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ABSTRACT

In this note we describe a state space approach
to compute so-called zero directions of a ratio-
nal transfer function H(X). The method works
on the coefficient matrices of a minimal state
space realization of the transfer function H(\)
and does not require its Taylor expansion around
each zero. Moreover, it uses only unitary trans-
formations to find the structure at each zero.

1. Background and definitions

Finding zeros and their structural indices is a
problem that occurs naturally when one wants
to describe the solution set of particular matrix
equations involving rational matrices [4, 5, 7] and
has recently received attention in the context of
interpolation problems [1]. The structure at a
point Ay which is a pole or a zero of a transfer
function H () is defined via the Smith McMillan
form of the m X n rational matrix H(X) at the
point Ag:

M) - HO) - N(A) =
(A= Ag)7" 0
0 N - (1)

‘ Om—r,n—r

where M(\) and N () are rational and non sin-
gular at Ag, r is the normal rank of H(A) and
the structural indices o; of H(A) at the point Ag
satisfy o, > ... > o,. Notice that positive in-
dices refer to zeros of the transfer function and

negative indices refer to poles. The computation
of the above decomposition is based on the Eu-
clidean algorithm and Gaussian elimination over
the ring of polynomials, which is intractable and
numerically unreliable [11]. For this reason it is
often replaced by the following technique, based
on the expansion around the point Ay [11]. As-
sume that H(X) does not have a pole at Ay but
only a zero. Then it has a Taylor expansion :

H\) =
Ho+(A=X)Hy + (A= Xo) Ho+ (A= X))’ Hs+. ...
(2)

From this we define the Toeplitz matrices

H,
Tor=| . . . (3)

H._, ... H, H,
One shows that the rank increments
pr = rankTy 11 — rankT g

are in fact in one to one correspondence with the
index set o;,i=1,...,r [11].

The connection between (1) and (3) follows
from the following observation. Let z(A) and
y”(\) be the vectors

z(A) =

lUO—I—(A—Ao)lUl—I—(A—Ao)szQ—I—. . .—I—(A—Ao)k_ll‘k_l
(4)



y(A) =

yo—l—(A—Ao)yl—l—(A—Ao)zyz—l—. . .—I—(A—Ao)k_lyk_l
()
then we call these zero vectors of order k if

H(N)z(A) = O(X = X)", (6)
yTVHA) =0\ = )", (7)

and if the respective vectors x4 and 7, are nonzero
(the latter condition avoids trivial solutions) [1]
[5]. Using the expansion (2) we can rewrite (6)

(7) as

To

Tk : =0, (8)
Tp—1

[ Yry oo Yo :|T/\0,k =0. 9)

So the problem of finding these zero directions is
apparently solved by computing the null spaces
of these Toeplitz matrices, for which recursive al-
gorithms have been proposed in [11]. Using this
approach one constructs exactly r such zero vec-
tors of orders o;, * = 1,...,r, respectively. Yet,
all this still requires the computation of the Tay-
lor expansions (2) in each zero of the transfer
function H(A) and the complexity of the subse-
quent rank search is still quite high [11].

2. A state-space approach

Any transfer function H(A) can be realized by a
generalized state-space realization {A, B,C, D, E'}
such that

HO\) =CO\E—-A)~'B+D.  (10)

If H(A) happens to be proper — H(o0) bounded —
then F can be chosen the identity and one refers
to the system {A, B,C, D} as a state-space real-
ization of H(X). One often associates with the
above realization (10) the pencil

S(A) =

[A—/\E B] )

C D

called the system matriz of the realization. (No-
tice that H(A) is its Schur complement.) Tech-
niques for constructing a realization (10) are de-
scribed in e.g. [10]. It is also shown there how to

obtain an irreducible generalized state space real-
ization of the transfer function H(A). These are
realizations (10) for which

A—-AF
[70 ] (12)

and

[ A-2E|B | (13)

have no finite or infinite zeros (see also [12]). In
[10] realizations with stronger conditions are ac-
tually derived, namely for which

inf{X|dim.AX + EX = dim.X, Im.B C X} = R"
sup{X|dim. AX + EX = dim.X, X C Ker.C} =

where n is the order of the matrices F and A
and dim. AX + FX = dim.X defines a deflating
subpace of the pencil AF'— A in R™ (this is a gen-
eralization of the concept of invariant subspace

[8])-
3. Zero vectors of S(A) and H(\)

As was shown in [12], much of the structure of
H(X) can be retrieved in that of S(A), when the
underlying generalized state-space realization is
irreducible. Tt is shown there that in that case

e the pole structure of H(A) at its finite and
infinite poles is identical to the zero struc-
ture of AF/ — A at its finite and infinite ze-
ros.

e the zero structure of H(A) at its finite and
infinite zeros is identical to the zero struc-
ture of S(A) at its finite and infinite zeros.

e the left and right null-space structures of

H(X) and S(A) are the same.

