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ABSTRACT 

We give a new numerical method to compute the eigenstructure-i.e. the zero 
structure, the polar structure, and the left and right null space structure-of a 
polynomial matrix P(X). These structural elements are of fundamental importance in 
several systems and control problems involving polynomial matrices. The approach is 
more general than previous numerical methods because it can be applied to an 
arbitrary m x n polynomial matrix P(X) with normal rank T smaller than m and/or n. 
The algorithm is then shown to compute the structure of the left and right null spaces 
of P(X) as well. The speed and accuracy of this new approach are also discussed. 

1. BACKGROUND 

In the numerical literature the problem of computing the “generalized 
eigenvdues” (or zeros) of a polynomial matrix 

P(X) = P, + P,X + . . . + PJd, (1) 

where the P,‘s are real or complex coefficient matrices, has always been 
restricted to the regular case, i.e. where P(X) is square and det P(X) s 0 [ll, 
1, 7, 14, lo]. The finite zeros of P(X) are then the zeros of the polynomial 

det P(h). When rank Pd = n, this is a polynomial of degree nd and all the 
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zeros of P(h) are finite. When rank P,! < n, the degree of det P(h), say k, is 
less than nd. Numerical analysts then say that P(h) has k finite eigenvalues 
(zeros)-namely, the zeros of det P(X)-and (nrl - k) infinite eigenvalues 
(zeros). 

On the other hand, a precise definition of the zeros of an arbitrary 
polynomial matrix can be given through the Smith form [15, 41 and is 
currently used in system theory [12]. Every m X n polynomial matrix P(X) 
can indeed be transformed to the canonical form: 

where 

(i) M(X) and N(h) are unimodular (i.e. regular polynomial matrices with 
constant determinant), 

(ii) Zi( A) are manic polynomials and Zi( A) divides 1, + r( A). 

This form is unique and is used to define the following concepts. The normal 
rank r of the polynomial matrix P(h) is the number of invariant polynomials 
Zi( A) in the form (2). The zeros of P(h) are the zeros of any of the Z,(X). Let a 
be a zero of P(A); then each Zj(X) can be factorized as 

zj(x)=(x-a)“‘gi(x), (3) 

where gi( A) is regular at (Y. The exponents { ur, . . . , a,} of the factors (A - CX)O~ 
are called the structural indices at a [16] of P(A), and the nontrivial factors 
(A - CY)“, (i.e. with crj * 0) are called its elementary divisors at a. 

Note that in the regular case we have m = n = r and 

det r(h) = fi Zi(h). 
I=1 

(4) 

We thus retrieve the original definition for the finite zeros of a regular 
polynomial matrix. The form (2), though, does not immediately suggest any 
definition for an infinite zero. In circuit theory McMillan [9] studied socalled 
“infinite frequencies” which may occur in passive electrical networks (see 
also [21], [2]). His definition of the eigenstructure at infinity implicitly relies 
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on a transformation of variables A = l/p which reduces the polynomial matrix 
P(X) to a rational matrix R(p). McMillan’s analysis was in fact performed for 
the larger class of rational matrices, but when specialized to the case of 
polynomial matrices it also yields appropriate definitions. We now develop 
the background for these definitions. 

DEFINITION 1. A rational matrix R(X) is called regular at (Y if the 
constant matrix R(a) is square, bounded and invertible. 

Unimodular matrices are clearly regular at any finite (Y. After extraction of 
the left factor G(h) = diag{g,(X), . . . , g,(h), I,_,}, which is also regular at (Y 
because of (3), we may thus rewrite (2) as follows: 

(A - q 

L,,, 

0 r,n-r 

0 m--r,n-r 

3 (5) 

where M,(X) and N,(A) are regular at (Y and the (ui]i=l,...,r} form a 
nondecreasing sequence. This decomposition is unique, just like the decom- 
position (2) [9]. We thus see that the structural indices at a finite point (Y can 
as well be defined through the canonical form (5) obtained under transforma- 
tions that are regular at (Y. Moreover, the latter extends easily to the point at 
infinity. Indeed, P(h) can be decomposed as [9] 

where M,(h) and N,(X) are regular at infinity and the { ui (i = 1,. . . , r) form a 
nondecreasing sequence. Again, the form (6) is unique and the corresponding 
ai are called the structural indices at CC [16]. A degree theory for rational 
matrices, developed by McMillan [9], uses the forms (5) and (6) to define the 
polar degree S,(a) and zero degree S,(a) at any point LY as 

sp(a)= - C ui(a), 
0, i 0 

(7a,b) 



548 PAUL VAN DOOREN AND PATRICK DEWILDE 

Notice that for a polynomial matrix all u,(o) are nonnegative for any finite 
point (Y, while they may be negative for the point at infinity. The only poles of 
a polynomial matrix thus lie at the point at infinity, and zeros can be infinite 
as well as finite. For regular matrices, the definition (7) of degree (or 
multiplicity) is equivalent with the one generally used, namely the multiplicity 
of the zero (Y of det P(X). But for the point at infinity this is not true. In the 
context of dynamical systems (see [23], [21]) it can be shown that the 
definition (7) for the point at infinity makes more sense and also holds for 
singular polynomial matrices (i.e. with normal rank T < m or T < n), while this 
is impossible for the definition using det P(A). 

DEFINITION 2. The set of zeros (respectively poles) of P(X), together 
with its structural indices at these points, is called the zero structure (respec- 
tively pole structure) of P(X). 

For singular polynomial matrices an additional structural element is 
usually of interest: the structure of the right and left null space of P(X). Let 
.r denote the transpose of a vector or matrix. The sets 

a,(P)c { u(x)~u'(x)P(x)=o} @b) 

are vector spaces over the field of rational functions in A. Considering P(X) as 
a (albeit special) matrix with elements in this field, we immediately have that 
?Xi, and SC1 have dimensions n - r and m - r, respectively (see [4], [3]). 
Moreover, it is always possible to choose a polynomial basis 

{PI(%..~PkW (9) 

for any such vector space S [26]. Let us define the index di of a polynomial 
vector pi(h) as the maximum polynomial degree in its components; then (9) is 
called a minimal polynomial basis for S if the sum of the indices d i is minimal 
over all polynomial bases for S. These indices are invariant for a given space 
5, except for their ordering [26]. When corresponding to the spaces 5X,(P) 
and 9Lc,(P), they are called the right and left minimal indices of P(h) (see [3] 
for an extensive discussion). 

