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Abstract-A cascade factorization R(A)=R,(A).R,(A) . . .R,(h) of an 
nXn nonsingular rational matrix R(X) is said to be minimal when the 
McMil lan degrees of the factors add up to the McMil lan degree of the 
original matrix. In this paper we give necessary and sufficient conditions 
for such a factorization to exist in terms of a state-space realization for 
R( 1). Next, we focus on numerical and algorithmic aspects. We  discuss the 
numerical conditioning of the problem and we give algorithms to compute 
degree one factorizations and real degree two factorizations. Finally, we 
discuss the special case where R(X) is a para J-unitary matrix. 
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I. INTRODUCTION 

T he problem of factorization of an n X n rational matrix 
R(h) into two factors R(A)=R,(A).R,(X) has re- 

cently received a lot of attention. In [lo] sufficient condi- 
tions for the factorization to exist are given and it is shown 
by example that, in general, nontrivial factorizations (i.e., 
where the factors are not constant) may not exist. Indepen- 
dently, Van Dooren [25] and Bart et al. [2] gave necessary 
and sufficient conditions in terms of a  state-space realiza- 
tion for R(X) [3]. The mathematical factorization theory is 
further elaborated in [2]. The work of Vandewalle [24] also 
deserves attention. There necessary and sufficient condi- 
tions are derived for a  matrix R,(A) to be a minimal factor 
of R(X) in terms of the parameters of the matrix itself. 
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In the past, cascade factorization has received a great 
deal of attention in circuit theory because of its theoretical 
and practical importance both in analysis and synthesis of 
networks [4], [9], [ 111. While the solution of the problem of 
cascade factorization for special types of transfer functions 
has already been known for quite some time, it is only 
recently that one focused on the general case. 

In this paper we give a complete solution of the cascade 
factorization problem using state-space techniques, thereby 
reviewing some recent results and streamlining the theory. 
During the elaboration of this paper, our attention has 
been drawn to the work of Sachnovic [17], which contains 
some of the results of this paper. Sachnovic, however, does 
not give proofs. We  shall give simple proofs and next focus 
on numerical and algorithmic aspects of the problem. 

Notations will be as follows. We  reserve upper case for 
matrices and lower case for vectors and scalars. Script is 
used for operators and spaces. W ith %n% and % @ ‘%I we 
denote the intersection and the direct sum, respectively, of 
the spaces 5K and 9. In the coordinate system used, % l 
denotes the orthogonal complement of %  and %c‘%  means 
Gx is included in %. We  use ]I. I( z and )I. ]I m  for the 2-norm 
and co-norm of vectors and also for the corresponding 
induced matrix norms. Iw and Q: are the fields of real and 
complex numbers. The conjugate transpose of a  matrix A is 
denoted by A* and its largest and smallest singular values 
bY %a.x (A) and umin(A), respectively. When quantities are 
defined in an equality we use 4 . 

In the next section we briefly review the geometrical 
results of [3] for minimal factorizations of the type R(h)= 
R,( A).R,(X). In Section III we show how to extend these 
results to general cascade factorizations involving an arbi- 
trary number of factors. In Section IV we discuss the 
computational aspects of the problem and give numerical 
algorithms to perform the factorization for real and com- 
plex transfer functions (see also [25] [26]). Finally, in the 
last section, we connect our results with earlier work [6], 
[ 1  l] on para J-unitary transfer functions and show how 
they reduce to the classical theory due to Livsic [ 1  I]. 

II. FACTORIZATION THEORY 

Let R(h) be an n Xn invertible rational matrix with 
coefficients in C or Iw. The degree of the matrix is under- 
stood to be the Smith-McMillan degree and may be’ 
defined in terms of the poles of R(X) [12], [16] 

Definition I 
The McMillan degree of a  rational matrix is its number 

of poles, multiplicities counted. vvv 
There is some discussion as to how multiplicities must be 

counted. The conventional definition in dynamic system 
theory is the number of free modes of the system; this is 
also the definition adopted by McMillan. In this paper we 
shall assume that R(h) is given by a minimal state-space 
realization: 

R(h)=D+C(h&--A)-‘B (1) 
whereby we tacitly assume that R(X) has no pole at 

infinity. Moreover, we shall take D to be nonsingular, so 
that R(h) does not have zeros at infinity as well. These 
assumptions do not restrict generality because a bilinear 
transformation on h can always produce the desired form 
(1) and does not affect the factorizability. Under the 
assumptions made, a minimal realization for R-‘(X) is 
given by (see 1161) 

R-‘(h)=d+c(hl,-a)-% 

g D-‘-D-‘C(h&-A+BD-‘C)-‘BD-‘. (2) 

The eigenvalues of A are the poles of R(h). The eigen- 
values of a  are the poles of R-‘(X) and thus the zeros of 
R(A). Poles and zeros are both 6 in number, which is also 
the degree of R(A). The minimal state-space realization (1) 
will be denoted by the quadruple {A, B, C, D}. It is known 
(see, e.g., [ 161) that all minimal realizations for R(X) are 
then given by {T-‘AT, T  -‘B, CT, D} with T  an invertible 
transformation (also called a state-space trunsfor~a~ion~). 
We  shall call realizations {A, B, C, D} and {A, B, C, D} 
corresponding when they satisfy the relation (2). Under a 
state-space transformation T, corresponding realizations 
are transformed simu!tanepusly as {T -‘AT, T  -‘B, CT, D} 
and {T -‘A T, T  - ‘B, CT, D}. Fence we may consider coor- 
dinate-free operators @  and @  acting in a state-space X, 
which is either Cs or Iw”, and for which the poles and zeros 
of R(X) are the respective spectra. To any representation A 
and 2 of these operators in a given coordinate system, 
there correspond realizations {A, B, C, D} and {a, 8, C’, D} 
for Rl(h) and R - ‘(A) which are related as in (2). We  call & 
and @  the pole operator and zero operator, respectively, of 
R(h). 

