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Abstract. In this paper we present several types of orthogonal matrix
decompositions used in systems and control. We focus on those related
to eigenvalue and singular value problems and include generalizations to
several matrices.

1. Introduction

In systems and control theory, one often uses state space models to represent
a dynamical system. In such models the relation between inputs u(t) € R™
and outputs y(t) € R? is described via the use of a state 2(t) € R™ and a
system of first order differential equations :

{E;t(t) = Ax(t) + Bu(t) a
y(t) = Calt)+ Dult),

where F/ and A are real n X n matrices and B, C'and D are real n xm, pxn
and p x m matrices, respectively. In the above model (1) the input, output
and state vectors are continuous time functions. An analogous model is used
for discrete time vectors functions ug, y, and 2z, now involving a system
of first order difference equations :

y, = Cuap+ Duy.

If one takes the Laplace transform of (1) and the z-transform of (2), then
both can be represented by the system of algebraic equations :

{/\ELL‘() = Az(.)+ Bu(.) 3)
y() = Ca()+Dul),



where A stands for the differential operator and the difference operator
in the two respective cases. The transfer function of this model is then
obtained by eliminating the state z(.) :

T(\)=CE— A)~'B+D, (4)

and describes directly the relation between inputs and outputs :

Notice finally, that the transfer function (and hence the input/output be-
havior) is not affected by the system equivalence transformation

{E,A,B,C,D}= {E,A,B,C,D} = {SET,SAT,SB,CT,D}. (5)

An important subclass of these models consists of the so-called standard
state space models where F/ = I, in which case the state vector z(.) is given
explicitly by the first equation in (3). The equivalence transformation (5)
now becomes a similarity transformation since E = ST must also be the
identity :

{A,B,C,DY= {A,B,C,D} = {T~'AT,T~'B,CT, D}. (6)

Although these state space models are not the only ones used for sys-
tems and control purposes, they are the ones that have been most heavily
studied as far as numerical algorithms are concerned (see e.g. [15]). We will
assume for the sequel that the system under consideration is given in such
a form and that the model parameters are actually known (i.e. the system
has already been identified). Once the system is given, one typically has
to analyze its properties (frequency response, poles/zeros, stability, robust-
ness, ...) and then design a particular controller in order to improve some
characteristics or to satisfy certain design criteria (tracking, robustness,
optimality criteria, ...).

2. Condensed versus canonical forms

Many analysis and design problems are well understood these days and
their theoretical solution is often described in terms of so called canonical
forms, which have been defined for state space models of multivariable lin-
ear systems. These forms are typically very sparse since they are described
with a minimum number of parameters. Therefore they often allow to effi-
ciently characterize all solutions to a particular problem, which is of course
very appealing. Unfortunately, it has been shown that these forms are also
very sensitive to compute and amount to a coordinate transformation that



can be very poorly conditioned. For most analysis and design problems en-
countered in linear system theory, one can as well make use of so-called
condensed forms, which can be obtained under orthogonal transformations
[25]. Such transformations have become a major tool in the development of
reliable numerical linear algebra algorithms. A first reason for this is the nu-
merical sensitivity of the problem at hand. The sensitivity (or conditioning)
of several problems in linear algebra can be expressed in terms of norms,
singular values or angles between spaces and each of these are invariant
under orthogonal transformations. These transformations therefore allow
to reformulate the problem in a new coordinate system which is more ap-
propriate for solving the problem, and this without affecting its sensitivity.
A second reason in the numerical stability of the algorithm used for solving
the problem. Most decomposition involving orthogonal transformations can
be obtained by a sequence of Givens or Householder transformations which
can be performed in a numerically stable manner. The concatenation of
such transformations can also be performed in a backward stable manner
because numerical errors resulting from previous steps are indeed main-
tained in norm throughout subsequent steps since these transformations
(and their inverse) have 2-norm equal to 1. Condensed forms obtained un-
der orthogonal transformations are therefore more appropriate for solving
several systems and control problems involving (generalized) state space
models.