DEFINITION 3. The sets of right and left minimal indices of P(A) are 
called the right and left null space structures of P(X). 



EIGENSTRUCTURE OF A POLYNOMIAL MATRIX 

A simple example will clarify the above definitions. 

EXAMPLE 1. The polynomial matrix 

has the Smith form (2) 

0 
2 x+ 

-2 1 ‘1 4 
0 0 

-1 4 

2 
0 
2 

I. 

549 

1 A2 (10) 

(11) 

Hence A - 1 is the only finite elementary divisor, and the finite zero structure 
is thus given by A = 1 with structural indices (0, l}. Since the normal rank T 
equals 2, 92, and 9LI both have dimension 1. From (11) they are clearly 
spanned by 

%=(I -;]j, %=i[ fh]). (12) 

Moreover, these polynomial bases happen to be minimal in this example, as is 
easily checked [3]. For the pole and zero structure at X = 00 we perform the 
decomposition (6), which yields 

/ 00 1 -1 -1 1 

1 -- 
x 1 0 1 

= 

1 ! 1 
-2 

x 
0 0 

_--L 0 1 0 

0 0 0 

-3-m 3 3 

4+A-1 

P(X) 1 

l+A-l 

1 

l-A-1 

J 0 0 

6 

-2 

Ill 

(13) 
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where the transformation matrices are indeed regular at X = co. The structural 
indices at h = cc are then { - 2,0}, indicating a double pole at infinity. 

Notice that in Definitions 2 and 3 of structural elements, we only 
considered indices (such as structural indices and minimal indices) and points 
(such as poles and zeros), but not vectors (such as vectors associated with 
poles and zeros [7, 14, 161 or minimal bases associated with minimal indices 
[3, 241). The reason for this is that the structural elements of P(A) play a 
fundamental role in the stmccture of the solution of problems involving P(X). 
We give some examples to illustrate this. 

Let us consider all possible (rational) solutions to the matrix equation 

where P,(A) is an arbitrary m X ni polynomial matrix, i = 1, 2. By e. g. 
checking the zero structure at a given point A, of P,(h) and of the compound 
matrix 

and by comparing them, one can tell if there is a solution X(h) without a pole 
at A, [33]. By checking this at A, = co one knows if there is a proper solution 
X(X); by checking it at all finite zeros of P(X) one knows if there is a 
polynomial solution X(h) [33]. Such information about the existence of a 
specific solution is considered to be “structural,” whereas the actual solution 
depends on the bases corresponding to the structural elements of P,(h) and 

P(X). 
Consider further the polynomial matrix equation 

where Pi, i = 1, 2, are known and Xi, i = 1, 2, unknown. Rewriting this as 

P(h)X(h) = 0 

with 

P(X) = [ PIOh - P,O)l~ x10) X(h)= - 
[ 1 &(Q ’ 

we see that the columns of X(h) lie in the right null space of P(X). If P,(h) is 
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square and intervertible and X,(X) is supposed to be square, then the columns 
of X(X) span this null space [3]. The structural information of %L,(P) then 
allows one to describe all possible solutions to this equation and also carries 
information about any minimal realization of the rational matrix T(X) = 
P; ‘( A)P,(h) (see e.g. 131). 

The evaluation of the eigenstructure of P(A) is needed in several applica- 
tions [30-321, which indicates the need for reliable algorithms to compute this 
structure. The standard Gaussian elimination for polynomial matrices, needed 
for the decompositions (2) (5) and (6) is known to be numerically unstable 
[29, 191. In the sequel we give a stable method to compute the zeros of P(h). 
For this the minimal indices and the infinite structure are computed first, and 
P(X) is reduced to a regular matrix form, yielding a generalized eigenvalue 
problem. Since system theory is at the origin of the definitions for the 
structural elements we are interested in, it is natural that the techniques used 
also rely on some system theoretical concepts. In the next section we give a 
quick review of the background needed for the computational techniques 
developed here. 

2. THE PENCIL APPROACH 

It is easy to prove that the m X n polynomial matrix P(X) given in (1) and 
the pencil 

S(h) = X$ - A, 

- 42 

- L 
Pd . . . Pz P, 

- 

- 42 

- 1, 
- PO 

(14) 

have the same finite zeros [8]. Indeed, by performing unimodular row and 
column transformations on (14) one finds that XB, - A, has the Smith form 

M(A)[XB,-A,]N(X)=diag{Z ,,...,Z,, W)), (15) 

where D(h) is the Smith form (2) of P(h). Other pencils can be found in the 
literature [ 10, 111 that share the same property (15). If P(X) is regular, the 
problem is thereby reduced to a regular “generalized eigenvalue problem,” 
for which reliable software is now available [lo, 25, 51. Following the 
definition of “zero” commonly used in numerical analysis (see our introduc- 
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tion), AB, - A, and P(h) are taken to have the same zero degree at infinity, 
namely nd - k, where k is the number of finite zeros. In that research area, 
the above approach thus solves completely the eigenstructure problem when 
P(X) is regular, and it has become a very popular approach (see [l], [ll], [7], 
[14], [18] for a discussion of alternative methods). 

In linear system theory, however, the above approach is not satisfactory, 
since the computed multiplicity of the zero at infinity generally does not 
coincide with the usual definition there (see Section 1). Indeed, the simple 
2 X 2 polynomial matrix (d = 1) 

has no finite zeros and therefore two infinite zeros according to the definitions 
used in numerical analysis. On the other hand, only one infinite zero is found 
according to the system theoretical definitions recalled in our introduction. 
The latter is in agreement with the fact that the homogeneous differential 
system (X = d /dt ) 

has only one (impulsive) solution: 

where s(t) denotes the Dirac impulse. The degree at a point A, in system 
theory is indeed connected to the number of independent solutions with 
fundamental frequency X,, which happen to be “impulsive” solutions when 
X, = cc (see [23] for a more extensive discussion). 

