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Abstract.We discuss a number of novel issues in the interdisciplinary area of numerical linear algebra
and systems and control theory. Although we do not claim to be exhaustive we give a number of
“upcoming issues” which we believe will play an important role in the near future. These are : sparse
matrices, structured matrices, novel matrix decompositions and numerical shortcuts. Each of those
is presented in relation to a particular (class of) control problems. These are respectively : large
scale control systems, polynomial system models, control of periodic systems, and normalized coprime
factorizations in robust control.
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Introduction

During the last few decades linear algebra has
played an important role in advances being made in
the area of systems and control [30]. The most pro-
found impact has been in the computational and im-
plementational aspects, where numerical linear alge-
braic algorithms have strongly influenced the ways in
which problems are being solved. This paper discusses
a number of novel numerical linear algebra issues in
this interdisciplinary area. Although we do not claim
to be exhaustive we give a number of “upcoming is-
sues” which we believe will play an important role in
the near future. These numerical linear algebra issues
are :

• Sparse matrices. Large plants in control typ-
ically arise from discretizations of continuum
problems (such as those that appear in mechan-
ics or chemistry). The models obtained from that
are then automatically sparse, such as finite ele-
ment methods used for mechanical problems. It
is also commonly observed that large scale prob-
lems in other application areas typically involve
matrices with some kind of sparsity or struc-
ture. A recent report on large matrix problems
[9] shows that indeed there are no large general
dense matrix problems to be tackled in most ap-
plication areas.

• Structured matrices. A compact way of rep-
resenting the transfer function of a system is by
using polynomial system models. The number of
parameters in these models is often much lower
than for their equivalent state space model. Nu-
merical linear algebra problems occurring there

typically involve matrix problems with some kind
of structure (Hankel, Toeplitz, companion, ...)
and the solution of the underlying control prob-
lem usually boils down to some matrix decompo-
sition of such a structured matrix.

• New decompositions. The most reliable nu-
merical linear algebra methods proposed for par-
ticular control problems are related to particular
eigenvalue and singular value decompositions of
“special” matrices, such as the Schur decomposi-
tion of a Hamiltonian matrix for solving Riccati
equations. Several new decomposition have been
proposed recently in numerical linear algebra and
their application to control theoretic problems
still has to be explored.

• Numerical shortcuts. A typical approach for
solving matrix problems for which there is no
“direct” algorithm, is to break it down into a
sequence of “intermediate” problems for which
one can apply known techniques. A typical early
example of this was the construction of the nor-
mal equations for solving least squares prob-
lems. This is nowadays replaced by the “short-
cut” given by the QR decomposition, which is
known to be more reliable in general. Similar
“detours” are still present in the solution of cer-
tain control problems and ought to be avoided if
possible.

In the sections below we elaborate on these topics and
give for each a particular control theoretic example
where it applies. These control examples illustrate
well the issues being raised.
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Sparse matrices and

large scale systems

Large plants in control typically arise from dis-
cretizations of continuum problems such as finite el-
ement methods used for mechanical problems. The
models used are then almost always represented in
state space (or generalized state space) form. The
plant matrices {A,B,C,D} typically have a special
structure such as sparsity (due to modeling techniques
using e.g. finite element methods) or diagonal dom-
inance (inherited from the physical properties of the
system being modeled [21], [25]).

For large scale systems, the design of the controller
is often faced with the practical constraint that it has
to be of relatively low order. The main reasons for
this are that the controller has to run in real time at
a specific clock rate or has to be implemented on ex-
isting hardware of limited capacity (a typical example
of this is the laser beam tracking device of the com-
pact disc player which has to be implemented on an
existing digital signal processor with relatively small
memory and processing speed [26]). But even when no
such constraint is imposed, model reduction is a useful
approach for yielding approximate solutions to partic-
ular control problems. Instead of solving the control
problem for the large scale system one solves the cor-
responding problem for its lower order approximation
and then tries to derive from that an approximate so-
lution for the original problem.

