 L2 

H J 

This now has all its poles inside r iff the eigenvalues of A,, are either 
unobservable or uncontrollable, since A,, is r-stable by assumption and F is 
chosen to be r-stable (see Section 2). Since we assumed (3.5) to be a 
minimal realization, the eigenvalues of A 11 are clearly controllable in (3.5) 
and hence also in (3.6). Let 9? be the invariant subspace of the state space 
of (3.6) corresponding to the eigenvalues of A,,. This space is uniquely 
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defined, since the spectrum of A,, is disjoint from the rest of the poles of 

(3.6). A basis for E in the coordinate system of (3.6) is easily seen to be 

Lx-= I” ([ I) 

) (3.7) 
“I 
0 

where X is the (unique) solution of the Sylvester equation 

XA,, - FX = GC,. (3.8) 

Since this space must be unobservable, one has [H,JC,,JCsIX= 0, or 

Hx+Jc,=o. (3.9) 

A reduced realization for R,(h) is then obtained using the state-space 

transformation 

Performed on (3.6) this yields, because of(3.8), (3.91, 

1. (3.10) 

R2(*)_[i il Gc2g12i GD;l] 

_[; Gc2;;12~ ““;1]. (3.11) 

which again has state-space dimension nr + n2. Summarizing, we have thus 
proved the following theorem. 
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THEOREM 3.1. Let R(A) be a p X m rational matrix with a minimal 

realization of order n = 71, + n2 as given in (3.5), where h(A,,) C r and 

A(A,,)cI'~, the complement of r. Then R,(h) and R,(h) realized by 

R,‘(h)- F G , H--l H I (3.12a) 

R,(A) - [i Gc2;;12 1 GD;l] (3.1%) 

satisfy the required conditions of the factorization (1.1) iff: 

(i> {F,G,H,J} p re resents a nonsingular transfer matrix; 

(ii) the following equation is satisfied: 

(iii) A(F) c r. 

(3.13) 

Proof. That (i) is equivalent to condition (i) of the factorization (1.1) is 
obvious. Then, assuming (i) holds, it is clear that (iii) is equivalent to the 
poles of (3.12a) lying in r. Condition (ii) is a rewriting of (3.8), (3.9) and is 
thus equivalent to the poles of (3.12b) lying in r also. Finally, the degree 
condition (1.2a) is automatically satisfied, since R,‘(A) has a realization of 
order n,. n 

The question now of course remains how to find matrices F, G, H, J, and 
X satisfying the conditions of Theorem 3.1. Although we know from the 
previous section that such a solution must exist, we would like to derive here 
a constructive proof which does not rely on the material of Section 2. For 
this, we first show that the nonsingularity of the system {F,G, H,J} implies 
X is invertible. 

LEMMA 3.2. Let (A,,, C,> be observable, and let (F,G, H, J} satisfy 
(3.13). Then {F, G, H, J) represents a nonsingular system only ifX in (3.13) is 
nonsingular. 
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Proof. We assume that (F, G, H, J} represents a nonsingular system. 
Using (3.8) and (3.9) one easily derives 

[qq-+][$] = [+%l-w (3.14) 

for any value of A. Choosing a point A which is neither an eigenvalue of A,, 
nor a zero of {F, G, H, J}, we have that 

A,,-AZ and S(A) = kY-+l (3.15) 

are both nonsingular [ZO]. Hence from (3.14), 

X and $ 
[ 1 1 

must have the same rank and also the same null space, which we represent 
by JR’. Thus we have 

JI/= Ker X, C,M= 0. (3.16) 

Applying this null space to (3.14) for A = 0, we find 

xA,,Jv= 0, or A,,J!J CM. (3.17) 

But then M must be an unobservable subspace of (A,,, C,), which contra- 
dicts the assumptions. w 

From this one also easily obtains the following result, which is to be 
expected from the discussion of Section 2. 

COROLLARY 3.1. The eigenvalues of A,,-i.e. the poles of R(A)- to be 

canceled are the zeros of the nonsingular system ( F, G, H, J}. 

Proof. Since X is nonsingular, it follows from (3.14) that S(A) and 
A r, - AZ lose rank together at the eigenvalues of A I 1, and the zeros of S(A) 
are indeed those of its associated transfer function R; ‘(A) [20]. w 
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Since X is now invertible, it can be “absorbed” into the quadruple 

(F, G, H, J} as a state-space transformation. Putting 

{$,k,z?,j) =(X-%X,X-'G,HX,J}, (3.18) 

it follows indeed from (3.13) that we are looking for a system {Z?, G, A, j] 
satisfying 

[g+][+] = [+I. (3.19) 

and this is easily solved via the following procedure: 

ALGORITHM 3.1. 