We explain this below with the special example of analyzing the poles
of a single-input/single-output system given in standard state space model
(i,e. E=1,5=T""and m = p=1 in the above models). For such mod-
els the poles are the eigenvalues of the matrix A and the classical form
describing the fine structure of these eigenvalues is the Jordan canonical
form. So we choose the similarity transformation (6) where A; = T='AT is
in Jordan canonical form. For convenience, we give the transformed system
{A;,B;,Cy, Ds} in the form of a compound matrix (the reason of this will
become apparent later) :

[ x|A 1 0 0 0 0 0]
x[0 XA 1 .0 0 0 0
o x[0 0 XA 0 0 0 0
[BJ AJ]_ x| 0 0 0 X 1 0 0 ™
D, ¢, |~ x[o 0o 0o 0 x 0 0]
x[0 0 0 0 0 XA 0
x[0 0 0 0 0 0 X
| X | X X X X X X X |

where we assume for simplicity that the eigenvalues A; are real. Notice that
we chose our example such that there is only one Jordan block associated
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with each individual eigenvalue, but in general this does not have to be the
case. This form not only describes the poles of the system, but contains
more information, like e.g. the partial fraction description of the transfer
function. But a large disadvantage of the form is that it requires a state
space transformation T to put A in its Jordan form AJ, and that the norms
T and T~' can not be bounded in general. On the other hand, when one
restricts T’ to be orthogonal, then so is 7~! and both are bounded in norm.
Under such transformations, one can always reduce A to triangular form,
called the Schur form, which also has the eigenvalues on diagonal :

[ x| A X X X X X x]
x| 0 AN X X X X X
x| 0 0 AN X X X X

[ Bs | Ag ] Ll x]0 0 0 X x x X ®)

Ds|Cs | | x]0 0 0 0 X X X
x| 0 0 0 0 0 A5 X
x0 0 0 0 0 0 X

| X | X X X X X X X |

If one is only interested in computing the poles of the system, it is well
known that the latter form is numerically much more reliable and actually
requires less computations that the Jordan form [7].

The theorem for general n xn pencils AFY— A is known as the generalized
Schur form, and applies to regular pencils (i.e. det(AE — A) = 0). Its so-
called generalized eigenvalues are the roots of det(AE — A) = 0.

Theorem 1 [12]
There always exist orthogonal transformations @) and 7 that transform a
regular pencil AF — A to

QT(AFE — A)Z = \Es — Asg, 9)

where F is upper triangular and Ag is block upper triangular with a 1 x 1
diagonal block corresponding to each real generalized eigenvalue and a 2 x 2
diagonal block corresponding to each pair of complex conjugate generalized
eigenvalues (such matrices are called quasi triangular). This decomposition
exists for every ordering of eigenvalues in the quasi triangular form. [

If ¥ =TI one retrieves the standard (quasi triangular) Schur decompo-
sition Ag = UT AU based on an orthogonal similarity transformation by
taking U = Z = (). Notice that if I is invertible one also has

QTAE™'Q = AsES', Z"E7'AZ = E5'As,

which are both quasi triangular matrices. Then ) and Z of the generalized
Schur form can be obtained from the standard Schur forms of AE~! and
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E~'A but this “detour” should be avoided since F may be badly condi-
tioned in general. One of the most important uses of this form is the compu-
tation of orthogonal bases for eigenspaces. Consider any (block) triangular
decomposition where we partitioned the invertible matrix X conformably :

All A12

X'AX = [
0 A22

], X=[X, X5 ]. (10)
Then AX; = X, A;; which implies that X' = I'm X, satisfies the condition
for an invariant subspace

AX C X.

When X is orthogonal (as in the Schur decomposition) the basis X is of
course orthogonal as well. The corresponding concept for the generalized
eigenvalue problem AF — A is that of deflating subspace defined by the
condition

dim(AX 4+ EX) = dim Y.

For FE invertible this is easily shown to be equivalent to EF~'AX C X
and hence each deflating subspace of AE/ — A is and invariant subspace of
E~'A. The first k& columns of the right transformation 7 [12] are therefore
an orthogonal basis for a deflating subspace of the pencil AF) — A. We refer
to [12], [7], [21] for a more rigorous discussion. The use of these eigenspaces
in control shows up in the solution of several matrix equations.