Definition 2 
The factorization 

R(A)=R,(h)%(A) (3) 

is said to be minimal when the degrees 6i of Ri(h) for 
i=1,2adduptothedegree6ofR(X). vvv 

It is well known (see, e.g., [16]) that for arbitrary factori- 
zations of the type (3), one has 

6a3’+s;. (4 
The difference between the two sides is the number of 
pole-zero cancellations between RI and R,. Minimality of 
a  factorization is thus equivalent to the absence of cancel- 
lations between the two factors. The poles and zeros of 
both factors then constitute together the poles and zeros of 
the product R(A). This implies that both factors of the 
minimal factorization (3) have no poles nor zeros at infin- 
ity and that they must have minimal realizations: 

R,(h) ” D, + C,( XI,, -A,,)-‘B, (5) 

R&I) g D, + C2( A& -A,,)-‘B, (6) 

with D, and D2 constant and invertible. For notational 
convenience we use the so-called system matrices [16] to 
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denote these realizations: 

(74 

The following is readily verified. 
Lemma I (see, e.g., [7]) 
Let Ri( X) be realized as in (7). Then a realization for the 

product R,(h).R,(h) is given by 

1 G,-4’ ; --B,C2 1 BID21 
-- --- 

R,(h).R,(++ - i - - i hJ82zA22 1 B, 1. (8) 

1 -Cl I -D,C, i DID,]- 

vvv 
The following theorem is a corner stone for the rest of the 
paper (see also [3]): 

Theorem I 
A rational matrix R(h) can be factorized minimally into 

factors of degree 6, and 6, iff it has a minimal realization 
in which the pole and zero matrices have the upper and 
lower block-triangular forms 

A/= 

All Al2 PI [ 1 0 A22 >s, 

x y ^ 
A,= All 0 >b [ I* i2’ a22 162 

T’y 

(94 

Proof: Only if: Since there exists a minimal factoriza- 
tion, suppose that the factors R,(X) are given by (7a) and 
(7b). Then (8) is a minimal realization for R(X), which is of 
the form (9a). It is readily verified that the zero matrix of 
(8) has the form (9b). Notice that aii =Aii -BiDj-‘C,, so 
that Aji and iii for in 1,2 are also the corresponding pole 
and zero matrices of (7a) and (7b). 

If: Let the realization of R(h) corresponding to (9) be 
partitioned as 

Then because aI2 = 0 in (9b), we have that 
A,, -B, I D -‘C,, =O. The following matrix then has rank n 
and can be factorized as 

[IA,:: 211 e [a] I-C, D21)n. (11) - 
n 

Using Lemma 1 and (11) one can check that the factors 

RIG+ [a] (12a) 

yield the realization (10) for the product R,(X)eR,(X). 
This factorization is minimal because the realization (10) is 
minimal; hence S = 6 I + 6,. vvv 

Remark I 
The constant matrix factorization (11) is not unique. The 

matrix D, (or D2) can be chosen arbitrarily but must be 
invertible since D = D, D,. The other three matrices then 
are defined by (11). This means that a constant (matrix) 
scaling factor can still be chosen arbitrarily between R,(X) 
and R2( X). For all possible factorizations (1 l), though, we 
still have that Aii and iii are corresponding pole and zero 
matrices of the two factors (see only if part). vvv 

In the sequel, we call a realization for R(h) factorable 
when A, and a, have the forms (9a) and (9b), since then 
realizations for the two factors are easily obtained by (11) 
and (12). The existence of such factorable realizations can 
geometrically be des$ribed by the invariant subspaces of 
the operators @  and B of R(X). 

Theorem ? (see also [ 31) 
If & and 6? are the pole and zero operators of R(X), then 

there exists a factorable realization for R(A) iff there exist 
independent subspaces %. and ?4 of 3c such that: 

(i) h?tXC!?L (ii) $%C9 (iii) WBG!4=X. (13) 

Proof. If: Because of (iii) we can choose a coordinate 
system such that the columns of 

I [ 1 6, 
0 

form a basis for SC and the columns of 

0 [ 1 Z 82 
a basis for 9. In this coordinate system & and &! are 
represented by matrices of the type (9a),(9b). 

