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Abstract

During the last few decades linear algebra has
played an important role in advances being made
in the area of systems and control. The most pro-
found impact has been in the computational and
implementational aspects, where numerical lin-
ear algebraic algorithms have strongly influenced
the ways in which problems are being solved.
The advent of special computing architectures
such as vector processors and distributed proces-
sor arrays has also emphasized parallel and real-
time processing of basic linear algebra modules
for this application area. This paper discusses
a number of numerical linear algebra techniques
for large scale problems in systems and control.
We focus on “special matrix”-problems, i.e. ma-
trices which are either sparse, patterned or struc-
tured.

1. Introduction

Large plants in control typically arise from
discretizations of continuum problems (such as
those that appear in mechanics or chemistry).
The models obtained from that are then auto-
matically sparse, such as finite element meth-
ods used for mechanical problems. Moreover the
underlying structure of the problem often yields
additional quantitative properties, such diagonal
dominance [17] or near decoupling of the matri-
ces involved [24], [18]. Tt is also commonly ob-
served that large scale problems in other appli-
cation areas typically involve matrices with some
kind of sparsity or structure. A recent report
on large matrix problems [10] shows that indeed
there are no large general dense matriz problems
to be tackled in most application areas.

For large scale systems, the design of the con-
troller, on the other hand, is often faced with the
practical constraint that it has to be of relatively
low order. The main reasons for this are that the
controller has to run in real time (at a specific
clock rate) or has to be implemented on existing
hardware of limited capacity. A typical example
of this is the laser beam tracking device of the
compact disc player which has to be implemented
on an existing digital signal processor with rel-
atively small memory and processing speed (as
compared to the tracking speed requested from
it). This constraint e.g. limits the order of the
controller to 15, whereas finite element models
of order up to 1000 have been used for model-
ing the rigid body movements of the CD player
(these are the ones affecting the tracking perfor-
mance) [25].

Large scale system models are almost always
represented in state space or generalized state
space form. Since the introduction of state space
models for representing linear time invariant sys-
tems several linear algebra techniques have been
proposed for solving various analysis and design
problems in control [27][19][28]. The more classi-
cal transfer matrix techniques have gradually lost
popularity because of the wealth of techniques
available these days when using state space mod-
els. Recently, robust control has changed the em-
phasis back to transfer function models, because
that framework is inherent to the formulation of
robust control. Yet, computational methods pro-
posed to tackle these problems again seem to pre-
fer translating the problem back to state space
and eventually using linear algebra techniques to
solve these. Unfortunately, some of the currently
proposed solutions are still cumbersome and un-



appealing.

Often one wants to combine powerful con-
cepts of both approaches in order to yield reli-
able algorithms for a class of important design
problems: factorization and optimal approxima-
tion of transfer functions via state space tech-
niques. In both these problems the formula-
tion is more elegant and compact in the trans-
fer function domain whereas solution methods
are expected to be more reliable in the state
space domain. In [3][14] it is shown how vari-
ous transfer matrix factorizations can be solved
in state-space using linear algebra techniques.
Matrix factorizations occurring in robust control
can be reduced to state space problems as well
but these involve then Riccati equations and/or
eigenvalue problems of of relatively large dimen-
sion [9][22][32][15]. In [29] it is shown that vari-
ous factorization problems may in fact be solved
via eigenvalue problems of reduced dimension,
and this in a relatively straightforward manner.
This idea can be extended to normalized coprime
factorizations where current methods still require
unreduced Riccati equations to be solved. This
ought to yield a new approach which is both
faster and numerically more reliable. Similar
ideas can also be extended to model reduction
of large sparse systems by using sparse matrix
techniques to construct approximate projectors
leading to lower order models.

2. Sparse system models

Large scale plants typically have system ma-
trices {A, B,C, D} with special structure such
as sparsity (due to modeling techniques using
e.g. finite element methods) or diagonal dom-
inance (inherited from the physical properties
of the system being modeled [24], [17]). Con-
structing reduced order models {121, B,C, lA)} for
such systems requires the solution of eigenvalue
problems (e.g. for calculating dominant invari-
ant subspaces), singular value problems (e.g. for
calculating principal components) or Lyapunov
equations (e.g. for computing Gramians). A
very simple approach for model reduction con-
sists in simulating input/output pairs by running
the recurrence
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and then identifying an approximate system
{A,B,C, D} from the pairs {u;,y;}. This ap-
proach is not very appealing for model reduction
of dense systems, but for sparse system mod-
els it has the great advantage that simulation
is cheap and that fast algorithms can be used for
the identification step. This is e.g the case when
using Hankel type algorithms for the identifica-
tion step. Moreover, by appropriately choosing
the input sequence {u;} one can hope to empha-
size particular modes of the system. Notice also
that none of the equations involved in the model
reduction need be solved exactly since the de-
rived model will be an approximation anyway.
When a system is given originally in generalized
state space form {F, A, B,C, D} then the inver-
sion of F is needed for the simulation step, but
this could be approximated as well. Some bound
on the quality of the approximation is needed,
though, as a function of the norm of the “resid-
ual” of the equations involved. The idea of al-
lowing approximate solutions is of course crucial
when using iterative methods for solving the un-
derlying large scale systems with special struc-
ture.