We illustrate this again with a standard eigenvalue problem (i.e. E' = TI).
Suppose one wants to solve the quadratic matrix equation (of dimension
qxp):

M21 —XMll—I—MQQX—XMlQX:O (11)

in the ¢ X p matrix X, then it is easily verified that this is equivalent to
[ Ip 0 :| [ Mll M12 :| [ Ip 0 :| — Mll MZZ (12)
-X 1, Moy Mo, X I, 0 My |’

V\ihefe My = My + M, X, My, = M, My = My — XM, and
M>; = 0 since it is precisely equation (11). But (12) is a similarity trans-
formation on the (p+ ¢) X (p+ ¢q) matrix M partitioned in the 4 blocks
M;; + = 1,2, 7 = 1,2. The block triangular decomposition says that the
eigenvalues of M are the union of those of MH and of M22 and that the
I
X
ing to the p eigenvalues of M, [10]. Let us suppose for simplicity that M
is simple, i.e. that it has distinct eigenvalues. Then every invariant sub-
space of a particular dimension p is spanned by p eigenvectors. Therefore,

columns of [ ] span an invariant subspace of the matrix M correspond-
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X . . .
let [ XH ] be a matrix whose columns are p arbitrary eigenvectors, then
21

it is a basis for the corresponding invariant subspace. If moreover Xy, is

X

subspace and hence X is a solution of the quadratic matrix equation (11).
One shows that the eigenvalues corresponding to the selected eigenvectors
will be the eigenvalues of M, after applying the transformation (12). This
approach actually yields all solutions X provided M is simple and the ma-
trices X, defined above are invertible. But it requires the computation of
all the eigenvectors, which is obtained from a diagonalizing similarity trans-
formation. One shows that when M has repeated eigenvalues, one should
compute its Jordan canonical to find all solutions of the quadratic matrix
equation (11) [15]. The disadvantage of this approach is that it involves the
construction of a transformation T that may be badly conditioned.

invertible then the columns of [ Ty ] with X = X5, X' span the same

But any invariant subspace has also an orthogonal basis, and in general
these basis vectors will not be eigenvectors since eigenvectors need not be
orthogonal to each other. It turns out that such a basis is exactly obtained
by the Schur decomposition (8). One can always compute an orthogonal
similarity transformation that quasi triangularizes the matrix M. If we
then partition the triangular matrix with a p X p leading block :

[ Ui Ui ]T [ My M, ] [ Ui Ups ] _ Mn Z\:@z (13)
Usi Uss My Moy Uy Uss 0 M,

then it follows than the columns of [ gﬂ ] also span an invariant subspace
21
of M and that the columns of [ f\’,’ ] with X = U,,U;' span the same

subspace, provided Uy, is invertible [10]. This approach has the advantage
that it uses numerically reliable coordinate transformations in (13) but the
disadvantage that only one invariant subspace is directly obtained that
way. It turns out that in several applications one only needs one invariant
subspace. Typical examples arise in applications involving continuous time
systems :

— the algebraic Riccati equation XBR™'BTX — XA - ATX —Q =0

from optimal control. Here the relevant matrix is

A —BR'BT

and the matrix MH must contain all eigenvalues of M in the left half
plane
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— the Lyapunov equation AX + X AT + @ = 0 occurring in stability
analysis. Here

—AT 0
w79 4]
and Mll = —AT
— the Sylvester equation AX — X B+ C = 0 where
B 0
w=[g 4]
and Mll = B.

In each of these cases one has a well defined spectrum in mind for the
matrix M, after transformation, and so only one invariant subspace has
to be computed. We point out that Lyapunov and Sylvester equations can
be viewed as special linear cases of the quadratic Riccati equation, which
is extensively discussed in [10] [15]. The efficient calculation of the linear
equations is discussed in [1] and is based on the Schur forms of A and B.
This so-called Schur approach was proposed in a number of papers [15] and
is now the recommended basic technique to solve these problems, although
improvements are still being found in this area.