Step 1. Determine e, G, with A($) c r by solving the pole placement 
problem 

$=A,,-GC,. (3.20) 

This has always a solution, since (A,,,C,) is observable. 

Step 2. Determine [A 1 jlT as any basis for the null space of [Zm, 1 CT], i.e. 

[fil jl=M[-cd ‘I (3.21) 

for an arbitrary invertible M. 

Since the non-singularity of the system {E, G, A, I} immediately follows 
from the invertibility of 9 = M, all conditions of Theorem 3.1 are clearly 
satisfied. We have thus derived here a constructive proof that the undesired 
poles of a transfer function R(h) can be canceled by a nonsingular transfer 
function R,‘(h) whose degree equals the number of poles to be canceled 
(here n,), whose zeros will indeed be those unwanted poles, and whose 
poles can be chosen arbitrarily in P. Moreover, it is interesting that here we 
did not need a recursive argument, as was the case in the work of Belevitch 
[2] and of Dewilde and Vandewalle [5]. Th e recursiveness, though, when also 
used in state space, will yield a very simple and elegant algorithm, as is 
shown in Section 5. 
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Here we consider the case of canceling the undesired zeros of R(A) that 
are outside a specified region I by the poles of R, ‘(A). As before, let 

R,l(h)- F G 
[+I H I 

(4.1) 

be a minimal realization of the factor R;‘(h), and let 
dimension. Then according to Lemma 3.1, the product 
is realized by 

n, be its state-space 
R,(A) = R,‘(A)R(A) 

(4.2) 

We would like now the poles of R;‘(A)-i.e. the spectrum of F-to cancel 
with the undesired zeros of R(A), which are assumed to be n, in number. 
Since the pair (F, H) is observable in (4.1), it is also observable in (4.2), and 
the spectrum of F in (4.2) must thus be uncontrollable. Since (A, B) is 
controllable in (4.21, the controllable subspace 3Y of the realization (4.2) 
must be of the form 141 

.!z-= ([ I) I” ) 
n 

(4.3) 

where X satisfies [4] 

XA- FX=GC, XB=GD. (4.4) 

The state-space transformation 

[ 

I 
T-l= “1 

-X 

0 1, I> [ T= 
1 

nl x 
1 0 I,’ 

applied to (4.21, then yields 

0 0 

-1 

B , 
ID 

where we have used (4.4) for the zero blocks in the top row of (4.6). 

(4.5) 

(4.6) 
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Unfortunately, the condition (4.4) is only a necessary condition for the 

pole-zero cancellation to occur. This is illustrated by the following example. 
Let 

W)=[ E#[+jG]=[$++] (4.7) 

and 

fi?(A)=[: A]-[#%]=[# (4.8) 

Clearly R(A) has a zero at A = 2, which we hope to dislocate by the factor 
RF ‘(A), which has a pole at A = 2 and a zero at A = 0. Now following (4.2) 
we have 

R,(A)=R,‘(A).R(A)- (4.9) 

and the condition (4.4) is clearly satisfied for X = [0 01. The eigenvalue A = 2 
of F indeed is uncontrollable in (4.9) but it has not canceled the zero of 
R(A), since R,(A) is again equal to R(A). No zero dislocation from A = 2 to 
A = 0 has taken place here. 

Apparently some additional conditions have to be imposed on X in order 
to enforce a zero dislocation. In order to do so, one has to explicitly specify 
first which zeros of R(A) have to be dislocated, as was done in (3.5) for the 
poles. A similar decomposition for the zeros is now derived. For this we first 
recall the following lemmas, proved in [18]: 

LEMMA 4.1. Let U be any invertible transformation such that 

(4.10) 

where 6 has linearly independent columns. Then the generalized eigenvalues 
of As - A are the zeros of R(A) = C(AZ - A)-‘B + D. n 

Notice that, since [ - C 1 D]U = [O Ifi], rank 6 equals rank[ - C 1 D] and 
the numbers of columns r?r of 6 and m of D may thus differ [which is why 
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we used a dashed line in (4.10)]. We also remark that in practice one uses 
unitary matrices U, which yields a numerically stable construction of what 
was called the zero pencil Ai - A in [18]. The use of unitary matrices is also 
maintained in the following lemma, leading to the separation between two 
parts of the spectrum of A I? - A. 