A justification for this follows from the follow-
ing observation. A large class of model reduc-
tion methods of a system given in state space form
{A,B,C,D} can be interpreted as performing a sim-
ilarity transformation T yielding {A(t), B(t), C(t), D}
.
= {T−1AT, T−1B,CT,D}, and then extracting from
that the leading diagonal system {Â, B̂, Ĉ, D}, i.e.
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When writing T
.
= [X1 | X2], T

−1 .= [Y t1 | Y
t
2 ]
t, then

Π
.
= X1Y1 is a projector on X1 along Y1, and the sub-

system {Â, B̂, Ĉ, D} is in fact the original system re-
stricted to that projector : {ΠAΠ,ΠB,CΠ, D}. Such
model approximations thus only differ in the choice of
projector. Each choice typically tries to achieve some
kind of decomposition. Modal approximation e.g. se-
lects “dominant” frequencies in A and performs thus
a block diagonal decomposition (1), i.e. with A

(t)
1,2 and

A
(t)
2,1 being 0 and A

(t)
1,1 containing the dominant eigen-

frequencies. When large scale systems {A,B,C,D}
are involved one can only afford approximate decom-
positions, i.e. with A

(t)
1,2 and A

(t)
2,1 small compared to

A(t). Iterative techniques for large systems are indeed
only applied a limited number of steps for reasons of
complexity. Techniques for nearly decomposed sys-
tems [25], [21] can then be used to derive bounds on
the approximation criterion or an iterative refinement
to improve the decomposition.

The above ideas thus suggest the following ap-
proach for solving particular control problems for large
scale systems :

• Choose a projector Π yielding a lower order sys-
tem {ΠAΠ,ΠB,CΠ, D}

• Solve the given problem for this lower order sys-
tem using dense matrix techniques

• “Lift” back the solution to the original coordinate
system.

This sounds of course very simple but the crux is
to find the projector Π that achieves two important
goals. It should be easy to construct, i.e. one should
be able to exploit sparsity of the model {A,B,C,D}
for the construction of Π. And the lifted solution
should provide a good approximation for the true solu-
tion of the control problem, i.e. certain “performance
bounds” ought to be satisfied. For the first goal there
exist a number of iterative techniques such as Krylov
type schemes (Lanczos, Arnoldi, GMRES, QMR [24],
[10]). The second goal is of course problem dependent
and is probably the most challenging one. One may
have to assume certain system properties here (such
as diagonal dominance) in order to derive sufficiently
powerful results. Also criteria have to be selected to
obtain an appropriate system performance and how
far iteration techniques have to be applied in order
to satisfy corresponding bounds. The complexity of
this approach typically ought to be an order of mag-
nitude less (in terms of the system order n) than the
complexity of dense matrix techniques applied to the
original problem.

Structured matrices and

polynomial system models

Polynomial system models have been proposed for
most control problems as an interesting alternative to
state space techniques [2], [22]. The key advantage of
this approach is the reduced complexity of the algo-
rithms for solving particular problems. In turn, the
main reason for that is the reduced number of pa-
rameters needed to represent a system of the same
order. As an example, a n-th order SISO (single in-
put single output) system requires O(n2) parameters
when represented by an arbitrary state space model
{A,B,C,D}, while it requires only O(n) parameters
when represented by a polynomial model {p(z), q(z)}.

Consider then the problem of checking minimality
of the given realization. In both cases this amounts to
a rank test. For the state space realization one has to
check the rank of the controllability and observability
matrices, which requires O(n3) operations. For the
polynomial model one has to check coprimeness of p(z)
and q(z), which amounts to checking the rank of the
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Sylvester matrix [2], [11] :
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Although this is a 2n × 2n matrix its rank can be
computed by Euclid’s algorithm and this requires only
O(n2) operations !

This difference of an order n in operation count
is typical in the SISO case and thus speaks strongly
in favor of polynomial models. Yet, the algorithms
for polynomial models are typically known to be nu-
merically unstable (see e.g. [27]). Indeed, Euclid’s
algorithm can be shown to be equivalent to Gaussian
elimination without pivoting on the Sylvester matrix,
and this is known to be numerically unreliable. More-
over Euclid’s algorithm is also at the basis of most
polynomial matrix decompositions such as the Smith
form or Hermite form of a polynomial matrix. The
polynomial approach thus seems to sacrifice accuracy
for speed.