The generalized eigenvalue counterpart involves deflating subspaces and
arises in applications involving discrete time systems. We refer to [15] for
more details. Besides the computations of eigenspaces it is also shown there
that the Schur form plays an important role in simulation of dynamical
systems and in the computation of system and frequency responses. In
fact, any matrix function of A can be evaluated efficiently using the Schur
form of A, and the same holds for matrix functions of F~'A using the
generalized Schur form of AF — A.

Another class of orthogonal coordinate transformations (which we do
not want to elaborate on here) are the so-called Hessenberg and staircase
forms. A staircase form has a typical echelon-like form for a couple of ma-
trices as shown below for the (A, B) pair of a system with 3 inputs, 6 states
and 2 outputs :

(14)

L —
I &
o (o
>:b>
(ST e
_ 1
Il
X X|looo oo o~

X X|loo oo oxX
X X|oo oo X X

X X|looo o X X X
X X|o o o X X X
X X|o o X X X X
X X|o o X X X X X
X X[X X X X X X X

X X[ X X X X X
X X[ X X X X X X



The X elements are nonzero and define exactly the controllability indices of
the system [20]. This form is the orthogonal counterpart of the Brunovsky
canonical form, which is more sparse but can only be obtained under non-
orthogonal state space transformation. These have been developed in sev-
eral papers and have numerous applications, including : controllability, ob-
servability, minimality of state space and generalized state space models,
pole placement and robust feedback, observer design and Kalman filtering.
They also exist for generalized state space systems in which case the addi-
tional matrix F, is upper triangular. We refer to [25] [20] for more details
on this form and its applications in systems and control.

A third important condensed form is the singular value decomposition
of a matrix. It is given by the following theorem.

Theorem 2 [9]
Let A be a mxn real matrix of rank r. Then there exist orthogonal matrices
U and V of dimension m X m and n X n respectively, such that

¥, 0
UTAV:E:[ 0 0] (15)
where 3, = diag{oy,---,0,} with oy > --- > 0, > 0. ]

Its main uses are detecting the rank of the matrix A in a reliable fashion,
finding lower rank approximations and finding orthogonal bases for the
kernel and image of A. In systems and control these problems show up in
identification, balancing and finding bases for various geometric concepts
related to state space models. We refer to [23] [14] [13] [15] for an extensive
discussion of these applications.

3. Matrix sequences

In this section we look at orthogonal decompositions of a sequence of ma-
trices. These typically occur in the context of discrete linear time varying
systems :

(16)

{ FErrpy = Az, + Brug
Y Cray, + Dy,

arising e.g. from a discretization of a continuous time system.

Let us first consider the input to state map over a period of time [1, N]
(notice that in the control literature one prefers to start from k& = 0, but
starting from & = 1 turns out to be more convenient here). If the matri-
ces F), are all invertible then clearly each state z; is well defined by these



equations. One is often interested in the zero input behavior (i.e. the ho-
mogeneous system) which yields an explicit expression for the final state
xn41 in terms of the initial state a4 :

IN41 = q’N,1~’E‘1 (17)

where
Oy, = FEy' Ay By AL ET A (18)

is the state transition matrix over the interval [1, N]. If the matrices F} are
not invertible, these this expression does not make sense, but still one may
be able to solve the input to state map when imposing boundary conditions

FN$N+1—F1£U1—|-fIO. (19)

We can then rewrite these equations is the following matrix form :

A B T Biuy
—Ay F, T2 Bous
) ) : = ) (20)
Ay  FExn TN Byuy
F —Fy TN41 /

which will have a solution provided the (square) matrix in the left hand
side is invertible.