LEMMA 4.2. Let hi? - A be an arbitrary singular pencil with spectrum 

A( i?, A)--- i.e., A( I?, A) is the set of generalized eigenvalues of A 8 - d. Then 

for any complementary regions r and r, of the complex plane separating 

R(EI, A) into two disjoint parts A, and Ar,, there exist unitary transforma- 
tions Q and Z such that 

I 

A&, - A,, A& -A,, A&,-& 

Q*(A&ri)Z= 0 A&, - &s A& -&a 

I 

(4.11) 

0 0 A& - A,, 

whereby 

6) A(cI1, A,,) = A,, A(&,, As,> = Arc, A(&,, A,,> =0; 
(ii) A El1 - AJl is right invertible for A E r,; 
(iii> A<,, - es2 is invertible fm A E r; 
(iv) AE,, - A,, is lef invertible. 

Lemma 4.2 essentially says that there exists a (generalized) block Schur 
decomposition (4.11) with the generalized eigenvalues of hi? - A inside r 
gathered in A I?,, - a,,, and the remaining ones gathered in A & - as2 (see 
[16, l] for algorithms). The additional conditions (ii), (iii), (iv) guarantee that 
such a decomposition is essentially unique, and they will play an important 
role in the sequel. These two lemmas now lead to the following theorem. 

THEOREM 4.1. One can always update a minimal realization (3.2) by a 

unitary state-space transformation Q such that its zero pencil (4.10) is 
automatically in generalized Schur form (4.111, i.e., 

[ Q*(~;~A)Q 1 VI;] = 
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1 “I 

1 
1 
“2 (4.13) 
n3 

IP 

where A ,$,, - A 11, A I?,, - A,,, and Al?,, - i33 satisfy conditions (i), (ii), 
(iii), (iv) of Lemma 3.2 (hence A, > n,, ii2 = n2, fi, < n,). 

Proof. Let the zero pencil AI? - a of a given realization (3.2) be as in 
(4.10), and let (4.11) be its required Schur form. Then we have 

A&-ii,, A&-&, A&,-L&, i A&-& 

0 AE^2z-&, A&-A,,: A&-& 
= 

’ 
(4.14) 

0 0 

0 0 

where $I is the number of columns of 6. From this we then obtain (4.121, 
(4.13) by putting 

(4.15) 
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This proves that Q as given in (4.11) is the required unitary state-space 
transformation. n 

Without loss of generality we can thus assume that our state-space 
realization is in a form satisfying (4.13) where AI?,, - AZ2 contains the zeros 
of R(A) to be dislocated. This form is to be considered an analogue to (3.5), 
now isolating the zeros to be cancelled in a separate block A i,, - A,, . The 
fact that now there is a third block AI?,, - asa is due to the possible 
singularity of the pencil (4.12)---and hence of R(A) (see [lS]>. Indeed, when 
R(A) happens to be right invertible, so will (4.12), and the block A& - a,, 
will vanish [18]. 

We are now ready to formulate a theorem on zero dislocation analogously 
to Theorem 3.1. 

THEOREM 4.2. Let R(A) be a p X m rational matrix with a mini- 
mal realization of order n = ?I + n2 + n3 as given in (4.12), (4.13), 
where A(,??,,, AI1) c I? and A(E,,,fi,,)c r,, the complement of r, and 
A( I&, a.& =0. Then R,(A) and R,(A) realized by 

R,‘(A) - F G , H-l H .l RAA) - [a] (4.1fkb) 
satisfy the required conditions of the factorization (1.1) iff: 

(i) (F,G,H,J) p re resents a nonsingular transfer matrix; 
(ii) the following equation is satisfied fm the n2 X(n, + n2 + n3) matrix 

x =[O x, X3]: 

[X Gl[$j+] =F[X 01, (4.17) 

with X, invertible; 
(iii) the zeros of (F, G, H, J) lie in r. 

Proof. That (i) is equivalent to condition (i) of the factorization (1.1) is 
obvious. Then, assuming (i) holds, (iii) is necessary and sufficient for (4.16a) 
to have its zeros in I. If we can also prove that, under the assumption that (i) 
and (iii) hold, (ii) is necessary and sufficient for (4.16b) to have its zeros in I, 
then the theorem is proved, since the degree condition (1.2b) is satisfied by 
construction. 