In the above relations, structure refers to the in-
dex sets of the finite and infinite elementary de-
visors and of the left and right minimal bases.
In the rest of this section we show there is also
a relation between the zero directions as well as
the index sets.

Theorem 1

If H(X) has no poles at A = Ao and if z(}\) is a



right zero vector of order k at Ay of S(A) then
partitioning it as z7(\) = [2T(X),2T()\)] con-
formably with the block columns of S(A), we
have that z,(\) is a right zero vector of order
k at Ay of H(X). The dual result holds for left

zero vectors of order k.
Proof :

The proof is similar for left and right vectors.
Let 2(A) be a right zero vector of order k of S())
then we have that :

S(N)z(A) = O\ — Ag)*. (14)

Partitioning this conformably, we get :

S(Nz(A) =
[ A—\E \ B ][ z1(A) ] =0(M=Xo)". (15)

¢ |D 29(A)

Since Ag is not a pole of H(A) we have that it
is not an eigenvalue of AF/ — A and hence the
matrix transformations

. I 0
T = [ “C(A—AE) } 7 ]

is regular at Ao, i.e. T(A) and T7'(\) both have a
Taylor expansion around Ay. As a consequence,
applying this to the left of (15), we have :

TN)S(N)z(\) =

[A—AE\ B ].[“(A) ] = 0(A - A"

0 [HW z5(\)
(16)
and hence we clearly have the requested property
H(MNao(A) = O(X = Ao~ |

If a set of linear independent vectors of order
k of S(X) are grouped in a matrix X (), then
again the bottom matrix X5(A) has the same
property for H(X), as shown now below.

Theorem 2

If H(A) has no poles at A = Ay and if X (A) is
a basis of right zero vectors of order k at Aq of
S(A) then the bottom block X5 (A) is a basis of
right zero vectors of order &k at Ay of H()). The
dual result holds for left zero vectors of order k.

Proof :

The proof is again similar for left and right vec-
tors. Let X (\) be a basis of right zero vectors of
order k of S(X) then we have that

S(\) - l 283 ] —O0( =) (17)
and
T()SX () =
A—)MF| B Xi(A) | k
EETIPR N T I

(15)
Hence, H(A)X2(A) = O(X = Xo)k.

Now we have to prove that if the vectors of
X (A) are linear independent then so must be
those of X5(A). In [1] [5] [6] it is shown that
the columns of a matrix X () are a basis iff
X (Xo) has linear independent columns. But writ-
ing down the constant term of (18) we have :

A-XNE| B X;() |
o }H(AO) ] : [ 500 ] =0 (19)

and this implies that X5(Ao) has linear indepen-
dent columns. Indeed, if this would not be the

case, then there exists a vector z such that X5(Xo)z =

0. Then it would also follow from the full rank
property of X (XAg) that y = X;(Xg)z # 0 and
from (19) that (A — A\gE)y = 0, which contra-
dicts the assumptions that H(A) has no poles at
Ao- a

This thus shows that the problem of finding
the zero directions of a transfer function is re-
duced to that of a pencil

o-[afs] ot

derived from an irreducible generalized state-space
realization.

4. Zero directions of pencils

Finding the zero directions of pencils simplifies
very much the above problem. First of all, we
have immediately a generalized eigenvalue prob-
lem S(A) to find the zeros of the transfer function
[2] [3]. These methods are based on the general-
ized Schur form of an arbitrary pencil. Secondly,



once a particular zero Aq is found, one can update
the generalized Schur form to find the Kronecker
structure of the pencil at this eigenvalue [9] and
as we show now below, also the zero directions
of this eigenvalue.

Consider the expansion of the pencil around

A== :
SA) =804+ (A= X)S1 =S+ AS,  (21)

One could use again the above Toeplitz matrices
to define kernels and from this zero directions,
but this is very inefficient. The staircase algo-
rithm [9] applied to Sq and S; in fact gives all the
information to find these directions. It is shown
in [9] that there always exist unitary transfor-
mations U and V' (these will be orthogonal when
the system and A are real) such that :

U(Sy+A\S))V =A—-\E= (22)
0 Alyz * El,l * *
* - *
)\
Ar_i e *
0 Eor
EE L2

where

(i) the F;; matrices are of dimension s; x #; and
of full row rank s;,

(ii) the A; ;11 matrices are of dimension s; X #;,,
and of full column rank ¢;,,

(iii) A, is of full column rank.

From this it follows immediately that

by >80 >8> 8> .. 21 >85> 0(=t41)
(23)
The transformations U and V are chosen unitary
(or orthogonal in the real case) for reasons of nu-
merical stability. Moreover, since these are con-
stant transformations, they only transform the
coordinate system in which we have to construct

the zero directions z(A) and y(A). The above
form (22) is appropriate for constructing (),
but there exists a dual form where the role of
columns and rows is interchanged, and which can
thus be used to construct y(\). Below we focus
on finding solutions 2y (}) in the coordinate sys-
tem of (22) but the corresponding zero directions

of S(A) are easily seen to be z(A) = Vay (A).