We strongly believe that iterative refinement could
be a way to overcome the above drawback of the
polynomial approach. It is known indeed that a few
steps of iterative refinement can often turn an unsta-
ble method into a stable one [39] and this ought to
be tried out on the matrix agorithm for polynomial
models. If the number of refinement steps is still sig-
nificantly lower than n then one still has an efficient
algorithm compared to the corresponding state space
algorithms. We now illustrate this with two examples.
The first one is the computation of poles of a system.
For a state space system this boils down to comput-
ing the eigenvalues of the matrix A, and it requires
O(n3) operations using the (numerically stable) QR
algorithm. For a polynomial model this amounts to
computing the zeros of q(z), but this can be done in
O(n2) operations using a stable algorithm [20] ! The
basic iterative scheme underlying this is the Newton-
Raphson algorithm which is a kind of iterative refine-
ment.

The second example is a more important one in
control applications and is known as spectral factor-
ization. It is the corner stone in problems of optimal
control and robust control [8], [36]. For a state space
model one typically solves this via a Riccati equation
which is again an eigenvalue problem (with particular
symmetry) and requires O(n3) operations [23], [28].
For a (discrete time) SISO polynomial model one can
state the problem as follows. Given the finite power
series

Φ(z) = φnz
−n+· · ·+φ1z

−1+φ0+φ1z+· · ·+φnz
n (3)

find a stable polynomial p(z) (i.e. zeros inside ‖z‖ < 1)
such that :

Φ(z) = p(z−1) p(z). (4)

It is known that this always has a solution if Φ(ejω) ≥
0 for all ω.
Vostry’s [37] proposed an algorithm for this which

starts with some stable polynomial x(0)(z) and then
iterates with :

p
(i)(z−1)x(i) + p(i)(z).x(i)(z−1) = 2Φ(z)

p
(i+1)(z) =

1

2
[p(i)(z) + x(i)(z)] (5)

One iteration step requires the solution of a system of
equations with a matrix close to the Sylvester matrix
and again this can be done in O(n2) operations. The
stability of a single step is not guaranteed, but since
it is a method of iterative refinement using the origi-
nal data Φ(z) for computing the correction, the over-
all stability of Vostry’s method is quite good ! The
convergence of p(i)(z) to p(z) is quadratic when no
roots of p(z) are close to the unit circle and the over-
all process is thus also O(n2). It is in fact a Newton
correction scheme applied to equation (3).

Novel decompositions and

periodic Riccati equations

The most reliable numerical linear algebra methods
proposed for particular control problems are related
to particular eigenvalue and singular value decompo-
sitions of “special” matrices, such as the Schur de-
composition of a Hamiltonian matrix for solving Ric-
cati equations [23], [28]. Several new decompositions
have been proposed recently in numerical linear alge-
bra and their application to control theoretic prob-
lems still has to be fully exploited. As an example the
generalized Schur form has been shown to have several
applications in geometric systems theory [27], and this
decomposition is an extension of the standard Schur
form to singular pencils of matrices.

In [3]1 a new decomposition for a sequence of ma-
trices Ai, Bi, i = 1, . . . , K is proposed. Consider the
set of (homogenous) difference equations

Bi · xi+1 = Ai · xi, i = 1, . . . (6)

with periodic coefficients Ai = Ai+K , Bi = Bi+K .
For period K = 1 one has the constant coefficient
case Ai = A, Bi = B and it is well-known that the
generalized eigenvalues of the pair A,B yields impor-
tant information of the system (6). When K > 1 one
can derive from (6) a set of K time invariant systems
which describe completely the behavior of (6). For
simplicity we assume all Bi to be invertible. Then
define the matrices Si = B

−1
i Ai yielding the explicit

system :

xi+1 = B
−1
i Ai · xi = Si · xi, i = 1, . . . (7)

and using S(k) = Sk+K−1 · . . . Sk+1 · Sk, k = 1, ..., K
the set of K time invariant but subsampled systems :

x1+(i+1)K = S(1) · x1+iK , i = 1, 2, . . .

x2+(i+1)K = S(2) · x2+iK , i = 1, 2, . . .
...

xK+(i+1)K = S
(K) · xK+iK , i = 1, 2, . . .

(8)

1Similar unpublished ideas are being pursued by John
Hench, UC Santa Barbara (personal communication)
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The behaviour of these systems will thus require the
eigenvalues and eigenvectors of the periodic matrix
products S(k). An implicit decomposition of these ma-
trices is now obtained as follows. One proves that
there exist unitary matrices Qi, Zi, i = 1, ..., K such
that :

B̂1 = Z
∗

1 ·B1 ·Q2 Â1 = Z
∗

1 ·A1 ·Q1
B̂2 = Z

∗

2 ·B2 ·Q3 Â2 = Z
∗

2 ·A2 ·Q2
...