We now first prove the necessity of (ii). Since R,(A) is invertible, the 
zeros of R,(A) can only be dislocated by a cancellation with the poles of 
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R;‘(A). Hence (4.4), (4.6) must hold, or equivalently, condition (ii), without 
any specification for X, must hold. But-as mentioned in (4.7), (4.8)-&s is 
not enough, since for some X the zeros of R,(h) may not be dislocated 
despite the cancellation of the poles of R;‘(h). For deriving the additional 
condition on X, we partition X, U, and the product [X 1 O]U conformably with 
(4.12), (4.13). Using (4.13) for the structure of U, we thus have 

Xef[X1 x, x3], (4.18) 

[XlO]U~‘[2, 2, T3 1 rz,]. 
Multiplying the columns of (4.16b) by U and using (4.20) yields 

! 
h&ii,, A&-/i,, A&-z-i,, 

0 AZ?,, -A,, A&, -A,, 
= 

0 0 Ai,, - A,, 

- Hf, -H& -Hf, 

I 
I 
I 
I 

l- 

(4.19) 

(4.20) 

. (4.21) 

Similarly, the condition (4.17) becomes, after multiplying both sides by U 
and using (4.18), (4.20), 

[XI X, X, G] 

A&-ii,, A_&-& A&,-ff,, 1 A#,-& 

0 AZ?,,-&, A&,-&, i A&-& 

0 0 AZ?,, - A,, j A&-Z?, ’ 0 0 0 I Z5 1 = (AZ_- F)[i, & i, rid]. (4.22) 
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From this we extract X,(AE^,, -a,,>=(AI--F)Xi. Now AI-F and 
AE”,, - a,, are left and right invertible, respectively, and have no common 
spectrum by assumption. Therefore we have Xi = 0, 2, = 0 because of 
Lemma A.2 of the Appendix. Now consider X2, which equals X,$,,. First 
note that Fizz must be invertible, since we assumed that the zeros to be 
dislocated were finite. We now prove that X, (and hence X2) must be 
invertible if R,(A) has no zeros outside r. For this, consider the pencil 
(4.21), which, after multiplying the second block column by 8,‘, looks like 

I 
hi'?,, - A,, * 

0 AI - /i,,E^,’ 
0 0 

. (4.23) 

0 - HX, 

Because of Lemma 4.1, the finite zeros of R,(A) are the finite eigenvalues of 
AI? - a and hence also of (4.23). But this pencil will clearly drop rank at 
any unobservable mode of the pair (fi,,E”&‘, - HX,), which contradicts 
the singularity of X,. Indeed, let JI/ be the kernel of X,; then from 
X,(A zZZ - a,,> = (AZ- - F)f, [extracted from (4.22)] one also finds that JI/ 
is an unobservable space of (A,, EG’, - HX,). 

Next, we prove the suficiency of (ii). We thus have to prove that R,(A) 
has no spectrum left outside r. Using (4.23) and the invertibility of X,, we 
define 

A def 1 ,. . 

Y, = X;lX, = F, + Y,F,. 

From (4.22) one then obtains the identity 

=(AZ-X,‘FX,)[E^,, f3 $1, (4.24) 
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which can be used to transform (4.23) to 

A&, - A,, * * * 

0 X,‘(AZ- F)X, 0 X,'Gd 

0 0 AZ&-A,, 

, 1 

j 
. (4.25) 

* 

0 - HX, 0 ; 16 1 

From this one now clearly sees that the zeros of R,(A) are the union of 
A(Z?,,, a,,> ( c PI, of A(&, Ass) ( =0), and of the zeros of {F,GZ?, H, J& 
( c r). This thus completes the proof. H 

For the construction of a solution to the above theorem, we can again 
“absorb” the invertible factor X, into the quadruple (F, G, H, J) as a 
state-space transformation. Putting 

@,d,A,j) ={~,lFx,,x;l~,Hx,,Jj, (4.26) 

it then follows that we are looking for a system { F^, d, I-i, I} satisfying 

=(AZ-#)[& ?a Yd], (4.27) 

and this is easily solved via the following procedure: 

ALGORITHM 4.1. 

Step 1. Put F^ = &a El,‘. 
Step 2. Solve 

y&% - A,,)-(AZ-fi)&=-((A&-&,) (4.28) 

for Y, and Ya. This has always a solution according to Lemma A.3 of 
the Appendix. 
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Step 3. Put f4 = es + Y, gs, and solve for G from 

Step 4. Choose A, j such that the zeros of {F”,G, A, I} lie in I. For finite 
zeros this is a pole placement problem, since then j is invertible. 
Choose then K such that A( F^ + GK) c r, and then solve for [A jlT 
as any basis for the null space of [ In2 1 Kr], i.e. 

[fil j]=M[-KI II 

for an arbitrary invertible M. (For infinite zeros the solution is more 
involved but can be constructed also-see concluding remarks.) 