For (22) it is easy to see that a zero vector
zq of order 0 must be in the null space of A, i.e.

1, . . .
2o € Im | " |. A basis for these zero directions

0

of order 0 is thus the matrix
X0 = [161] . (24)

For zero directions xy + Az, of order 1, we con-
sider the equation

AJJO = 07 E.Z'O = A.Z'l. (25)

Clearly x5 must again be in I'm [161 ] and the

second equation thus implies FEzo € Im [161]

and also A:L‘l € Im llsl ] Because of the rank

0
It1+t2 ]

property of A we then have z, € I'm [ 0

1, ..
The vectors z; € Im 61 lead to trivial solu-

tions with 2, = 0 and must thus be excluded. So
0

take zy € | I, | and call x5 the subvector in
0

the range of the submatrix I,, above. Then it is

easy to see that

_I_
2o = lEuf;méE‘m] cIm [I(t)l] 7

where M denotes the pseudoinverse of a matrix
M. Both equations are satisfied with z, # 0
since Ff, and A, are both of full column rank.
A basis for the nontrivial zero directions of order
1 is thus

0

x| i =
0

Ef A, ]
and X! has full column rank ¢, since Fj, and A,
have full column rank.

For the general case of k-th order zero direc-
tions

Ty + X.Z'l 4+ ...+ Xk_l.l'k_l



we must satisfy

Axo =0, Emo = Axl, cee E;Ek_g = flxk_l.

(26)
Here again, we have to exclude trivial directions,
i.e. those contained in just A times a lower order
zero directions, and clearly these are vectors with
zo = 0. By induction, one shows that a (non-
trivial) basis for these vectors can be found from
the starting matrix

0
XiZi= | L, (27)
0
and that the other matrices Xf_l,j =k=2,...,0

are found recursively from (26) using the identity
XiZ = ETAX]™". One checks that these ma-

j=1 =
trices are of the form

*
Xf_li Xf;il ? (28)
0

where
k=1 _ o+ +
Xj,j-l—l — Ej+1,j+1Aj+1,j+2 o Ek—1,k—1f4k—1,k-
The constant matrix in this basis is thus

+ +
E1,1A1,2 o 'Ek—1,k—1Ak—1,k

xi = 0 ,

(29)

and is again of full column rank since all matrices
EZ‘"Z and A; ;4 are of full column rank ;.

Since the number of non-trivial vectors of or-
der k is t; it follows from (23) that k& must be
smaller than £, the number of stairs in the stair-
case form (22). Using results of [9] we know from
(22) that the pencil S(\) has
(i) t; —s; Kronecker column indices equal to 1—1,
(ii) s; — t;y1 elementary divisors N
So the bases of zero directions of order & we con-
structed above actually consist of a mixture of
vectors in the null space of S(A) and “true” zero
vectors corresponding to elementary divisors M.
In the work of [6] only the latter are constructed
but an assumption of right regularity is assumed,
which consist of saying there are no right Kro-
necker indices. In this case our approach would

yield the same result. The bases we compute ac-
tually are of the same type as those in [6] but the
algorithm to construct them are different.

In the general case we are treating here, we
can also modify the above algorithm such as to
avoid constructing any vectors in the null space
of S(A) (or, equivalently, H(X)). In order to do
this, we again use a decomposition of [9]. Instead
of finding (22) we first split off the left Kronecker
indices in the top left corner of that decompos-
tion and then proceed further with essentially the
same form. We then have something of the type

U(So+AS)V=A-\F= (30)
A, . -
0 ALQ *
*
. Az—u
0
L A
F B . -
E171 * *
Y *
*
Ez,z

where now in addition to the earlier conditions,
A; is of full row rank and the F;; matrices are
now square invertible. The pencil A; — AE, has
only column Kronecker indices and no elemen-
tary divisors M. From here on, essentially the
same procedure as above holds, but starting from
the diagonal blocks in the middle section of this
pencil. The bases constructed in that manner
will be linear independent from the right null
space of the matrix.

After all these operations, we of course have
to transform back to the coordinate system of
S(A) by just multiplying these vectors by V', and
then find the corresponding vectors of H(\) by
just taking the bottom part of these transformed
vectors. The overall process is then repeated for

another A = (A — \;) by merely a shift in S(\).



5. Conclusions

The advantages of the new proposed method are
considerable :

1. the pencil (8) has to be constructed anyway
since it is one of the most reliable ways to
evaluate the zeros of H(\)

2. the expansions (21) around each zero A,
are trivial once (20) is constructed

3. the staircase algorithm works on matrices
of decreasing dimension at each step [9]
rather than on Toeplitz matrices (3) in-
creasing dimension [11].

For these different reasons the newly proposed
method is hence preferable both from the point
of view of numerical robustness as numerical ef-
ficiency.
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