3.1. PERIODIC BOUNDARY VALUE PROBLEMS

A periodic system is a set of difference equations (16) where now the coef-
ficient matrices vary periodically with time, i.e. My = My x, Yk and for
M = FE,A,B,C" and D. The period is the smallest value of K for which
this holds. Tt was shown in [18] that a periodic system of period K is solv-
able and conditionable (i.e. has a well defined solution for suitably chosen
boundary conditions Fi, Fiy) for all N, provided the pencil
_Al AEl
AE— A= - (21)
—Ag-1 AEg_y
AFg —Ax

is regular (i.e. det(Af — A) = 0). Such periodic systems are said to be
reqular. Two point boundary value problems for regular periodic systems
have thus unique solutions for any time interval N, provided the boundary
conditions are suitably chosen.
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Let us now choose a time interval equal to one period (N = K) and
introduce boundary conditions that allow us to define eigenvectors and
eigenvalues of periodic boundary value problems. Since these concepts are
typically linked to homogeneous systems, we impose :

u, =0,k=1,..., K, f=0, (22)
and for the invariance of the boundary vectors we impose :
Fy=sl,, Fx =cl,, = sz, = crgy; with 2 +s7=1, (23)

which yields :

_Al E1 Tq
—Az E2 To
.| =o. (24)
sl, —cl, TRyl

After some algebraic manipulations one shows that this is equivalent to :

_Al E1 Tq
(28 — Ay)x(1, K) ' 20 (25)
Zep — Ap) XL, () = : =
—Ax_1 Fr_q
ZEK _AK TK

where z = s/c. This condition says that x(1, K) is an eigenvector of the
pencil in the left hand side, with eigenvalue z. The pencils z& — A, and
AE — A are closely related [22]. In case all matrices Fj are invertible, it
follows e.g. that

det(28,—Ay) = c.det(21,—®g 1), and det(AE—A) = c.det(A\I,—®x 1)

where &, = EI_(IAK -~ FE;'A,E7Y AL is the so-called monodromy matriz
of the periodic system. For more details on the relations between general-
ized eigenvectors and eigenvalues of these pencils we refer to [22]. A key
decomposition for computing these generalized eigenvalues and eigenvectors
is described in the next section.

3.2. PERIODIC SCHUR FORM

The role played by the generalized Schur form for time invariant systems is
now replaced by a very similar orthogonal decomposition, called the periodic
Schur form.
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Theorem 3 [3]
Let the » x n matrices F), and A, £k = 1,..., K be such that the pencil
AE — A is regular. Then there always exist orthogonal transformations @
and 7, k=1,..., K such that

QT —Ay AE; 7
Qr %
' ~Axo1 ABr
Q% 1L Bk ~Ag
—Ar ARy
) o s
A ~Ax A .
Ak —Ag

where the transformed matrices Ax and F are all upper triangular, except
for one matrix — say, A; — which is quasi triangular. [ |

The relation with the standard Schur form is that if the F} matrices
are invertible, then the monodromy matrix ®x; is transformed by the
orthogonal similarity Z; to its Schur form :

bpy = FlAg - E7YA = ZT (Bt Ax - - BT YA 7, = 27 ®pc 1 7.

Since all matrices are triangular it follows that all transformed monodromy
matrices &)K+k—1,k are quasi triangular as well, and with the same ordering
of eigenvalues. From Theorem 1 it follows that the ordering of the eigenval-
ues can be chosen arbitrarily and hence that there exists a periodic Schur
form associated with any eigenvalue ordering.

We point out here that the transformations 7, and @, can also be
applied directly to the system (16). Define indeed a new state i, = 7]z,
and multiply the top equation of (16) by @7 then we obtain an equivalent
system

{ FErirp = f}k«?k + Bruy, (27)
Yy = Cily + Dyuy,

where B;, = QT By, Cr = Cy 7, and E) and A, are upper triangular, except
for A; which is quasi triangular. This is a very special coordinate system :
the “bottom” equation in (27) (or the bottom 2 equations if A, has a bot-
tom 2 x 2 block) is now “decoupled” from the rest of the system. Since
the ordering of the eigenvalues in the Schur form can always be chosen
arbitrarily, one can choose this decoupled system to be the one with the

7K
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smallest eigenvalue in absolute value and hence the “easiest” to integrate
numerically [3]. Once this “bottom” component of the state has been com-
puted, one substitutes this in the next component(s), which is then also
decoupled from the rest of the system, and so on. This coordinate system
is therefore very appealing for simulation purposes [11].