5. RECURSIVE POLE DISLOCATIONS IN STATE SPACE 

The method for dislocating poles in state space described in Section 3 has 
the advantage of dealing with constant matrices only and of solving the 
dislocation problem for arbitrary degree n, at once. But the method has also 
a number of drawbacks: 

(1) the additional conditions on the factor R;‘(h) mentioned in the 
introduction are hard to add on to condition (i) of Theorem 3.1; 

(2) the choice of the state-space coordinate system for the system 
(F, G, H, J} is not apparent; 

(3) the state-space transformation (3.10) depending on the matrix X, 
ought to be avoided when it is badly conditioned (i.e. when X has a large 
norm); 

(4) the system matrix dimensions may be significantly enlarged while 
constructing {F, G, H, J} via (3.6). 

In this section we show that by returning to the idea of recursiveness 
presented in Section 2, one can easily include the special conditions on the 
factor R,(A) in Theorem 3.1 and at the same time avoid the above draw- 
backs. For a recursive solution of the problem in state space, we want to 
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dislocate one “bad’ eigenvalue of R(h) at a time. For this we thus consider a 
realization (3.5) where n, = 1. The “updating” transformation for obtaining 
such a realization (3.5) with ni = 1 is known to require only O(n’> opera- 
tions [13]. We show that one can then give explicit formulas for the 
construction in Algorithm 3.1, while at the same time satisfying some 
additional constraints on R,(A). 

Notice that R,(h) is now of first degree and thus (3.20) is a scalar 
condition. This suggests that one can exploit the degrees of freedom still 
present in Algorithm 3.1. Indeed, we show below that the realization of 

R,‘(A)-{F,G,H,Jl can be chosen in the following form: 

F G [+I H I 

f g 0 ... 0 

h j III-----I 0 
1 

= 

I,-, 
[tl v ’ 

0 

where V is a unitary transformation (i.e., W* = I,) satisfying 

; 
v*q= : , [I 0 

(5.1) 

(5.2) 

where c is nonzero (otherwise a,, would be unobservable) and can be 
chosen real. Using this form, let us now see how to satisfy all conditions of 
Theorem 3.1. The transfer function R;‘(A) of (5.1) is given by 

R;‘(A) = ‘(‘) 
[-tl 

Z 
V, with r(A) = j+h(A-f)-‘g 

p-1 

jA+hg-jf 
= 

A-f ’ (5.3) 

which is nonsingular and of degree 1 iff hg # 0. Because of (5.Q (5.2), 
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condition (ii) simplifies to 
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(5.4) 

where x and a,, are now also scalar. Finally, condition (iii) requires that 
f E r, which is again a scalar condition. Other special conditions to be 
imposed on R;‘(A) for the applications of Section 1 are obtained by 
concentrating on the scalar function r(h) only: 

(1) For coprime factorizations and polynomial factorizations one has to 
work in a transformed variable, say A = l/p. Then R;'(l/p) is polynomial 
in /..L if f = 0, while RI(~) is polynomial in /_L if hg = $ In both cases one 
may take (gl = Jhl and either one of them real. The corresponding scalar 
function r(l/,u) is then equal to j - gh,u or j/(1-pf), respectively. 

(2) For an all-pass factor R; ‘(A) in the variable s = A one takes j = 1 

and g=h=m.Th e corresponding scalar function r(s) is then equal to 

(s + f>/<s -f 1. 
(3) For an inner factor R,‘(A) in the variable z = A one takes j = j= and 

g=-h=dg. The corresponding scalar function r(z) is then equal to 

<fi - l)/(Z - f 1. 

REMARK 5.1. Notice that the above realizations (f, g, h, j) of the scalar 
functions r(p), r(s), and r(z) are in balanced form, since for each of them 
g2 = h2. This h c owe of realization (which for a first-degree factor only 
consists of a scaling of g and h) is recommended for numerical reasons. For 
the case of an inner factor r(z), it results e.g. in a realization where the 
compound matrix 

[l :]=[ -fg ;] 
is unitary, since 1 f 1’ + g2 = 1. The overall state-space model (5.1) is then 
also unitary, which has good numerical consequences for the construction 
given in (3.4). 