Only if: Let (9a),(9b) be the pole and zero operators of a 
factorable realization. In this coordinate system, the col- 
umns of I [ 1 6, 

0 
and 

0 

[ I ‘82 

are bases for invariant subspaces 5% and ?4 for @  and &., 
respectively. Clearly condition (iii) is then also satisfied. 

vvv 
Corollary 1 
If R(X) has a realization {A, B, C, D} and if the columns 

of X and Y are bases for subspaces %  and ?!4 satisfying 
Theorem 2, then {T -‘AT, T -‘B, CT, D} is a factorable 
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realization when T  g [XI Y], and only when T  is of that 

type. vvv 
The factorization problem clearly is a combinatorial 

problem. For each pair of invariant subspaces %  and %I of 
@  and & one can check for factorizability (condition (iii) in 
Theo;em 2). The number of possible pairs is finite when @  
and &? do not have repeAated eigenvalues but can be infinite 
otherwise (when @  or &? has more than one Jordan block 
associated with a certain eigenvalue). The spaces %  and 9 
also determine which will be the spectra of Aji and a,,, 
after applying the transformation T= [ X 1 Y] of Corollary 1 
that reduces the pole and zero matrices to the form (9). 
While %  thus chooses which poles will belong to R, and 
R,, %  performs the choice for the zeros. Hence for each 
pairs of subspaces Ex and %  there corresponds a certain 
distribution of poles and zeros over the two factors. Condi- 
tion (iii) in Theorem 2 is a compatibility condition for the 
spaces 3c and %  saying whether or not there exists a 
factorization with such a distribution of poles and zeros. In 
the sequel we always work with one specific choice of %  
and 9 and we discuss factorizability of R(h) in terms of 
that pair only. 

When two bases X and Y of spaces %, and 9 with 
appropriate dimensions are thus put together in a matrix 
T= [ X] Y] then condition (iii) is satisfied if and only if T  is 
invertible. In practice this condition is almost always satis- 
fied. This has the rather annoying side-effect that any 
algorithm running on computer will not recognize un- 
factorable matrices since almost any small perturbation- 
caused by rounding errors in the computer-will make the 
matrix T  invertible. However, closeness to an unfactorable 
matrix can still be detected. Indeed if the bases X and Y 
are very skew to each other we might as well say that the 
condition is “essentially” not satisfied. This is reflected in 
the numerical effort to be performed if one still wants to 
factorize such a matrix: the state-space transformation T  to 
bring the original state-space model to a factorable form is 
then very badly conditioned. The conditioning of the trans- 
formation T  is characterized by its condition number [El: 

cond.Th IITII,.IIT-‘II,. 

The “skewness” of two nontrivial subspaces %  and 3 is 
measured by their minimal angle emin, defined as 

cos emin g ym, 

&max{(x*y] IxE%,rE%, IIxl12=IIyl12=1}, 

o<e,, <?rr/2. (14) 

The following theorem is proven in [3]. 
Theorem 3 
(i) Any transformation T= [ XI Y] where the columns of 

X and Y are arbitrary bases for %  and 9 in a given 
coordinate system, satisfies 

cond. T> J 1 +ym, _ 1+cose,, 
I--y,,- sin&, ’ (15) 

C$ D,-.Dip,Cj, 084 

D,,A D,-e-D,. 

(ii) When X and Y are orthonormal bases in this coordi- 
nate system, this lower bound is met. vvv 

The optimal transformation to bring a state-space reali- 
zation to factorable form is thus TO =[ X,1 Y,] where the 
columns of X0 and Y, are orthonormal bases for 3i and 9, 
respectively. 

. 

The point we wish to make is that an all-or-none 
factorizability condition is dangerous in practice, when 
inexact data and computations are involved, and that it is 
important to examine how close one is to satisfying or 
violating the condition. The above analysis shows that the 
minimal angle Bmin gives a quantitative measure for this 
“closeness.” When orthonormal bases X0 and Y, are used 
for the spaces %  and 9 then II Y$X, II 2  =ym, =cos O,, [3]. 
When Y,,,, is not too close to 1, the transformation TO = 
[X0 I Y,] is then used to construct a  factorable realization, 
as recommended by Theorem 3. Since cond. TO tells us 
what accuracy can be expected after applying this transfor- 
mation, we can determine from (15) which y,, is still 
acceptable, depending on the requested accuracy (if, e.g., 
we want cond. TO < 100 then y,, should be smaller than 
0.9998). For values of y,, larger than this threshold we 
would call the rational matrix numerically unfactorable (as 
far as the considered pair %, %  is concerned). 

It is to be noted that the choice of the initial state-space 
realization influences the condition of T. If no “natural” 
coordinate system is given, then it is wise to start out from 
a so-called balanced realization [14], for in that case the 
sensitivities of the parameters in the realization and the 
parameters in the transfer function are closely related.. 

III. CASCADE FACTORIZATION 

The problem here is to obtain a cascade factorization 

R(X)=R,(X).R,(X). * *R&q 06) 
where all R,(h) are of small degree, and the factorization is 
minimal in the following sense. 

Definition 3 
The cascade factorization (16) is termed minimal when 

the degrees Si of the factors R,(X) add up to 6, the degree 
of R(X). vvv 

This means again that no pole-zero cancellations may 
occur in the cascaded product R, . R z . + . R k, and that each 
of the factors must have a minimal realization 

Rio) *[m j I 
(17) 

with Di constant and invertible. 
Lemma 2 
Let the factors R,(h) be realized by (17) for i= 1;. .,k 

and define 

Aij” BiDi+,-Dj-,cj, for i<j, (184 

BjjaBjDj+,--D, (18b) 

(184 
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Then the product-( 16) is realized by {A, B, C, D} with A,, ... A l, A& 1 1 . . ; (194 0 . Akk (19’4 t 194 
tl9d) 

Proof: We prove the lemma by induction. 
Lemma 1 proves the result for k=2. Assuming that the 

lemma is true for k, we prove now it also holds for 
k’ g k+ 1. Since R(h) is realized by {A, B, C, D} as in 
(19) and Rkj(h) by {A,,,, B,,, C,,, Dkt}, a realization 
{A’, B’, C’, D’} for their product R’(A) = R( h) . Rkt( A) can 
be obtained by Lemma 1 as follows: 

A ’ BC 
A’a -A--~: I 1 0 I A,y 

B’ ” ““k’ [ 1 B,t }a,, i=’ 

D’ 4 [ DD,,]. 