Another reason why the definition using det P(h) is unsatisfactory is that 
P(h) may be singular also. When P(X) is singular, XB, - A, is also singular 
because of (15). For such pencils, a canonical form has been developed by 
Kronecker [ 61. 

THEOREM 1 [4]. Let XB - A be a pencil of matrices, and let 

(i) the index sets {rl,...,rP) and {Z1,...,Zq} be its right and left minimal 
indices, respectively, 

(ii) {(h - cxi)ml, j= 1,. . . , di} be its elementary divisors at q, 
(iii) { pLnj, j = 1,. . . , d } be the elementary divisors of B - PA at p = 0, also 

called the infinite elementary divisors of XB - A. 
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Then there exist constant row and column transformations S and T that 
reduce h B - A to the canonical form 

S(XB-A)T=diag{l, ,,..., L,,LT1 ,..., -Lyq,I--AN,XI-J} (16a) 

where 

(i) L, is the k X (k + 1) bidiagonul pencil 

(ii) J is in Jordan canonical form with Jordan blocks 

X-q -1 

h&- Im,(4 c 
: I ml 

-1’ 
x - q 

j=l ,..*, di> (16~) 

at the eigenvalue q, and 
(iii) N is nilpotent and in Jordan canonical form with Jordan blocks 

1 -x 

I,, - X.&,(O) g 

: -I 

“I 
--A 

1 
i 

Y 

“I 

, 

j=l ,...,d. (led) 

The canonical form (16) clearly reveals the null space structure and the 
finite zero structure of XB - A through Theorem l(i) and (ii) respectively. 
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The structure of hB - A at cc can also be retrieved from this canonical form 
as shown by the following theorem: 

THEOREM 2 [16, 241. The pole-zero structure of an arbitrary pencil 
XI3 - A at 00 is determined by the canonical form (16) as follows: 

(i) there are b = rank B negative structural indices and they are all - 1. 

(ii) th 
e nonnegative structural indices are given by the set (nj - Ilj= 

1 ,...,d}. 

Proof. According to Theorem l(iii), the elementary divisors of B - PA 
are the sizes of the Jordan blocks (16d ). Using the decomposition (S), there 
exist then matrices M&L) and N,( EL) that are regular at 1_1= 0 and such that 

0 

0 

0 

07) 

where 0 < n1 < nz < . . . < nd. By putting p = 0 in (17), we find that b = 
rank B, since M,(p) and N&L) are regular at p = 0. Dividing (17) by /L, we 
obtain, as desired, a decomposition of the type (6): 

REMARKS. 

5, 
P 

P 
n,- 1 

0 

0 

0 

1. In principle, a pole is a point where an entry of the matrix becomes 
infinite, while a zero is a point where the rank of the matrix drops below its 
normal value (see Section 1). The occurrence of poles and zeros at a certain 
point is therefore easily checked by filling in the value of the point, except 
perhaps for checking zeros at X = 00. Coalescent poles and zeros indeed give 
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rise to problems, since conventions have to be made about when a matrix 
with infinite entries is considered to be singular also. The definition via (2) 
(5), (6) resolves that problem, since the diagonal matrix (6) can very well have 
infinite entries at h = 00 [all factors (l/A) ‘1 with ui < 0] and be singular at the 
same time [all factors (l/h)“i with ai > 0 are zero]. For a pencil AB - A, a 
sufficient condition for the absence of zeros at h = cc is clearly rank B = 
(normal rank), in which case XB - A has no infinite elementary divisors (all nj 
are zero). Necessary and sufficient conditions are given e.g. in [24]. 

2. Poles and zeros may coincide. In the present (pencil) case, all the 
poles are at infinity. The blocks (16b), (16c), and (16d) all contribute to the 
pole at infinity. The block (16~) has a zero of degree mj at q. The block (16d) 
has both a pole and a zero at infinity of degree ni - 1. 

3. Note that a “finite” elementary divisor (A - CX)~ indicates a zero at (Y 
of degree m, but an “infinite” elementary divisor p” only indicates a zero at 
h = cc of degree n - 1. This is because the so-called “infinite elementary 
divisors” are defined on the polynomial matrix B - PA instead of the rational 
matrix (l/p)B - A. 

Using the above two theorems, we thus see that the complete eigenstruc- 
ture (i.e. pole-zero and null space structure) of an arbitrary pencil can be 
recovered via the Kronecker canonical form. Recently, a numerical stable 
algorithm has been developed to compute the Kronecker canonical form of an 
arbitrary pencil [17] (see Section III), which thus solves the eigenstructure 
problem for pencils. One might expect now that the eigenstructure of the 
pencil (14) reflects, in some sense, the eigenstructure of the related poly- 
nomial matrix P(X), even when it is singular. 

According to (15) this is indeed true for the finite zeros and their 
nontrivial (i.e. positive) structural indices. But for the other structural ele- 
ments this does not hold in general. In order to clarify this, we first recall 
some results from linear system theory. Notice that when we partition the 
pencil (14) as follows: 

A 
= 

. -XI, 

1” 
hP, hPd_l . . . AP, 

- Al, 

AP, + PO 

a (19) 
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then we have 

P(h)=V(A)T-‘(A)u(A)+w(h). (20) 

Such quadruples of polynomial matrices {T(X), U(h), V( A), W( A)}, where 
T(h) is regular, have been widely studied in linear system theory [12]. The 
compound matrix S(A) of such a quadruple is called a system matrix with 
transfer function P(A) as given in (20). In general, the system matrix is 
polynomial and the transfer function rational [12], but in our specific case 
S(h) is a pencil and the expression (20) is polynomial, since T(X) is 
unimodular. In [24], [22] a one to one correspondence is established between 

the eigenstructure of a so-called strongly irreducible quadruple 
(T(h), U(X),V(A), W(A)} and the eigenstructure of its transfer function (see 
also [16]). Strong irreducibility amounts to the absence of finite and infinite 
zeros in the polynomial matrices (21a, b) [22]. 