3. Robust control

Modern control theory has been largely influ-
enced by the recent development of H., tech-
niques. The underlying theory is now rather well
understood but the computational techniques
are lagging behind. The design of the robust
controller consists in solving factorization prob-
lems of transfer matrices and/or related state-
space matrix equations [5], [2]. Examples of
transfer function factorizations needed here are
all-pass factor extraction, inner outer factoriza-
tion and normalized coprime factorization. Nu-
merical algorithms for such factorizations have
been analyzed from a state space and general-
ized state space point of view [20] [29]. It was
found that simple recursive solutions can be ob-
tained for most of them when starting from state
space models in so-called condensed forms (such
as Schur or generalized Schur forms). The advan-
tage of this approach is a reduced computational
complexity and good numerical properties in the
corresponding algorithms (see [20], [29] and ref-
erences therein). One example where we can ex-
pect to shortcut currently proposed algorithms



is the construction of normalized coprime factor-
izations of a given transfer function R(s) :

R(s) = N(s)-D7!(s), with @)
D*(=3)- D(s)+ N*(=3) - N(s) = I.

Presently, one constructs first a stable coprime
factorization (with respect to some region I'),
and then one normalizes it via a spectral factor-
ization problem. A more direct approach consists
in noticing that D(s) and N(s) must be subma-
trices of a ['-stable all-pass U (s) that displays the
kernel of [R(s) | —1] as follows :

[R(s) —1]-U(s) =
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This problem now becomes one of rank factoriza-
tion with all-pass factors and ideas of [29] can be
used to tackle this. Notice that this approach
avoids breaking down the original problem in
seemingly unrelated subproblems.

4. State space projections

A large class of model reduction methods of a
system given in state space form {A, B,C, D}
can be interpreted as performing a similar-
ity transformation 7 yielding {A®, B® C®) D}
= {T-'AT,T7'B,CT,D}, and then extract-
ing from that the leading diagonal system
{A,B,C, D}, ie.

T-'AT|T-'B] .
cT | D | T

AlB] . [AY B

co|l e b |
When writing T = [X; | X5], T7' = [Y] | V{T,
then II = X,Y; is a projector on X; along
Y1, and the subsystem {A,B,C’, D} is in fact
the original system restricted to that projector :
{ITATL, TIB,CTI, D}.

This sounds of course very simple but the crux

is to find the projector II that achieves two im-
portant goals. It should be easy to construct,

i.e. one should be able to exploit sparsity of
the model {A, B,C, D} for the construction of

II. And the lifted solution should provide a good
approzimation for the true solution of the con-
trol problem, i.e. certain “performance bounds”
ought to be satisfied. For the first goal there exist
a number of iterative techniques such as Krylov
type schemes (Lanczos, Arnoldi, GMRES, QMR
[23], [11]). The second goal is of course problem
dependent and is probably the most challenging
one. One may have to assume certain system
properties here (such as diagonal dominance) in
order to derive sufficiently powerful results.

Such model approximations thus only differ
in the choice of projector. FEach choice typi-
cally tries to achieve some kind of decomposi-
tion. Modal approximation e.g. selects “dom-
inant” frequencies in A and performs thus a
block diagonal decomposition (13),i.e. with A(lt)2
and A(zt)l being 0 and A(lt)l containing the domi-
nant eigenfrequencies. When large scale systems
{A, B,C, D} are involved one can only afford ap-
proximate decompositions, i.e. with A(lt)2 and
A(Zt)l small compared to A®). Tterative techniques
for large systems are indeed only applied a lim-
ited number of steps for reasons of complexity.
Criteria have to be selected to obtain an appro-
priate system performance and how far iteration
techniques have to be applied in order to satisfy
corresponding bounds.

5. A projection construction

We give here an example of a projection con-
struction based on the Quasi Minimal Residual
(or QMR) algorithm [11]. Consider a n x n
matrix A and two starting vectors v; = b and
wy; = ¢. The two sided Lanczos algorithm then
essentially constructs column by column matri-
ces V,, = [v1...v,] and W,,, = [w,...w,,] satisfying

Avm = Vme + 6m+1vm+leg;
ATWm - Wanj; ‘I’ ﬁm+1wm+1eg; (5)
VIW,, = I,

where T, is a tridiagonal matrix of dimension
m X m and V,, and W, are n X m dense matri-
ces. The construction of the matrices V,,, W,
and T,, only involves matrix multiplies of the
type Av and ATw and is thus “cheap” when A is
sparse and m << n. This algorithm may break
down (e.g. when the bi-orthonogality condition
VIW,, = I, can not be satisfied) but a modifica-
tion called the QMR algorithm [11] was recently



proposed that avoids these pitfalls. An interest-
ing result of these “bases” V,, and W,, is that
they provide good approximate solutions for the
underlying Lyapunov equations

AP, + P.AT = bb" (6)
ATP, + P A=C("ec.