We now show that these conditions are easy to satisfy for each of the 
above restrictions. Without loss of generality, we illustrate this for the case of 
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inner factors only. Let a,, and c be given; then one proceeds as follows. The 
pole a,, must be cancelled by a zero in t(z), which completely fixes the 
factor (f= l/Z,,). Since by assumption a,, E I,, we automatically have 
f E I. Finally, the scalar x is computed from (5.4) and is then used to 
construct the updating state-space transformation (3.10) and then compute 
(3.11). Together with (5.1) (5.2) this th en satisfies all required conditions. It 
is easily seen that for other types of first-degree factors the same reasoning 
goes through. This thus circumvents the two first drawbacks mentioned 
above. 

Let us now turn to the last two drawbacks. For this we first define 

and then rewrite (3.6) for the particular choice (5.1) (5.2) made here: 

I f gc Is; 
a11 Al2 

A 22 

I 
h jc jCiJ 

0 0 
. . . . CL 
0 0 

gD+ 
Bl 
B2 

jD’ . 

D- 

(5.5) 

(5.6) 

Since x may be large, one may be forced to apply a nonunitary state-space 
transformation that is poorly conditioned and likely to induce rounding errors 
of unacceptable size. This can be avoided by replacing (3.10) with the unitary 
state-space transformation 

Y (+ 0 
T= -CT 7 0 , 

[ 1 (5.7) 
I “2 

which has the effect of “swapping” f and a,, in the triangular form (5.6). 
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Such a Givens transformation always exists, and the coefficients y and (+ are 
determined via 

One easily checks that in fact x = y/a and that (5.7) is the unitary 
equivalent of (3.10) for isolating the unobservable space (3.7). Each time that 
an unobservable eigenvalue a iI is isolated, we can also reduce the trans- 
formed state-space model (5.6) again to one of order n such that there is 
never an increase of state dimension in the overall process. This thus 
overcomes the last two drawbacks as well. 

The overall algorithm now becomes very similar to the recursive cancella- 
tion algorithm of Section 2. It can in fact be viewed as a state-space 
equivalent of this method, whereby unitary transformations are used as much 
as possible. 

ALGORITHM 5.1. 

Step 1. Construct a state-space realization {A, B, C, D} of R(h) (possibly by 
using some transformation of variable). 

Step 2. Perform a unitary transformation to put {A, B, C, 0) in Schur form 
(3.5). 

Step 3. WHILE there is still an undesired pole DO 

Transform an undesired eigenvalue to position a,,. 
Transform the (new) corresponding first column of C according 

to (5.2). 
Choose {f, g, h, j} satisfying the conditions (5.3), (5.4). 
Construct the expanded state space model (5.6). 
Deflate the uncontrollable eigenvalue a,, using (5.7). 

END 

6. RECURSIVE ZERO DISLOCATIONS IN STATE SPACE 

We now turn to the recursive dislocation of zeros in state space. Since the 
zeros of the transfer function are described by a (possibly singular) general- 
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ized eigenvalue problem, one may now expect a slightly more involved 
procedure. Yet, the techniques used here are still very similar to those of the 
previous section. 

We dislocate one zero at a time (na = l), and we assume that a state-space 
model is used along the lines of Theorem 4.2. More precisely, we assume 
that 

= 

hJell-All h&4,, A&-A,, / A~,-B, 
0 At?,, - a^,, A&-&,; A&& 

0 0 A&, - A,, i A&l& 

0 0 0 I L3 
-v-v 

n ,. 
n1 

1 
n3 r?l 

where A I?,, - a33 has full column rank for all A and l? also has full column 
rank, and where A 2 1 1 - a,, has full row rank for almost all A. The matrices 
X, and F of Theorem 4.2 are now just scalars x2 and f. For the realization 
(4.26) one obtains 

(f,G,H,J) d~f{f,~x2,~/x,.j}, (6.2) 

and one can e.g. choose x2 such that llGll= [[HII. Moreover (4.27) simplifies 
to 

which is obtained by filling in A = p = a^,, / e^,, in (4.27) and multiplying by 
* 
e=. Because of the above rank conditions, this always has a solution. 
Moreover, if a special staircase form is used for Ag,, - ass [l], then (6.3) 
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can be solved in O(n’) operations, since the matrix is already in column 
,. 

echelon form. This thus yields both Ya and G at the same time. 
As in the previous section, we try to construct a realization (6.2) of the 

form 

= 

'f g 0 *** 0 

h _i 

II 

0 

0 
zp-1 f gxz 0 **a 0 

h/x, 3 ! 0 

0 
zp-1 

1 +1 v ’ 
(6.4) 

with V unitary. Let G be the solution of (6.3). Then it can always be written 
as a product [d 0 . . . O]V for some unitary V. If we choose V to be just a 
sequence of p - 1 Givens rotations, this essentially determines V. The 
transfer function of (6.4) is clearly equal to 

V, with r(A)=j- 

(6.5) 

and it is thus easy to choose the remaining fi and f (or h and j) such that 
(6.5) has a zero hg/ j - f in the right location ( E I). Any additional 
conditions such as those described in the previous section are also easy to 
impose. This is due to the remaining degree of freedom x2, which is typically 
used to balance the realization (6.2). 