B̂K = Z
∗

K ·BK ·QK+1 ÂK = Z
∗

K ·AK ·QK

(9)

where now all matrices B̂i, Âi are upper triangular.
It is easy to see that in fact the matrices Qi trans-
form the vectors xi to x̂i = Q

∗

i · xi and the matrices
S(i) to Ŝ(i) = Q∗i · S

(i) · Qi. The latter are in upper
Schur form, such that the “hat” versions of the sys-
tems (8) are now all simultaneously in upper triangu-
lar form. Notice that the diagonal elements of the Ŝ(i)

matrices are all equal since they are the products of
the diagonal elements of the upper triangular matrices
B̂−1i Âi. So, if one matrix Ŝ

(i) has a particular order-

ing of eigenvalues then all other matrices Ŝ(j) have the
same ordering of eigenvalues. In [3] we give an algo-
rithm to compute the above decomposition implicitly,
i.e. without ever forming the products S(i). Moreover
we show how to reorder the eigenvalues of these Schur
forms. We called this the periodic Schur factorization
[3] because of its relation to periodic systems (6).

The application of this decomposition to control
theory is apparent. In optimal control of a periodic
system one considers the problem :

Minimize J =
∑

∞

k=1
zTk Qkzk + u

T
kRkuk

subject to zk+1 = Fkzk +Gkuk
(10)

where the matrices Qk, Rk, Fk, Gk are periodic with
period K. The Hamiltonian equations are periodic
homogenous systems of difference equations (6) in the
state zk and co-state λk of the system. The corre-
spondences with (6) are :

xk
.
=

[

λk

zk

]

, Bk
.
=

[

−GkR
−1
k G

T
k I

F Tk 0

]

, Ak
.
=

[

0 Fk

I Qk

]

.

(11)
For finding the periodic solutions to the underlying
periodic Riccati equation one has to find the stable
invariant subspaces of matrices S(k) as above, which
happen to be simplectic in the discrete time case.
Clearly the Schur form is useful here as well as the
reordering of eigenvalues [23], [28]. In pole placement
of periodic systems, again the Schur form and reorder-
ing is useful when one wants to extend Varga’s Schur
algorithm [35] for pole placement [15].

Another decomposition recently proposed for
a sequence of matrices is the generalized QR-
decomposition [7], which is connected to the computa-
tion of singular values of such sequences. Applications
of this in control has not fully been explored yet, but
some indications are given in [7]. They inlude the
computation of geometric concepts for time varying
discrete time systems.

Numerical shortcuts and

normalized coprime factorizations

A typical approach for solving matrix problems for
which there is no “direct” algorithm, is to break it
down into a sequence of “intermediate” problems for
which one can apply known techniques. We first give a
few typical example of this in linear algebra and then
extend these ideas to control theory. The particular
example of normalized coprime factorizations is then
worked out.

An early example of numerical detour was the con-
struction of the normal equations ATA · x = AT b for
solving the least squares problem :

min‖Ax− b‖2. (12)

This can be “shortcut” by the QR decomposition [14],
which is known to be more reliable in general. The
sensitivity of the normal equations can only be worse
than that of the least squares problem and the nu-
merical stability of the QR decomposition is supe-
rior to that of the Choleski decomposition applied to
ATA · x = AT b. Another typical “detour” is the con-
struction of the matrix B−1A when computing the
generalized eigenvalues or generalized singular values
of the matrix pair A,B. Nowadays there are implicit
decompositions of such matrix pairs which directly
yield their generalized eigenvalues and singular values
without constructing B−1A [14].