This verifies (18) and (19) for k updated to k’. vvv 
This leads to the following generalization of Theorem 1. 
Theorem 4 
A rational matrix has a minimal cascade factorization 

(16) into factors of degrees a,, i= 1; . *, k iff it has a 
minimal realization in which the pole and zero matrices 
have the upper and lower block-triangular forms: 

A,, X ... X 
A 22 ... X 

0 

A kk 

-gx ... x 

>S, 
162 

18, 
(204 

>4 
182 

_ ,B, 

. (20b) 

Proof: Only if: Let R(X) have a minimal factorization 
(16), then (19) gives a minimal realization for R(A). It is 
easy to see that (18) yields the identities 

A,j-BiiD,&=O, for i<j (21) 

which are exactly the upper diagonal blocks ajj of the zero 
matrixa=A-BD-‘C of (19). 

If: Let {A, B, C, D} be a realization such that A and 
a =A - BD - ‘C have the form (20). Then we can partition 
this realization as in (19). One can always construct factors 
Ri( X) with realizations {Aii, Bi, Ci, Di} satisfying (18), (19) 
as follows. Choose k invertible factors Di that satisfy (18d) 
and solve for Bi and Ci (for j= 1;. .,k) from (18b) and 
(18~); finally (18a) is also satisfied because of (21), indicat- 
ing that 2 is lower triangular. This factorization is minimal 
because the realization {A, B, C, D} is minimal and thus 

s= i si. vvv 

i=l 

Remark 2 
Just as in the case of single factorizations we can choose 

(k- 1) of the matrices Di arbitrarily (if nonsingular) in 
(18d). This is equivalent to saying that (k- 1) constant 
scaling factors can arbitrarily be chosen between the pairs 
R,.R,+, (for i= 1;. ., k- 1). Yet, for any such choice we 
still have from (18) that 

&=Aii-BiDi-‘Ci 

which means that the diagonal blocks Aii and iii of (20) 
are the pole and zero matrices of the factors {Aii, Bi, Ci, Di}. 

vvv 
To avoid too much computations one should choose, 

e.g., D, = D and the other Di =I which then gives the 
following construction for the factors of R(h) realized by 
(19): 

1 

R,(X)is realized by{A,,, B,,,C,,, D} 

Ri(X)isrealizedby{Aii, Bii, D-‘C,,,I}, fori=2;*-,k. 

Since the factors R,(X) can easily be obtained from the 
realization of R(A) .when it has the property (20), we will 
call such a realization cascaded. Necessary and sufficient 
conditions for the existence of such cascaded realizations 
are given by: 

Theorem 2 
If & and 6? are the pole and zero operators of R(X), then 

there exists a cascaded realization (20) for R(h) iff there 
exist (k- 1) pairs of independent subspaces Xi, qi, nested 
as follows: 

(0) c!x, c :. . Ctxk-, cx (224 

x33,3 ** * I$-, I(o) W) 
and such that the following conditions are satisfied for 
each pair: 

(i) @ !Xj CfXi (ii) $%; Cqi (iii) %i@%i =X. 

(23) 



Proof: Zf: Let us define Xx, g ?$, k X, %$ A 
‘%k A {0}, and Si g %,in%i-, for i=l;--,k. It follows 
then from (22) and (23iii) that 

1 

xi =9Q33si 

qi=si+l’qi+IT fori=l;--,k-1 

and hence, by induction, that 

1 

xi =$$I3 * * * CBS. 
?4i=si+,@ . ..&., fori=l;.. ,k-1. (24) 

Let ti, qi, and Si be the dimensions of Xi, ‘Bi, and Si, 
respectively. It follows from (23iii) that 

S,cI3S,@ * -. CBS, =x. 

We thus can choose a coordinate system in which Si is 
spanned by the columns of 

O Iti- 

1 II 
4 fori=l;--,k (25) 
0 >Vi ’ 

whence Xi and 9Ji are spanned by the columns of 

[ I 
4, 
0 

and 

0 

[ I Z 9, 
respectively. 

In this coordinate system the pole and zero matrices A 
and a have the required form (20) because of conditions 
(23i) and (23ii). 

Only if: In the coordinate system of (20) the spaces Xi 
and ‘%i defined as in (24),(25) clearly satisfy all conditions. 

vvv 
Corollary 2 
If R(A) has a realization {A, i, C, D} and if in this 

coordinate system the columns of Si are bases for the 
subspaces Si of Theorem 5, then {T -‘AT, T -‘B, CT, D} is 
a cascaded realization when T= [ S, I . . . ] Sk], and only when 
T is of that type. 