Based on these approximate solutions for P, and
P., one derives a reduced order model that in fact
corresponds to a projector IT = V,,,WT. Approx-
imation bounds are linked to approximations of
the matrix exponentials ¢”e4?, eA%h and c"e?th
[23]. Extensions to the block Lanczos case and
various bounds for the resulting lower order ap-
proximation are still under investigation.

6. Riccati equations

Several techniques have been proposed for
solving algebraic Riccati equations. The very
first algorithms were linked to an underlying dif-
ference equation and had rather poor conver-
gence properties. Then a class of quadratically
convergent methods were proposed [1], [20] and
now the most popular methods are based on
eigenvalue techniques [26], [20], which also have
quadratic convergence but at the same time good
numerical stability properties. Several of these
methods have been implemented on parallel ma-
chines, but hardly any work has been devoted to
numerical aspects of methods exploiting special
properties like sparsity or diagonal dominance.
One could use here again projection ideas as
stated above. If P is the solution of a Riccati
equation connected to a model approximation
{121, B,C, ﬁ}, what bounds can then be guaran-
teed for the induced solution in the original coor-
dinate system ? Here again the idea is to use it-
erative techniques for constructing a projector Il
that will give a lower order Riccati equation with
a solution P which is “close” in some sense to the
solution P of the original system. “Closeness”
criteria ought to focus on the ultimate design re-
quirement for which the Riccati equation is be-
ing solved (e.g. the underlying optimal control
problem, spectral factorization or model reduc-
tion) rather than on the Riccati equation itself.
The choice of projector II of course also depends
on the availability of affordable numerical tech-
niques for constructing it.

Similar ideas can also be applied to optimal
control problems for finite horizon giving rise

to Riccati differential equations. These can be
solved via Ordinary Differential Equations tech-
niques [6] but ODE solvers are for general non-
linear differential equations and do not exploit
the fact that the differential equation is of Ric-
cati type. One possible approximation in the
linear system case is to solve the corresponding
Riccati difference equation which is a nonlinear
matrix recurrence of specific type. Exploiting
sparsity here is easier because the formulation is
closer to matrix operations for which sparse ma-
trix techniques can be used. Again, in order to
save computations one ought to approximate so-
lutions using projection ideas for which the sim-
ulation does not diverge too much from the true
solution. Note that these equations are now be-
ing used to solve very large scale problems in very
diverse areas [16], [13] besides control.

7. Basic numerical tools

The topics discussed in previous sections all
point to the significant role linear algebra prob-
lems play in the control, optimization and model
reduction of multivariable linear systems. Over
the years, numerous algorithms have been de-
veloped in that area. Because of the increasing
complexity of the problems being tackled, some
of them have become challenging from a numer-
ical point of view as well. The interdisciplinary
field of numerical linear algebra and linear sys-
tem theory has lead to some significant devel-
opments in the last decade and several of these
results are nowadays being implemented in soft-

ware for CACSD.

However, numerical methods in this area are
still far from complete. Most of the techniques
available today are specifically aimed at dense
systems [31], [20], [33], [30]. The methods devel-
oped for special architectures are often only de-
scribed algorithmically [7], [8], or do not exploit
any particular structure or sparsity of the matri-
ces [12], [19]. There are indeed only few methods
for large scale control problems that make spe-
cific use of the special structure of the matrices
involved or that are tailored to efficient use of
parallel architectures. The few methods avail-
able are typically based on Krylov type tech-
niques [17], [4], [23], [11] or exploit the special
structure of the matrices involved [8], [21]. In
the particular area of reduced order robust con-
trol, most of the ideas are still described for dense



systems [2], [5], [9], and hardly any attention has
been given to appropriate numerical techniques
for large scale problems.

Although the individual topics discussed above
may seem somewhat disparate, they all pertain
to the common problem of designing low order
robust controllers for large scale plants, and the
techniques are closely related. The basic ideas in
these techniques are :

(i) interpretation of basic problems in terms of
state space models in order to reduce these to
linear algebra problems

(i) exploiting sparsity, diagonal dominance or
near decomposition of the matrices involved in
order to obtain algorithms of reasonable com-
plexity

(iii) providing appropriate criteria as a measure
of “closeness” of the solution constructed via the
above techniques, e.g. in order to select the ap-
propriate projector minimizing the correspond-
ing “cost”.

These different goals are intertwined in each
particular problem, as should be evident from
the different topics described above, and in each
of them these goals clearly have to be traded
against each other.
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