The theorem below is extracted from [22] and is specialized here to the 
case where T(A), U(A), V(X) and W(X) are pencils. 

THEOREM 3a. Let T(A) be a regular pencil and suppose that the pencils 

have no finite or infinite zeros. Then the eigenstructure of the transfer 
function P(A)=V(A)T-‘(X)U(h)+W(X) is to be retrieved f;om the eigen- 
structure of the pencils 

(22a, b) 

a8 follolos: 

(i) the poles of P(A) are the zeros of S,(h), and their nontrivial structural 
indices have opposite signs; 

(ii) the zeros of P(A) are the zeros of S,(h), and their nontrivial structural 
indices are the same; 

(iii) the left and right minimal indices of P(h) and S,(X) are the same. 
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Notice that only the nontrivial structural indices of S,( h ), S,(X), and P(X) 
are related, since these matrices have different normal rank. The conditions 
(21a, b) can be simplified, in the case of pencils only, to [19]: 

THEOREM 3b. The pencils (21a, b) have no (finite or infinite) zeros if 
the pencils 

(23a, b) 

have no (finite or infinite) elementary divisors. 

Proof. See [19, Section VA]. n 

For the specific system (19), (20) the pencils corresponding to (23a, b) are 
given by 

Ill - AZ” 

- AZ, 

L 
XP, * . ’ . AP, 

- AZ, 

L - AZ” 

Because of the special structure of these pencils, it is easy to see that (24a) has 
linearly independent columns and (24b) linearly independent rows, for all 
finite X. Therefore (see Remark l), these pencils have no finite elementary 
divisors. The coefficient of A in (24b) also has linearly independent rows, 
which (again according to Remark 1) guarantees the absence of infinite 
elementary divisors in (24b). The remaining condition, namely the absence of 
infinite elementary divisors in (24a), is in general not satisfied. In the next 
section, we give a (fast) procedure to extract from the system (19) a reduced 
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system which satisfies the conditions of Theorem 3. The construction is based 
on a transformation of S(X) of the type 

where R and C are constant invertible row and column transformations. Since 
T(h) is regular, T,,(h) is regular and so are T,,(h) and T,,(X). It is then easy 
to check (see e.g. [12]) that both {T,,(X), U,(X),V,(X), W(A)} and 
(1’& X), uX(h),Vz(A), W( h)} are systems with the same transfer function as 
{T(h),U(h),V(X), W(X)}. The idea is now to construct R and C such 
that the reduced system {Z’,,( h ), U,( X ), V,(A), W( X )} satisfies 

Theorem 3. A simple condition for this is now derived. 

THEOREM 4. Let {T(X),U(X),V(X),W(X)} be as in (19), and let us 
transform this system as in (25). Z’hen {T,,(X), U,(h),V,(h), W(A)} satisfies 

Theorem 3 if the coefficient of h in has linearly independent 

columns. 

Proof. Because of (24b), [I;,(X)1 - U,(h)] has linearly independent rows 
for all h, and therefore its submatrix [T&X)1 - U,(X)] has the same property. 
Similarly, (24a) yields that 

have linearly independent columns for all h. According to Remark 1, these 
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four pencils thus have no finite elementary divisors. Again from (24b), it 
follows that the coefficient of h in [T,,(A)] - U,(h)], and therefore also in 
[T,,(X)] - U,(A)], have linearly independent rows. If, by assumption, the 

columns of the coefficient of X in 
T,s(Q 

[ I 
VW 

are linearly independent, then 

these last two pencils have no infinite e ementary divisors according to 
Remark 1. All conditions of Theorem 3 are then satisfied. n 

The problem of extracting a reduced model satisfying Theorem 3 is 
thereby reduced to a simple rank condition of a constant matrix, which is 
exploited in the next section. Note that in Theorem 3b and Theorem 4 special 
features of pencils were used, and that they do not hold for reduced 
polynomial systems in general. 

3. ALGORITHMS 

The method of reduction to a quadruple satisfying Theorem 3, as well as 
the computation of the Kronecker structure of the obtained pencils Sz( h) and 
S,(X), is based on the quasi-Schur form for singular pencils [17]. An arbitrary 
pencil X B - A can indeed be reduced by unitary transformations U and V to 
the form 

U(AB - A)V A 

where 

-XBr- A, * * * 

0 XB, - Ai * * 

0 0 XB,-A, * 

0 0 0 XB, - A, 

> (26) 

(i) X B, - A, and X B, - A, are nonsquare pencils with only right and left 
null spaces, respectively, and containing the corresponding minimal indices of 
XB-A; 

(ii) X Bi - Ai and hBf - Af are regular pencils which have only infinite 
and finite elementary divisors, respectively, which are those of hB - A. 

Furthermore, the form (26) can be obtained with a backward-stable algorithm 
which at the same time determines the Kronecker indices and the infinite 
elementary divisors of X B - A through the fine structure obtained in h B, - A,, 

XB, - A,, and hB, - Ai. This algorithm, described in [17], is referred to as 
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the pencil algorithm. The eigenstructure of A Bf - A, can be computed in a 
stable way using the QZ algorithm [lo], which constructs unitary transforma- 
tions Q and Z that reduce a regular pencil-in this case hBf - Af-to 
an upper triangular form (see [lo], [25] for more details): 

Q(hBf- A,)Z $ h [“d’ *s. ,,1[; ‘., :,1. (27) 

The ratios adi/&, are then the finite zeros of hB - A. 
We quickly review the numerical algorithm that obtains the form (26). A 

modified (and fast) version of it will be developed later on. For a more 
detailed discussion, we refer to [17]. Let U and V be unitary matrices 
transforming the rows and columns, respectively, of an arbitrary m X n matrix 
A as follows: 

P{ A, 

[ 1 P{ j- 
&WA, &I$ A AV, @a, b) 

Y P 

where A, and A, have p linearly independent rows and columns respectively 
(p is then clearly the rank of A). We call the transformations (28a) and (28b) 
a row compression and a column compression of A, respectively, and say that 
A, and A, have fill row rank and full column rank. Such transformations are 
used recursively in the following algorithm, acting on the m x n pencil 
XB-A. 