Proof: Under this transformation new bases for Si are 
given by (25) as required in Theorem 5 (if and only if). 

vvv 

Note that the obtained factors R,(h) will be nontrivial 
(Si #O) if and only if the inclusions in (22) are strict. This 
is always assumed in the sequel. The combinatorial aspect 
of the problem is obvious again. Each pairAof chains (22) of 
subspaces Xi, ?Ji, invariant under @ and @, respectively- 
i.e., satisfying (23i) and (23ii)-partitions the poles and 
zeros of R(A) over the factors R,(X). Condition (23iii), 
finally, says whether or not a cascade factorization can be 
obtained using the subspaces {%i,94,1i=l,---,k}. As in 
Section II we replace this last condition by a quantitative 
measure which is a more realistic criterion for numerical 
practice. This is done as follows. For a given chain of 
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invariant subspaces (22) (23i), (23ii) we can construct the 
spaces Si of Theorem 5. Condition (23iii) is then satisfied if 
and only if these spaces are linearly independent and span 
the whole space X. When, in a given metric, some of the Si 
are too skew to each other, we may say that condition 
(23iii) is “almost” not satisfied. This is again reflected in 
the condition number of the transformation T=[ S, ) . . .I Sk] 
required by Corollary 2. Although one would expect from 
Theorem 3 that cond. T is minimal when the bases Si are 
chosen orthonormal, this does not hold anymore when 
k>2 (see [22]). Yet, a straightforward construction of a 
transformation of the type T=[S, I . . . I Sk] with minimal 
condition number is not known [22]. The following theo- 
rem shows that using orthonormal bases Si gives a rela- 
tively low condition number. 

Theorem 6 
Let T, =[&‘I . . .jSi] b e an invertible matrix where the 

columns of Sio are an orthonormal basis for Si. Let emin be 
the minimal angle between any two of the subspaces Si, 
and let qk be the class of nonsingular block diagonal 
matrices partitioned conforming to To. Then 

cond.T,< 1+(k-l)cos8,,,-Qi;&,cond.ToD. 
1 

Proof: Let D g diag{D,, * . . , Dk} be an arbitrary ma- 
trix in Qk. Then the following is readily checked: 

IIT~DII~~~~~IIS,ODjll~~~~~IIDjII~~IIDII~ 
j i 

and, therefore, 

cond.(ToD)=IIToDI1211D-‘To-‘II, 

2IIDII,IID-‘To-‘I12~IITo-‘II,. @a) 

Next, let x be any vector of unit norm partitioned conform- 
ing to To: 

x)=(x{,. **,x;). 

Then 
2 

i si”xj = i 5 x;S;*sj”xj 
j=l II I 2 izxl j=, 

d i Ix,*xil+ 2 i II~il1211Xjl12COS~~n 
i=l i=l j=l 

i#i 

=‘+ 
1[ 

2 2 Ilxil1211xjl12 -l 
I i 

cos e,, 
i=, j=, 

=I+([ js, llXil12~-~~COS~tin. 

Notice now that the sum in the last expression reaches its 
maximum when all II xi II 2 are equal to l/G, so that 
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IIToll~=m~ IIT,xIl~<l+(k-l)cosO,, have that (see, e.g., [5]) 

and, therefore, 

co~d.(To)=IIToIl2llTo-iII2~~1+(k-l)cos8,,IITo-~II2. 
(26b) 

Since (26a) holds for any D we obtain the desired result 
from (26a), (26b). vvv 

Since the transformations {To D I D Egk} are exactly 
those derived by Corollary 2, this theorem says that To has 
almost minimal condition number among all suitable trans- 
formations. A measure for factorizability is thus given by 
cond. To. An ideal situation would be that the Si are 
orthogonal in the given metric: then To is orthonormal and 
cond. To = 1 is minimal. When, on the other hand, cond. To 
becomes very large and above some treshold, one should 
rather not perform the transformation To because of its 
inherent numerical difficulty. Condition (23iii) is then “es- 
sentially” not satisfied. 

om,{ v;*u;} = om,{ v;*u;} =c0s e(i) nun 

omin{ V;*U;} = atin{ Vi*Ui} = sin e$L (31) 
wherein 0,$, is the minimal angle between Xi and qi. 
Hence, if (23iii) is satisfied, then e,$,>O and the leading 
principal minors Qii = V;*U; of Q are nonsingular. This 
implies that there exists a LU factorization (see, e.g., [28], 
p. 204): 

where Q, and Q, are lower and upper triangular, respec- 
tively. Moreover, we can always normalize the columns of 
Q, and, e.g., require that its diagonal elements are positive 
real, which makes the decomposition unique. Then, after 
the state-space transformation 

IV. COMPUTATIONAL ASPECTS 

Tg V.Q+J.Q,’ (3j) 

it is easy to see that the new pole and zero matrices are 
upper and lower triangular, respectively, 

In this section we discuss some practical aspects of the 
theory developed in previous sections. For reasons that will 
become clear, we first focus on first degree factorizations: 

R(h)=R,(I+R,(h)...Rs(h) (27) 
where thus each factor R,(A) has only one pole and one 
zero. We start with a given minimal realization {A, B, C, D} 
for R(X). For the construction of a transformation T that 
reduces this realization to cascaded form, we need to 
compute invariant subspaces of the matrices A and 
a =A - BD - ‘C. A common way to proceed is to decom- 
pose A and a into upper and lower Schur form, respec- 
tively, 

ra,, xl 

ai, 2 T -‘aT= Q,-‘V*kQ, =Q,!&Q, = b]. 