3.3. PERIODIC CONTROL SYSTEMS

The periodic Schur form has several other applications in control prob-
lems involving periodic discrete time systems. In optimal control of such a
periodic system one considers e.g. the problem :

Minimize J = 3,7, 2F Qrzi + ul Ryuy, (28)
28
subject to Hyzp11 = Frzp + Grug

where the matrices @y, Ry, F., Gy, H, are periodic with period K. In or-
der to solve this variational problem, one needs to solve the Hamiltonian
equations which is a periodic homogeneous system of difference equations
(16) in the state z;, and co-state A of the system [16]. The correspondences
with (16) are :

Ty = [ ] 7Ek = [ FT 7Ak = HT . (29)
2k k 0 v @k

For finding the periodic solutions to the underlying periodic Riccati equa-
tion one has to find the stable invariant subspaces of the monodromy ma-
trices @14 [2]- Clearly the periodic Schur form is useful here as well as
the reordering of eigenvalues [3].

In pole placement of periodic systems, again the periodic Schur form
and reordering is useful when one wants to extend Varga’s pole placement
algorithm [27] to periodic systems. Consider the system

Eyzip = Apze + Dyuy, (30)
with state feedback u, = Fj 2z, + vp

where the matrices Ay, E), Dy, F), are periodic with period K. This results
in the closed loop system

Frziyr = (Ax + DiFy)zi + Dyvg (31)
of which the underlying time invariant eigenvalues are those of the matrix :

O = EM(Ax + DicFi) - E3 ' (As + Do) BT (A + DiF). - (32)
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In the above equation it is not apparent at all how to choose the matrices
F}, to assign particular eigenvalues of <I>(If)1 Yet when the matrices A, F),
are in the triangular form (26), one can choose the Fj, matrices to have
only nonzero elements in the last column. This will preserve the triangular
form of the matrices Ay + D, F}, and it is then trivial to choose e.g. one
such column vector to assign one eigenvalue. In order to assign the other
eigenvalues one needs to reorder the diagonal elements in the periodic Schur
form and each time assign another eigenvalue with the same technique. For
more details, we refer to [17].

Other applications of the periodic Schur form are the solution of periodic
Lyapunov and Sylvester equations. Since these are special cases of periodic
Riccati equations, they can also be solved via the periodic Schur form. These
equations show up in problems of stability analysis, decoupling, balancing
and so on [17], [28].

3.4. GENERALIZED QR DECOMPOSITION

The basic equation in the matrix sequences occurring in the homogeneous
two point boundary value problem defined earlier is Fjapy 1 = Agxy,. We
now analyze the system of equations when both Fj, and A, are singular,
and more specifically, what is needed to be able to define singular values of
sequences of such equations. For this we first analyze a single equation

Fy = Az. (33)

The singular value decomposition is originally defined for a single matrix
M and is closely related to its URV decomposition. If an m X n matrix
M has rank r = min{m, n} then there exists orthogonal matrices U and V'

such that R
B M 0 T
M_U[O O]V

where M is an r X r invertible matrix. This so-called URV decomposition
can be viewed as a two sided QR decomposition and can be obtained in a
finite number of operations [7]. The first r columns of U in fact span the
image of M and the first r columns of V" are the orthogonal complement of
the kernel of M. So if in the equation

y= Mz

we constrain the vector y to ImA and x to KerM*, then M is invertible
since it essentially is represented by M. This can be applied to the implicit
system (33). If A and FE are invertible then

Fy=Ar < y=F"'Az & A™'Ey = 2.
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Do these equations still make sense when the matrices are singular 7 Let
us consider spaces X and Y such that Z = FY, Z = AX and dim X =
dim}Y = dim Z. The largest such subspace 7 will be Z = ImAN ImF.
Provided we choose x € A" then there exists a solution y € Y satisfying
FEy = Az, and then the mapping y = F~' Az makes sense. But the solutions
are not unique, unless we constrain y to be e.g. in KerEt. Conversely,
provided we choose y € Y then there exists a solution z € A" satisfying
FEy = Az. Again A~'Fy = z then make sense and z is unique e.g. if 2 €
KerA*t.