Algorithm 1. 

comment initialization 
j: = 1, B@‘1: = B; A(y)1 : = A; m, : = m; nI : = n; 

step j: comment compress the columns of the mj X nj matrix Bj.57 ‘) with 
- 

Vi and partition B/j,: ‘) Vi and A(/; ‘)Vj analogously; 

[ 0 IBj+,] : = Bj,$+‘V+ [Aj ]Aj+r] : = A:!‘;“?, 

+++r-- ii* 
VI P) ‘j PI 

if vj = 0 then go to exit; 

comment also update and partition blocks with column index j; 
for i=l step 1 until j-l do 
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[@j,;;~j+,l:p: A\!;‘)l$ en& 

comment compress the rows of the mj x vi matrix A j with Uj and 
partition UjA j, UjA j+ 1, and UjBj+ 1 analogously; 

exit: 

comment update; 
mjcl: = mj-pj; nj+l: =nj-vj; 1. ‘u = j+ 1; go to step j; 
comment k is the number of steps performed; - 
k: = j-l; stop 

At the end of this algorithm we obtain something of the form 

Q(XB - A)Z 4 [*I 
0 BPk ... B(k) lk Blkl+ 1 

0 . . . 48 Bi:l+ 1 

Ax = 

O ‘_ 
Blk)k+l 

l_ 1 0 0 ... 01 B(k) 
k+l,k+ 

- 

A$!), A(;), . . . Ai”\ 

A(& . . . Ai”jk 

. 
’ A(k) 

k,k 

0 0 ... 0 

‘71w “-r’ 

VI p2 Uk 

nk+l 

A($+1 
Aik,‘k + 1 

Aik,i + 1 

A(kk!l,k+l 

v 
nk+ 1 
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where 

(i) Q and Z represent the accumulated row and column compressions 
respectively, performed by the algorithm; 

(ii) $3, i have full column rank vi; 
(iii) A(;,ji have full row rank pi; 

(iv) %k!i, k+ 1 has full column rank nk+ i. 

The idea of the algorithm can easily be followed with the above decom- 
position (29). At the beginning of each step j a decomposition of the type (29) 
is at hand with j= k + 1. An additional step is then performed if the above 
rank condition (iv) is not satisfied. This step j consists of a pair of compres- 
sions performed on xB$k+)i, k+ i - Ajck! i, k+ i, which adds an additional “stair” 
to XB,i - A,i and reduces the size of hBrl - A,. This is repeated until rank 
condition (iv) is met. From rank conditions (ii), (iii) one also derives the 
inequalities 

The following observation can now be made about the above decomposi- 
tion (see [17] for proofs and more details): 

(a) Since Bfl has full column rank, the pencil hBf, - Afr has no infinite 
elementary divisors and no right null space. 

(b) The rank properties of the A(:,ji and B/‘)i,i blocks ensure that the 
pencil XII,, - Ari has no left null space and no finite elementary divisors 
(c& - Ari indeed has full row rank for all finite a) 

Hence, in (29) we have obtained the separation between the blocks hB, - A, 
and X B, - Ai of (26) on the one hand (in X BTi - Ali), and between the blocks 
XBf - Af and XB, - A, on the other hand (in XBf, - Afl). Moreover, the 
indices pi and vi in (29) determine completely the right minimal indices and 
the infinite elementary divisors of XB - A as follows (see [17]): 

(i) there are 

‘i -Pi 

Kronecker blocks Li_ i of size i - 1 for i = 1,. . . , k; 
(ii) there are 

Pt - ‘i-C1 

(3la) 

(3lb) 

infinite elementary divisors (l/h)” of degree i for i = 1,. . . , k. 
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A “dual’ algorithm is now defined as follows [17]. Let us perform the 
above algorithm on the pertranspose (i.e. transpose over the antidiagonal, 
denoted by .‘) XSp - TP of the pencil XS - T: 

Q(hSP - TP)Z = p--t& 

Pertransposing this again, we obtain 

ZP(AS - T)QP = 

(32) 

(33) 

where we have used the identity (XY )’ = YpXp. Using this rule on the 
Kronecker decomposition (16) also, it is easily seen that pertransposition does 
not alter the elementary divisors of a pencil, but that it interchanges the left 
and right null spaces and their indices. Therefore hSVf - T$ (being the 
pertranspose of A!+ - Tfl) contains the right null space structure and finite 
elementary divisors of AS - T, and AS,, - T,, (being the pertranspose of 
XSri - Tri) contains the left null space structure and infinite elementary 
divisors of hS - T. 

This dual algorithm thus separates the right null space structure and the 
finite elementary divisors on the one hand, from the left null space structure 
and infinite elementary divisors on the other hand. Therefore, applying this 
dual algorithm to the two diagonal blocks X$ - Ari and XBf, - A,, of (29) 
finally yields the desired decomposition (26). More details about this decom- 
position and how the fine structure of the diagonal pencils h B, - A,, X Bi - A i, 
and XB, - A, reveal their eigenstructure can be found in [17]. In the sequel 
we denote the dual algorithm by Algorithm 1’. 