Note that the diagonal elements of (34a), (34b) are 
those of (28a), (28b) and that (34) indicates that 
{T -‘AT, T - ‘B, CT, D] is in cascaded form. When also 
reversing the above reasoning we finally obtain: 

Theorem 7 
A minimal cascade factorization (27) with given ordering 

of poles and zeros exists iff there exists an LU decomposi- 
tion for the matrix Q= V*U whert U and V are the unitary 
matrices which transform A and A to their Schur form (28) 
with the prescribed ordering of poles and zeros. vvv 

Moreover, according to (33) and the normalization of 

(28a) 

t28b) 

where U and T/ are unitary. Notice that {aii} are the poles 
of R(X) and {Gii} its zeros. Let us choose xi as the space 
spanned by the first i columns of U and ‘?li as the space 
spanned by the last (S-i) columns of I’, this for i= 
1; . -, 6 - 1. Then by (28) Xi and qi are invariant subspaces 
of A and 2, respectively, and they satisfy conditions (23i) 
and (23ii) by construction. The last condition (23iii) can 
then be expressed in terms of the leading principal minors 
of the matrix 

Q g v*u. (29) 

Indeed, let U and V be partitioned as 

UA [&I u;‘] ; vg [V/l V-J- 
-- -- 

i 6-i i 6-i 
Then the columns of U{, Vi, I’{‘, V;’ are orthonormal bases 
for the spaces ‘Xi, $Xil, %til, and ‘?Ji, respectively. We then 

Q’- Q,.Q, (32) 

(344 

t34b) 

Q,, we have that the columns of T are normalized, whence 
T satisfies the conditions of Theorem 6. It is superfluous to 
prove that the columns of T indeed span the Si spaces of 
Theorem 5 since {T-‘AT, T-‘B, CT, D} is in cascaded 
form. The decompositions (28) and (32) thus yield a simple 
construction for a near optimal transformation T to reduce 
a realization to cascaded form. The condition number of T 
yet depends on the chosen Schur decompositions and 
hence on the ordering of the poles and zeros over the 
factors R,(X). This is illustrated by the following simple 
example (here we have only two factors and an optimal T 
can be constructed for each pole-zero ordering): 

Example 1 
The transfer function 

x 
R(X)= ‘--l 

I- 

2 

A-l 
0 - A 
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has the minimal realization 

x 0 01 

k-t1 

R(Q- 
0 X-l 1  0 
0 -1 12’ 

The pole and zero operators are 

A=[; ;, :-,s 8,. 

from below (ensuring the numerical stability): 

141, I ~~~i,{Q,}~llQ,Il,/K~1/K 
since they are the eigenvalues of Q,. Note also that 
cond. TGK is satisfied when (see, e.g., [ 191 p. 183) 

II Q , II o. II Q , II o. <K/S 
which is easily checked while computing the factorization 
of Q. In some cases it is preferable to compute a cascade 
factorization 

Their Schur decomposit ions are (with c ” 2/6; s k l/c) R(X)=R,(X).R,(+.R,(x) (36) 

For different orderings of poles {a,,} and zeros {ai,} we 
give below the matrix Q to be factored .as in (32) and the 
state-space transformation T  derived therefrom 

L A 
a,, a22 ai, a22 Q=V*U T  cond. T  

0 
1 1 0 [i :I [A ;I l 

0 1 0 1 [-; “c] [A -j q  

1 0 0 1 [: -:I [; -j 2+6 

1’0 
10 [ O1 1 1 0 / (4 

For the last combination, T  does not exist. Constructing T  
as in Corollary 2 would indeed yield a singular T  (i.e., 
cond. T= co) which is unacceptable. vvv 

Algorithms to perform the decomposit ions described 
above, can be found in the literature [ 181, [29]. The Schur 
decomposit ions (28a) and (28b) are obtained by the QR 
and QL algorithms, respectively, which are known to be 
numerically stable [28]. In order to obtain all possible 
orderings of poles and zeros in these decompositions, one 
can make use of an efficient and stable updating of these 
decomposit ions [21]. The LU factorization (32) is obtained 
by Gaussian elimination, but without pivoting. This is the 
only step that could be numerically unstable since no 
pivoting is allowed, but instability can only occur when 
cond. T  is large, hence when the factorization becomes 
“essentially” impossible. As mentioned above, only trans- 
formations T  with “reasonable” condition number should 
be allowed, say with cond. T  smaller than some given K 
(e.g., cond. T< 100). Since 

cond.T=cond.Q,=cond.Q,=IIQ,II,IIQ,II,~K (35) 
the factorization Q = Q,. Q, is also well conditioned in such 
a case and numerical stability can be ensured for its 
computation. The pivots q:i in Q, can then be bounded 

where the separate factors Ri(h) have degrees larger than 
one; e.g., when R(h) is real one would prefer the factors to 
be real also and these will have degree at least 2  in general 
[23]. To compute the chains of invariant subspaces (22) we 
use the “block” Schur decompositions: 

v*&kq-fi &I 1  1  I \P (37’4 x- Bkk 

where U and V are unitary and Bii, Bii have dimensions 
6, Xai. Here we choose xi and ?Ji to be the spaces spanned 
by the first i “block” columns of U and by the last (k-i) 
“block” columns of V, respectively. By similar arguments 
to (28)-(34) we have that this choice of spaces %,,qi 
i=l . . . , k - 1  satisfies the factorizability condition (23iii) 
if add only if the leading principal minors of Q= V*U that 
correspond to the block partitioning of (37) are nonsingu- 
lar. We  then decompose Q, analogously to (32) in a 
product of respectively lower and upper block triangular 
matrices partitioned conformably with (37): 