This discussion does not change when transforming to a coordinate
system

24 = QFVTy, = QAU z,

where U, V and @ are orthogonal. One can always find matrices Q,U, V
such that in the new coordinate system this equation has the form :

2 0 F x y 0 A x .
| |0 0 x "1 10 0 R !
51710 0 R, y2]_ 00 0 iz (34)
2 00 0 Ys 00 0 3

where R,, R; are invertible matrices of dimension s and ¢, respectively, and
E and A are square invertible of dimension r = dimImA N ImE. In the
new coordinate system it is clear that we need to take y3 = 0, 23 = 0 in
order to make the system compatible and y; = 0, ; = 0 in order to make
the solution unique. Defining & = 2, and § = y, we obtain the equation

Ey= Az,

which has a well defined solution § = E~'AZ. The singular values we are
interested in are of course those of the reduced order map E~'A. The de-
composition (34) is called the generalized QR decomposition and can be
extended to sequences of equations Fjxy1 = Arxg. As in the single equa-
tion case, one can again extract from a possibly singular system of equations
a lower dimensional one that has all matrices E, and A, nonsingular. The
relevant singular values are then those of

EilAg ---FE7A;.
For the details, we refer to [4]. In the next section we show how to extract

from such a nonsingular sequence, the singular values by only applying
orthogonal transformations to the sequence of matrices F, Aj.
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3.5. BIDTAGONAL AND SINGULAR VALUE DECOMPOSITION

Here we consider a sequence of n X n matrices Fj, A, which are invertible,
and we want to compute the singular values of the state transition matrix
over a time interval [1, N].

Oy, = Ey'Ax - ESTASETT AL

It is clear that one has to perform left and right transformations on ®y
to diagonalize UT®y V' = X, but these will only affect Fy and A;. But
one can insert pairs of orthogonal transformations in between the factors
of this expression without altering the result. The following theorem shows
how to use these degrees of freedom to find the singular values of ®y ;.

Theorem 4 [8]
Let the » X » matrices F} and A,, k = 1,..., N be invertible. Then there
always exist orthogonal transformations @, & = 1,...,N and Z,, k =
1,..., N+ 1 such that

Z
QT -A Fy '

ZNn

K —Ay F
QN N N ZN+1

= '.. '.. s (35)
—Ay Ey

where all matrices Ek and flk are upper triangular and the product <i>N71 =
Ex'An---E7' A, is diagonal (alternatively, there is an algorithm of com-
plexity O(Nn?) which bidiagonalizes ®y ;). |

The proof of this result is very simple. Choose Z; =V and Zy,, = U.
Then alternately choose the matrices ), to triangularize flk = Qg(Aka)
(for k=1,...,N) and 7, to triangularize Fh = (QT_|Eyx_1)Z (only for
k=2,...,N since Z; and Zy,, are already fixed). All matrices but EN in
the expression for <i>N71 are now upper triangular by construction, but since
all factors are invertible and the product is diagonal (or bidiagonal), Fy
must be upper triangular as well. The finite algorithm for the bidiagonal-
ization could also be derived this way, but we refer to [8] for a constructive
and numerically stable algorithm.

The bidiagonalization has been shown to yield very accurate results
despite the fact that the singular values of such product can become very
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large and very small as N tends to grow [8]. The singular values of the
computed bidiagonal are then computed to high relative accuracy using an
appropriate technique [6]. This decomposition can e.g. be used to find the
“dominant directions” of the state transition map ®y; over a finite time
interval [1, N]. In the case that the discrete time system (16) comes from
a discretization of a nonlinear continuous time system it is known that the
singular values of ®y; are closely related to the Lyapunov exponents of
the corresponding continuous time system (provided the discretization is
sufficiently “fine”) [5]. Singular values also show up in robustness aspects
of dynamical systems [24].

4. Concluding remarks

In this paper we surveyed a number of orthogonal matrix decompositions
arising in systems and control. We pointed out that they lead to numeri-
cally reliable algorithms for solving quite a large range of problems in this
area. This is mainly due to the fact that orthogonal transformations are
backward stable when implemented correctly, and that they do not affect
the conditioning of the problem at hand. Although we did not mention
all uses of orthogonal transformations in this area, we gave references for
further reading on this important area of research.
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