When applying now Algorithm 1 to the pencil h B,, - A, in (14) we can 
efficiently exploit the sparsity of that pencil. The first transformation that 
Algorithm 1 applies to the pencil (14) is a column compression of the sparse 
matrix B,, which clearly is obtained by merely compressing the columns of Pd 
with a unitary transformation W,. Let us perform this column transformation 
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on the blocks PI, i = 2,. . . ,d, and define 

&[P& $ & A P,W, 

Cd Pd 

(34) 

&[aAcLPiWd, i=2 ,..., d-l. 

ad Pd 

Then, by multiplying h $ - A, on the left by U, A diag{ W$, . . . , W,*, 1,) and 
on the right by V, A diag{Wd,..., W,, I,,}, we obtain - In 

U&B,, - A,)& A h Y---L - &I 
-W, 

- 
Pd .** pz PI 

By defining the following matrices: 

PiA [P,-,,IP,+], i=Z,...,d-1, 

Bri A 0 ad x LL [ OOdPd I - I,] 9 

0 Pd -W,- L-t--l P; P, ’ 

(36) 
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the pencil (35) can also be written as 
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A 

,y 

Yl yo 
s: s,+ 
s; s,- 

(37) 

At this stage, step 1 of Algorithm 1 has been performed on the pencil (14), 
since (37) is indeed in the form (see (29) for k = 1) 

(3% 

with B[‘l = Brj = O,,, and A(i,)I = ZOd. We now prove that at each step k (for 
k < d -‘l) of Algorithm 1 applied to A $ - A, a similar form can be 
obtained: 

ui* - - U&B,, - A,,)&. . . 

Ah = 

X 

0 - &I 

- 1, 
0 0 

0 0 

“i 8 

Yl yo 
s: s,+ 
s; s,- 
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where the matrix 

Yl yo I+1 ST s; (40) 

has full column rank and BTi is nilpotent as in (29). For k = 1, (37) is of the 
form (39) with j= d - 1, sj = ud, and rj = pd. The rank condition (40) and the 
nilpotency of Bri are satisfied because of (36). The proof for larger k goes by 
induction. Suppose we have the form (39) at the beginning of step k. It 
follows then from the rank condition (40) and from the special structure of 

%k!r ktl in (39) that its columns are linearly independent iff those of pj are 
linearly independent. If this is not the case, a column compression is 
performed on Biy,, k + r which is obtained by merely compressing the columns 
of pj with a unitary transformation WY Therefore we multiply (39) on the left 
by Uj b diag(I,], WT, . . . , WT, I,,, Z,} and on the right by Vi b diag{ I,,, Wi, . . . , 

Wj, I,, I,}. The matrices in (39), modified by this, are transformed as 

With the following updating definitions: 

fJ;k [Pi;,1 P,'] for i=2,...,j-1, (42a) 
w%+, 

PI UJ 
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0 
Pj 

YIP Y,- I 0 s: s,t 

567 

(42b) 

(424 

the transformed pencil (39) can again be written in the form (39). By 
induction, the rank condition (40) is clearly satisfied because of (42c), as well 
as the uilpotency of E& because of (42b). Notice also that by induction we 
havethatj=d-k,~~=p~+~~~+p~+~,ands~=u~+*-~+u~+,. 

The above recursion can now be repeated d - 1 times as outlined in the 
following algorithm. We drop the -, since the same storage can be used for 
the updated Pi, and we drop the indices of W, p, o, T, and S, since they are 
irrelevant. 

ALGORITHM 2. 

comment initialization; 
Bri : = X: = S,i : = S; : = ST : = Y1 : = void; 
YO:= -ZI,;S,:=P,;r:=O;s:=O; 

for j=d step -1 until 2 do 
begin main loop; 
comment compress the columns of Pj; 

[ 0 1 P;]:=P,W;r:=r+p;s:=s+o; 
-5-J 

(I P 

if u = 0 then go to exit -2; 
comment multiply Pi, Y,, YI, X with W and partition analo- 

gously; 
for i= j-l step - 1 until 2 do [ PT 1 pj- ] : = P,W; 

-./w 
(7 P 

$L]:=w*Yo; $]:-u"Ydx+~:=xw; 

0 P 
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exit 1: _ 

exit 2: - 
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comment update; 
for i= j-l step -1 until 2 do Pi’ = [P,s,IP,‘]; 

Bri:# J;x:=[“o 

s::=[; ;];s;:=[; 

0 

- 47 1 
;S,:=[P,- 1 s,]; 

];1,:-[ -ozp y;];Yo:=[$]: 

end main loop 
comment normal exit of algorithm: none of the Pj had full column 
rank; 
T,,(h): = hq + I,; U&A): = - AS,+; V,(A): = xs;; W(A): = 
AP, + PO; 
stop: 
comment a Pj was met with full column rank at step j; 

T,,(X): = 

I* - AZ, 

- XI, 

L 
0 . . . . 0 AS: + I, 

V,(A): = pj. *-AP, 1 AS,]; W(A): = [AP,+ P,]; stop 

We now prove that the pencil 

satisfies the conditions of Theorems 3 and 4. For this notice that Algorithm 2 

0 

0 

xy, 

(43) 
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indeed performs a system reduction of the type (25). The transformations Vi 
and Vi in (39) indeed have the block form required in (25), and the matrices 
corresponding to T,,(A) and V,(X) in (39) are indeed zero as required in (25). 
Because of Theorem 4 it thus only remains to prove that the coefficient or X 

&2@) 
in V,(h) I I 

has full column rank. For the result at exit -1 this is the matrix 

0 - L 

- L 
0 Yl 

0.. . . 0 s: 
Pi * . . ’ Pz s, 

which indeed has full column rank because 

Pi and s’: 
[ 1 1 

9 (44) 

have full column rank [the first because of the stopping rule of the algorithm, 
the latter because of the rank condition (40)]. For the result at exit -2 we 
rewrite the matrix in terms of the matrices before the update [see (42c)]: 

(45) 

Since at this exit of the algorithm P; has full column rank, the matrix (45) has 

full column rank if the submatrix 
[ 1 g has full column rank. We now prove 

inductively that this is satisfied at’ every step of the algorithm. Indeed, 
partitioning Wj as (here we add superscripts to indicate the step j) 
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we have from (36), (41), (42) that the matrix 
y1- I 1 - 
S: 

obeys the recursion 

These matrices have full column rank if all the W/i)* have full column rank. 
From (41) (42) we now have 

(48a) 

and thus 

Since in this last equation both I’( -) matrices have full column rank, so does 
W#‘*. This thus completes the proof of the following theorem. 