Q” Q,.Q,. (38) 

By analogy to (33)-(34) the state-space transformation 

i-4 V.Q,=u.Q,’ (39) 

is then shown to reduce A and 2 to A, and Al,, respectively, 
which have the required block triangular forms of Theorem 
4. Note that the corresponding diagonal blocks of A and A, . ,. 
(resp. A and A,) are similar and thus have the same 
spectrum. Similarly to Theorem 7, this leads to: 

Theorem 8 
A minimal cascade factorization (36) with specified block 

ordering of poles and zeros exists iff there exists a “block” 
LU decomposit ion of Q= V*U where U and V are the 
unitary matrices which transform A and a to their block 
Schur form (37) with the prescribed block ordering of poles 
and zeros. vvv 

Moreover, if the block columns of Q, are normalized in 
the decomposit ion (38) this also holds for T  in (39) 
whence T  satisfies the conditions of Theorem 6. 

In practice the decomposit ions (37) are computed using 
the QR and QL algorithms [29], yielding 1 X 1 diagonal 
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blocks when working in complex arithmetic and 1 X 1 and 
2X2 diagonal blocks when working in real arithmetic. If 
larger blocks are requested, this is obtained by appropriate 
block partitioning of A, and a,. The distribution of eigen- 
values over the diagonal blocks B,, and ii, can be obtained 
by reordering the QR and QL decompositions [21]. 
Numerically stable software is available for these two steps 
[21], [ 181. The block LU decomposition (38) is performed 
by Gaussian elimination but with pivoting only allowed 
within the ai X& blocks. In practice one would aim for a 
cascade factorization with as small as possible degrees ai 
for each factor (i.e., ai = 1 in complex arithmetic and 6, = 1 
or 2 in real arithmetic if complex conjugate eigenvalues 
occur). If within these constraints the pivots of the LU 
decomposition are too small-i.e., cond. Q! will be too 
large- then larger & XSi blocks are considered so as to 
allow more flexibility in the pivot choice. 

Example 2 
Let 

The pole and zero operators of R(A) in this coordinate 
system are 

r3'01 -2 11 -f-F----- 
AZ I 0, 2, -2 -1 I 

--------- 
0’0’ -1 0 
0’0’ 1 0 

r 2 -2 2 01 

“=I; I l ’ 
-2 4 1;. 

0 10 0 I 
A is already in the so-called “real” Schur form and has 
eigenvalues { 3,2, i, -i}. Hence we can take A, =A and 
U=I. A possible Schur decomposition for a, with eigen- 
values ordered in decreasing norm, is (with d g a): 

I 

3’ ’ 
--t--t------ 

a,& v*av= -2d, 2 L ------ 
-3 I -dl -2- 

----, 
-2d 

l/d ’ 011/d 0 I 

ro 10 01 

with V” 
l/d 0 l/d 0 

-l/d 0 l/d 0 
lo 0 0 11 

and with eigenvalues { 3,2,1+ i, 1 - i}. The matrices A, and 
a, are partitioned conformably (6, = 1, 6, = 1, 6, = 2) and 
will lead to a cascade factorization with corresponding 
degrees ai if and only if the matrix Q= V* has a conforma- 
ble block LU decomposition. Unfortunately, the element 
q, , , supposed to be the first pivot in this decomposition, is 
zero. Using a larger block partitioning (6, =2,6, =2) we 

obtain 

Here Q, has orthonormal block columns and cond. Q, = 
0 + 1. After applying the transformation T ” V. Q, to 
the state-space system (40) we obtain the factorable form: 

h-3 0 ’ d 
0 h-21 0 

R(h)% - -; 
----L------ -__- 

o ’ A 
0 ! -l/d 

h” 0” ; 
t I I 

-1 01 d -1 1 2 
0 -1’ 0 0 0 -1 

which decomposes in the factors (we choose D2 =I): 

One can check that a factorization with degrees S, = 1, 
8, = 1,6, = 2, is possible when using a Schur decomposition 
a, where the order of the eigenvalues 3 and 2 is reversed, 
but this is left out here. vvv 

The reader must be warned at this point that a real 
transfer function may be cascaded in complex first degree 
factors and yet be unfactorable in real degree 2 factors. 
This has been pointed out in [23] where a counterexample 
is given. 

The computation of the factors {Ai, Bi, C;, D,} thus in- 
volves the following steps (between brackets we give an 
estimate of the number of multiplications and additions 
involved in each step): 

Step I: Construction of A=A-BD-‘C (n3 +n26+62n 
operations). This step involves the inversion of D, which is 
well conditioned when cond. D is close to 1. If cond. D>> 1, 
then the computed 2 may not be accurate. 

Step 2: Computing the Schur decompositions UA,U* 
and Va,V* (2 X 15a3 operations). Backward stable software 
is available for this step [29]. 

Step 3: Construction of Q ” V*U and its LU decom- 
position (S3 and l/3a3 operations). Backward stability is 
ensured when appropriate bounds for acceptability are 
imposed on cond. Q,. 

Step 4: Construction of T and of the cascaded realiza- 
tion {A,, B,,C,, D}={T-‘AT, T-‘B,CT, D} (a3+2(n+ 
6)a2 operations). Stability is again ensured since cond. T= 
cond. Q,. 