REMARK 6.1. Notice that the conditions of Theorem 4.2 are no longer all 
satisfied here. Indeed, since we only isolated one undesired zero in (6.11, 
A(J?,,,~,,> may still contain elements outside r. Yet, in Theorem 4.2 we 
only used this condition to show that X, then had to be zero. In this section, 
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we choose X, = 0 and gave a simplified construction for the case n, = 1, 
which does yield a zero dislocation. 

Once the transfer function (6.5) has been constructed, we update (6.1) 

using (4.16b) with H,J having the special form (6.4). This is done by first 
multiplying C, D, and fi from the left by V. This first step is cheap, since V 
is just a sequence of p - 1 Givens rotations. Next, we update only one row of 
(6.1) using the scalars h and j, which is again cheap. The result is 

A&-A,, h&-A,, h&,-A,, I At,-B, )nl 

0 At?,, - a^,, Ati,,-&, 1 A&t?, }l 
= 

0 0 A&,-A 33 j A&-l& }n3 (6.6) 
0 - HX^, -H& ’ 1 b j Jti-Hz, )P 

v-v- 

,. ,. 
n1 

1 
n3 

r?l 

Here U has now to be updated in order to put the right-hand side of (6.6) 
again in the form (6.1). Since there is only one row to be annihilated in (6.1), 

this can be done with a sequence of ii, Givens rotations, as e.g. indicated in 
[16, 11. The same techniques can also be used to “reorder” (6.1) so that a new 
undesired zero appears in the middle position of (6.1). It is also shown there 
that these updating transformations require only O(n’) operations. 

The overall algorithm now becomes: 

ALGORITHM 6.1. 

Step 1: Construct a state-space realization {A, B, C, D} of R(A) (possibly by 
using some transformation of variable). 

Step 2. Perform a unitary transformation to put {A, B, C, D} in the special 
form (6.1). 

Step 3. WHILE there is still an undesired zero DO 

Transform an undesired eigenvalue to position AZ, - a^, as in 
(6.1). 



692 PAUL VAN DOOREN 

Solve for f? and e according to (6.3) and construct V. 

Choose {f, g, h, jl according to (6.4) and such that (6.5) has the 
required zero (and other properties). 
Construct the updated state-space model (6.6). 
Update U in (6.6) to yield again a model in the form (6.1). 

END 

7. CONCLUDING REMARKS 

In this paper we have presented a state-space approach to pole-zero 
cancellation, which can be used for constructing a wide variety of polynomial 
and rational matrix factorizations. The major advantage of the state-space 
approach over the transfer-function approach of Dewilde and Vandewalle [5, 
141 is its simplicity. This is reflected e.g. in the fact that in state space a 
solution can be given to cancel all the poles or zeros at once, using the 
solution of a Sylvester equation (Sections 3 and 4). (Note that a similar 
“block’ approach was also recently used in [lo] for a related problem.) In 
Sections 5 and 6 we also presented recursive versions of this state-space 
approach which are inspired by the transfer-function methods and cancel 
only one pole or zero at a time. The equations to be solved then are scalar 
and can in fact be viewed as the scalar systems encountered when solving 
Sylvester equations recursively via a Schur approach. This results in a simple 
recursive method that can be implemented using basic building blocks of 
linear-algebra software. 

One should point out here that once the Schur forms corresponding to 
the zeros or poles of the transfer function are known, the cancellation 
problem then boils down to the solution of a system of linear equations 
(namely a pole placement problem tackled via a Sylvester equation). This 
simple observation is not easy to deduce from the transfer-function approach. 
The factorization problems described in the introduction are thus all solved 
in a two-stage fashion: first compute the Schur forms of the zeros or poles 
(this is an iterative process), then solve the system of linear equations to 
construct the factors (this is a finite process). One could argue that it is a 
roundabout approach to use an iterative process to solve problems such as 
coprime factorization which can also be solved using a finite recursion [ll]. 
Yet, it is e.g. recommended to solve Lyapunov and Sylvester equations via 
Schur methods as well [19]. 