THEOREM 5. The pencil X Bred - Ared resulting form Algorithm 2 (see 
(43)) has the same zero structure and null space structure as the polynomial 
matrix P(X). 

Meanwhile we can also say something about the original pencil X B, - A, 
in (14). The transformations performed by Algorithm 2 are of the type 

U(XBO - A,)V= [S]> (49) 

where U and V are unitary. This decomposition was shown to be equivalent 
to d - 1 steps of Algorithm 1 performed on XBO - A,,. In a second stage, 
Algorithm I should be continued on h Bred - Ared in order to obtain a 
decomposition of the type (29) for X Bred - A,,. Inserting this in (49) yields 
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again a similar decomposition for h$ - A,, but with a larger hBrli - Ari part: 

U.(hB, - A&V 
I h-1 v 

red 

k-k-. C50) 

Let {pt(i=l,...,k} and {~+li=l,...,k) be the rank indices in the 
decomposition (29) for X $ - A,. Then those of h Bred - A red are given by 

Pi = PT+d-1 
yi = v.+ 1 for i=l,...,k-d+l. 

a+&1 

It follows then from (31) that the right minimal indices and the infinite 
elementary divisors of X Bred - A red are d - 1 smaller than those of A B, - A,, 
and that those in X $ - A,, that were smaller than d - 1 thus do not reappear 
in ABred - Ared. If k < d, then Algorithm 2 terminates at step k through 
exit -2, and XB,, - Ared has then no right minimal indices and infinite 
elementary divisors. 

Notice also that the other structural elements of XB, - A, and XB,,, - Ared 
are contained in hBjfd - A$ and are thus the same. 

This thus illustrates the importance of the reduction step performed by 
Algorithm 2: not only do we obtain a reduced pencil to work on, but some 
“fake” structural elements are meanwhile deflated. Notice also that the 
“fake” structural elements are deflated with a “fast” method, while the actual 
structure of P(A), which is present in A Bred - Ared, has to be computed with 
the comparatively slow Algorithm 1, followed by its dual form and the QZ 
algorithm. The following simple example illustrates the above ideas. 

EXAMPLE 2. For the polynomial matrix of Example 1, the pencil (14) 
looks like 
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OOO’-1 0 0 
000; O-l 0 

=x “_“_~I-_“__“_~’ 
1421 1 3 0 
0001 1 4 2 

-1 4 21 0 -1 -2_ 

-1 0 0’0 00 
0 -1 0’0 00 
0 0 -1 - ---_-___ 1_!__!_!! 
0 0 01-l -2 2 
0 0 010 12 

-0 0 010 00 

(52) 

For illustrative simplicity we will use elementary instead of orthogonal 
transformations for all compressions. 

Since d = 2, Algorithm 2 consists of only one step, which compresses the 
columns of Pz and yields ABred - A red: 

- 

‘000-l 0 0 
000 o-1 0 

0 0 0 -i -2 -1 

* 

002 1 3 0 
000 1 4 2 
0 0 2 0 -1 -2 

u; 

0 0 00 
0 0 0 0 }@; 

-1 0 00 
0 -1 -2 2 
0 0 12 
0 0 00, 

(53) 



EIGENSTRUCTURE OF A POLYNOMIAL MATRIX 

The first step of Algorithm 1 performed on XB,, - A,, then reads: 
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/ “z 0 1 0 ; 0 0 y 0 0 “0 1 I @%cl -Ared) 

10 00 
0 100 

-2 -4 1 0 

d 8 -2 1 1 
h=/4 -1 0’ 0 0 )a,-& 

- I I -o---:-s-2 

0 01-3 2 
00100 
w 

VI= v: 

(54) 

Here Algorithm 1 terminates, since Bfi has full column rank (vs = ~3’ = 0). 
Using (31), we now find that A Bred - A,, -and thus P(X)-has 

VI - p1 = 1 (right minimal index equal to 0) , 

p1 - v2 = 1 (infi nite elementary divisor of degree 1). 

On the other hand, h$ - A, has 

4 -p; =1 (right minimal index equal to 1) , 

&-vy3+=1 ( f t 1 in ini e e ementary divisor of degree 2) 

and no others (since VT - pl = 0 and p: - v; = 0). This shows indeed that 
the corresponding structural elements of XB,,, - A,, are d - 1 = 1 smaller 
than those of ill?, - A,. For the remaining structural elements the dual 
Algorithm 1' is applied to 

‘3 
0 

-4 1 
o- 

.3 -2 

I -6 2 
-3 2 

0 0 I* (55) 
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yielding after two steps 
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The algorithms give the “dual” indices py = 1, p: = 0, v:= 1, vl= 1, and 
v: = 0. This reveals, in a way dual to (31) that there is v[ - pi = 1 left 
minimal index equal to 1 and isolates the finite structure part 

h B;ed - Ayd = - 3X +3, (57) 

revealing a finite elementary divisor (h - 1). The QZ algorithm is superfluous 
here, since the dimension of “B;“” - Ayd is only 1. Through Theorem 2, one 
now retrieves the zero and null space structure of XB,,, - A red and thus also 

P(h)* 

Notice that Algorithm 1’ was not applied to hB,ydi - A’r:” in order to 
separate the infinite elementary divisors from the right null space structure, 
since the sequence of pLi’s and vi’s reveals both these structural elements of 
h B r,ed _ A’” 

TI 
Let us low focus on the pole structure of P(X). According to Theorem 3 

this structure can be identified through the pencil S,(A), here given by 

S,(h) 2 x 

_ 

0 

2 
0 
2 

0 
0 
0 

d -2 -1 0 0 0 

1 3 0 
1 4 2 0 
0 -1 -2 

0 0 
_I 

-1 0 000 00 

0 --1 -2 2 
0 0 12 -I 
0 0 00 

0 
0 I 0 
0 

(58) 
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This is a regular pencil with only infinite zeros, since, according to Theorem 
3, these are the poles of P(X). They could thus be computed with Algorithm 1 
running on S,(X). A faster method is discussed in [20] (see also references 
therein) and only uses the matrices Pd, . . . , P,. It is shown in [16], [20] that this 
algorithm is in fact nothing but Algorithm 2 and that the pole structure of 
P(X) can be identified through the indices pi as in the following theorem. 