Step 5: Construction of the factors {Ai, Bi, Ci, 0,) from 
{A,, B,, C,, D} (n2S operations). According to Remark 2 
we choose D, = D and the other Di = I. Then we only have 
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to compute D -‘Cc, and partition A,, B, and D-‘Cc. Here 
again cond. D determines the accuracy of the results. 

The number of operations correspond to complex com- 
putations or real computations depending on the data. In 
general 6> n and then clearly the (complex or real) Schur 
decomposit ions will demand most of the computing time. 
When a chosen ordering of poles and zeros does not yield a 
requested LU decomposition, an updating of the Schur 
decomposit ion with another ordering of the eigenvalues 
will be performed using the previous decompositions. An 
efficient algorithm to reorder the eigenvalues in A, and a, 
[21] requires only about 86 operations for each permuted 
pair of eigenvalues. As already mentioned above this may 
lead to a combinatorial problem. 

Remark 3 
The possible bad conditioning of D may seriously affect 

the reliability of the obtained factorization. In such a case 
one can avoid the inversion of D in Steps 1 and 5 by using 
generalized eigenvalue routines on the pencil (see [25], 
~321): 

Considering this extension one may say that in general the 
factorization problem can be solved in a stable way. This 
of course does not mean that the factors are always well 
defined. Even though we have control on the errors per- 
formed in the computations (i.e., numerical stability), these 
errors may yield total different answers for the computed 
factors. This is, e.g., reflected by the sensitivity of the Schur 
decompositions: small perturbations in A and a may cause 
large deviations in both their eigenvalues and invariant 
subspaces [19], [20], [28]. This will, e.g., occur when eigen- 
values are clustered or repeated: If one is only interested in 
a synthesis of R(X) then this sensitivity is not important, 
since the backward numerical stability ensures that the 
computed factorization corresponds to a transfer function 
“close” to R(X). vvv 

V. CONNECTIONS WITH THE CLASSICAL 
FACTORIZATION THEORY 

In the mathematical literature [6], [ 111, [ 151 and in circuit 
theory [4], [9], [31] special attention has been paid to 
factorizations of “para J-unitary” and “para J-contractive” 
transfer functions. Especially the work of Livsic is relevant 
in this context because he was the first to use and prove the 
factorizability conditions for this special case. In [4], [9] the 
relation between factoring these types of matrices and the 
Darlington synthesis is discussed. Let 

be a signature matrix. Let us define the lower star opera- 
tion by 

R,(s)” [R(--S)]*. 

A matrix R(s) is said to be para J-unitary and para 

J-contractive if 

R(s).J.R,(s)=J and R(s).J.[R(s)]*<J, 

for Re {s} >O. 

It can be shown, using [ 111, [ 151, that any para J-unitary 
and para J-contractive matrix can be realized as 

R(s)=DIIn -B*(s& -A)-‘BJ] 

where 
D*JD=J A+A*= -BJB*. 

The above state-space model is also “J-balanced.” It is 
easy to check that the zero operator of this model is given 
by 

~~~A+BJD-~DB*=-A* 

so that any upper Schur form for A is a lower Schur form 
for a, and the matrices U and V in (28) are equal. The 
subspaces Xi and ?li can, therefore, be chosen orthogonal. 
The matrix R(s) is thus factorable for any ordering {a,i} of 
poles and corresponding ordering { -a,;} of zeros. More- 
over the condition number of T  becomes one and no 
numerical difficulty is encountered to perform the factori- 
zation. For the discrete time case similar results hold, and 
they can be derived from the above using a bilinear trans- 
formation (see [6] for the case J-Z). 

VI. CONCLUSION 

In this paper we have discussed the problem of cascade 
factorization from a computational point of view. Neces- 
sary and sufficient conditions have been derived for the 
existence of a  cascade factorization with factors of arbi- 
trary degree and a numerically sound criterion to check 
this condition has been given. A relatively simple algorithm 
to compute the (real or complex) factors has been derived. 

The material is based on an approach developed in 
earlier work [2], [3], [8], [26]. From this theory other related 
results can be retrieved, such as the classical factorization 
theory for para J-unitary transfer functions [4], [6], [9], [ 111, 
[ 151, [31] (see Section V), spectral factorization methods [l], 
[13], [30] (see [3]) and the conditions for factorizability 
using the parameters of the transfer function [lo], [23], [24] 
(using realizations of the type discussed in [27]). 

An important issue in cascade synthesis is the sensitivity 
of certain properties of the transfer function (poles, zeros, 
impulse response) with respect to perturbations in the 
parameters of the factors. Assuming that one starts out 
with a realization with low sensitivity, then the sensitivity 
of the cascaded realization will be proportional to the 
condition number of the required state-space realization T. 
For this reason one wants to find the ordering of poles and 
zeros that minimizes cond. T. This also shows the impor- 
tance of choosing an original state-space model with low 
sensitivity (e.g., balanced realization [ 141). We  conclude by 
mentioning some open problems in factorization theory. It 
is known that prime factors-i.e., factors which cannot be 
minimally factored themselves-of degree two and three 
exist [lo], [24]. It is not known whether prime factors of 
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any dimension larger than or equal to two and any degree 
exist. It is also known that some matrices have two or more 
minimal factorizations into prime factors for which the 
degrees of the factors do not match up. This is in contrast 
to factorizations in a ring or module where prime factors 
can be different but their degrees will match. It is not 
known for a given matrix, which and how many factoriza- 
tions exist. 
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