Early examples of numerical shortcuts in control
theory include the Schur and generalized Schur meth-
ods for Riccati equations [23], [28] and staircase forms
for computing various concepts in geometric systems
theory [27]. But there are still many other “detours”
around that require direct approaches with better nu-
merical properties. We give here an example from ro-
bust control. Modern control theory has been largely
influenced by the recent development of H∞ tech-
niques. The underlying theory is now rather well un-
derstood but the computational techniques are lagging
behind. The design of the robust controller consists
in solving factorization problems of transfer matrices
and/or related state-space matrix equations [1]. Ex-
amples of transfer function factorizations needed here
are all-pass factor extraction, inner outer factorization
and normalized coprime factorization. Numerical al-
gorithms for such factorizations have been analyzed
from a state space and generalized state space point of
view [23] [31]. It was found that simple recursive solu-
tions can be obtained for most of them when starting
from state space models in so-called condensed forms
(such as Schur or generalized Schur forms). The ad-
vantage of this approach is a reduced computational
complexity and good numerical properties in the cor-
responding algorithms (see [23], [31] and references
therein).

One example where we can expect to shortcut
currently proposed algorithms is the construction of
normalized coprime factorizations of a given transfer
function R(s) = N(s) ·D−1(s) with

D
∗(−s) ·D(s) +N∗(−s) ·N(s) = I. (13)

Presently, one constructs first a stable coprime factor-
ization (with respect to some region Γ), and then one
normalizes it via a spectral factorization problem. A
more direct approach consists in noticing that D(s)
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and N(s) must be submatrices of a Γ-stable all-pass
U(s) that displays the kernel of [R(s) | −I] as follows :

[

R(s) −I
]

· U(s)
.
=

[

R(s) −I
]

·

[

D(s) Ñ (s)

N(s) D̃(s)

]

=
[

R̃(s) 0
]

. (14)

This problem now becomes one of rank factorization
with all-pass factors and ideas of [31] could be used to
tackle this. Notice that this approach avoids “squar-
ing up” the original problem and then performing a
spectral factorization. The squared version requires
the solution of a Riccati equations where all eigen-
values occur in pairs, whereas this direct decomposi-
tion requires the solution of an eigenvalue problem of
only half that size. Moreover, just as for the normal
equation example, one should expect better numerical
sensitivity properties for the direct approach. Simi-
lar remarks were already made in [31] for the prob-
lems of inner-outer factorizations and other coprime
factorizations. The approach proposed there involved
eigenvalue problems of typically lower order by using
particular state space decompositions.

Concluding remarks

The topics discussed in previous sections all point
to the significant role linear algebra problems play in
systems and control theory. Over the years, numerous
algorithms have been developed in that area. Because
of the increasing complexity of the problems being
tackled, some of them have become challenging from a
numerical point of view as well. The interdisciplinary
field of numerical linear algebra and linear system the-
ory has lead to some significant developments in the
last decade and several of these results are nowadays
being implemented in software for CACSD [34], [38].
However, numerical methods in this area are still far
from complete. Above we indicated some of these :

• Most of the techniques available today are specif-
ically aimed at dense systems. Only few meth-
ods are available that deal with sparse matrices.
These are typically based on Krylov type tech-
niques [19], [4], [24]. More work ought to be done
in that area using new results as e.g. the QMR
method [10].

• There are very few numerically reliable meth-
ods for polynomial system models, although typ-
ically algorithms in that area are fast. The com-
plexity of these agorithms is usually lower be-
cause the underlying matrix problems are highly
structured. Analyzing stability of algorithms
for structured matrices needs special care as in-
dicated in [32], but use of iterative refinement
ought to be useful (see also [18]).

• New decompositions are being found in linear al-
gebra that are particularly relevant to various
control problems. Schur forms and generalized
Schur forms have already extensively been ap-
plied [23], [27], [28]. Also condensed forms have
been used for various control problems [29]. But
similar extensions for generalized singular values
[16], and decompositions involving sequences of
matrices have not fully been explored yet [7], [3].

• Many detours are still present in control algo-
rithms because of the absence of direct methods
or appropriate decompositions. This is particu-
larly true for problems in robust control, since
there one has only recently been able to reduce
the problems to known ones involving Riccati
equations [13], [8]. Only little attention has
been paid yet to the development of appropriate
numerical techniques for these specialized prob-
lems.

The above list is by far not exhaustive. Other recent
developments include e.g. :

• Control algorithms developed for special archi-
tectures [5], [12], [6] exploiting parallelism.

• Software developments such as interactive pack-
ages [38] and software libraries [34]

• Combinations of the above issues, such as in the
problem of model reduction of large sparse sys-
tems. This clearly involves sparse matrix tech-
niques but all three other issues come up as well
as e.g. indicated in [33].
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