The overall complexity of the method using state-space models can be 
evaluated, since the complexity of all its subproblems is well known. The 
Schur decompositions require 0(n3) operations, and the recursive cancella- 
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tions O(n,,n”), where lzy, is the number of pole-zero cancellations to be 
performed. When the rational matrix is not given in state-space form, one 
still has to construct a realization, and the complexity of this initial step 
depends on the original representation of the transfer function [15]. In 
general, though, one would even expect that passing through state space 
would yield an economical way to construct the factorization. The other 
advantage of the state-space approach is the controlled numerical behavior of 
all intermediate steps. All linear-algebra problems encountered in this ap- 
proach are well studied for their numerical behavior. Proving the stability of 
the concatenation of these subtasks into one algorithm requires a separate 
analysis, of course. 

Not all issues were tackled here for reasons of simplicity. A full-scale 
algorithmic implementation of our method would also require the ability to 
deal with complex conjugate pairs using real arithmetic only. This would 
follow the lines of Sections 5 and 6, where now 2X2 blocks are being dealt 
with. This of course complicates the formulas, but all algorithmic details can 
be dealt with appropriately. This is very similar again to the solution of 2 X 2 
blocks in the Schur method for Sylvester equations. Another problem is that 
of using generalized state-space models instead of state-space models. 
This can e.g. be needed if one wants to avoid a conformal mapping A = 
(a/.~ + b)/(cp + d) when constructing a realization for R(h). Such tech- 
niques are required in order to deal with infinite poles or zeros efficiently, 
rather than using conformal mapping. All linear-algebra tools for such 
generalizations are in fact available, and this should cause no difficulties. 

An unsolved problem in this paper, is the dislocation of the null-space 
structure of a transfer function to certain zero locations. This would lead to 
factorizations (1.1) of a p X m transfer function R(A) with p > m, where e.g. 
R,(h) has a zero block at the bottom [i.e., the null-space structure of R,(A) is 
now trivially displayed]. Such factorization can e.g. be found in [I2]. It is 
currently being investigated whether our approach can also handle such 
cases. Other possible application areas could be sought in the minimal-design 
problem [22] or in state-space formulations of certain G??~ and 2, control 
problems [7]. 

APPENDIX A 

LEMMA A.l. Let 

&(A,;[+=] for i=1,2 
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be the system matrices of the rational matrices R,(A) of dimensions pi X mi. 
Then, provided m I = p, , one obtains a system matrix S(h) for the product 

R(A) = R,(A)%(A) (A.11 

by the product of the “embedded” system matrices: 

Proof. The transfer function of a system matrix is its Schur complement 
with respect to it bottom right comer. It is easily seen that the transforma- 

c T,(A) * _I,,,,“1 (A.3) 
do not affect this Schur complement. It is now clear from the structure of the 
right-hand side of (A.31 that this Schur complement is exactly R,(A)R,(A), 
which completes the proof. n 

COROLLARY A.l. Let 

Si(A)=[w] for i=1,2 



RATIONAL AND POLYNOMIAL MATRIX FACTORIZATIONS 695 

be system matrices in the generalized state-space form of Rich). Then the 
above formula automatically yields a generalized state-space model fm the 

1 (A.4) 

COROLLARY A.2. Let (Ai, Bi,C,, Di] f or i = 1,2 be realizations of Rich). 
Then the above formula automatically yields a state-space quadruple 
{A, B, C, D} for the product 

A B H-l C D= 

= 
‘A, B, 

-I- I 
a2 

Cl D, 1. (A.51 

It is interesting to notice that the embedded matrices in (A.2), (A.51 are 
in fact nonminimal system matrices and realizations, respectively, of R,(h) 
and R,(h). System matrices (and realizations) of a product of two rational 
matrices can thus be obtained as a product of their respective system 
matrices (and realizations), provided these are appropriately chosen. We 
remark that similar observations were also made in [6]. 

The following lemmas are proved in [17]. 

LEMMA A.2. Zf the pencils A E, - A, and h E, - A, are left and right 
invertible (fw some h), respectively, and if they have no common spectrum, 
then the equation 

(AE,-A,)P-Q(~E,-A,)=o (A.61 

has the unique solution P = 0, Q = 0. 
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LEMMA A.3. Zf the pencils h, E - A, and A E, - A,. are lef and right 
invertible (fm some A), respectively, and if they have no common spectrum, 

then the equation 

P(hE,-A,)-(AE,-A,)Q=AS-T (A.7) 

always has a solution for P,Q. 

This research was partly done while the author was visiting the Depart- 

ment of Systems Engineering of the Australian National University {winter 

1985). 
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