THEOREM 6. Let the pi be given as in Algorithm 2, and let pdtl A 0, 
plAn-vl=n-vi, Then P(h) has pi - pi+i structural indices equal to - i 
ath=Ofori=l,...,d. 

Using Theorems 2-6, we thus see that the complete eigenstructure of 
P(X) can be recovered from the pencil (14) via the reduction Algorithm 2 and 
via Algorithms 1, 1’ and the QZ algorithm running on the reduced pencil 

(43). 

4. CONCLUDING REMARK 

All numerical algorithms using floating point arithmetic on matrix prob- 
lems are subject to a progressive buildup of rounding errors. One would hope 
that for some algorithms a certain type of “controlled numerical behavior” of 
rounding errors could be guaranteed. The notion of “backward stability” [27], 
introduced for this purpose, certifies that the numerical implementation f(A) 
of an exact algorithmic result f(A) of the matrix A satisfies 

J‘(A)=f(A+E,) for lIEoIl < WYl 

where 1). I\ is some matrix norm, E is the relative precision of the computer, and 
k is some constant close to 1. This in fact says that the computed result f( A) is 
the exact answer f( A + E,) to the slightly perturbed initial data A + E, (see 
[27] for an extensive treatment of the subject). 

The backward numerical stability of Algorithms 1, 1’1 2 and of the QZ 
algorithm is easily proved because of the use of unitary transformations (see 
[19], [16], [17]). The final decomposition 

V(XB - A)V 

h Bri - A,, 

0 

* 

XB,r”d-ATd I I I 
* * * 

I I ________------- ________---- 

0 I XBfed-Ay’ ; * I 
* 

I _________------ ----- 

0 ’ 0 I hB;ed_Arfed I * 
I I I __________-------- _________ 

0 I 0 I 0 I XBl’“d-Ayd 

(59) 



576 PAUL VAN DOOREN AND PATRICK DEWILDE 

with A BFd - A;“” m upper triangular form, yields all the required information 
and can be proved to correspond exactly to a slightly perturbed version of the 
pencil (14) (we denote perturbed quantities with an overbar): 

xg- xe A( Z? + Eb) - (A + E,), 

IIR- BII < &AlBII> IHA- All < ~,Wll> (60) 

where I]. (1 is the Frobenius norm, E is the machine accuracy of the computer, 
and the II are some polynomial expressions in m, n, and d (see [IS], [17], 
[27]). This is misleading in a sense, since (14) corresponds to a polynomial 
matrix P(h) only because of its specific structure (0 and Z blocks), and the 
perturbations E, and E, almost always destroy this property. Yet, when P(h) 
has been previously scaled so that 

IICII = 1, c%[P” P, .a* P,], (61) 

then there exists a slightly perturbed version p(X) of P(h) with 

IIC- CII < wlcll> cqp, PI ... I$] (62) 

and whose eigenstructure (i.e. null space structure, finite zero structure, and 
“true” infinite and “fake” infinite structure) is exactly the one computed by 
the above procedure. This can be proved as follows. We can always construct 
transformations of the type I + EU and Z + E, with 

such that 

IlEull < KG IV&II < Q (633) 

(I + E,)( hi?- K)(Z + E,) (64) 

is again of the form (14), but now with slightly perturbed matrices &. This 
can be obtained by block elimination of Gaussian type and by block scaling of 
the pivots. The order in which the 0 and k Z blocks are “restored’ is given by 
their indices in the following example (d = 4): 
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The transformations 1, 3, 5, 7, 8, 10, and 12 are column operations; the others 
are row operations. From (60), (63), (64) we now easily obtain (62), because 
(14) and (65) have the same shape and are e-close to each other. We thus have 
obtained that the present approach is backward stable in a “strict” sense, 
namely that the computed eigenstructure corresponds exactly to a slightly 
perturbed polynomial matrix F(h). 

For the regular case [i.e. det P(X) = 0] several “numerical” methods have 
been derived [l, 7, 10, 11, 141. The methods computing all the zeros [lo, 111 
require 0( n3d3) operations, i.e. O(n2d2) operations per computed zero (1 
operation standing for 1 addition and 1 multiplication). As a comparison with 
our preliminary reduction scheme for the deflation of the “fake” zeros at co, 
the following operation count is obtained for Algorithm 2. We use pi House- 
holder reflections for the rank compression of pj [19]. Then, taking into 
account that one Householder reflection on (the rows or columns of) an s X t 
matrix requires 2st operations [27], we have that step j of Algorithm 2 
requires less than 

a j = 2pjmn + ( j- 2)2pjmn + 2pjn2 + 2pjrjn + 2pjsjn (66) 

operations. Since sj + rj = (d - j)n and m = n (for the regular case), we have 

(67) 

In step j, aj = n - pi zeros at cc are deflated. When aj = 1 we thus need 2dn3 
operations for the deflation of one zero. When aj = n - 1 this figure reduces 
to approximately 2dn operations per deflated zero (notice that 1~ aj < n - 1 
if a reduction is performed), for an average of aj = pi = n/2. Algorithm 2 
requires 2dn2 operation per deflated zero at co, which compares rather 
favorably with the O(d2n2) figure of the previous algorithms. According to 
[ 1 l] such polynomial matrices with many zeros at co often occur in practice. 
After this preliminary deflation of “fake” zeros at cc we recommend, for the 
regular case, the direct use of the QZ algorithm instead of Algorithm 1, which 
would deflate the “true” remaining zeros at infinity. Algorithm 1 is indeed 
much slower than the QZ algorithm, but has the advantage of good recogni- 
tion of infinite zeros, even when they are multiple and thus ill-conditioned. 
Another advantage is that polynomial matrices which were presumed to be 

regular but in fact are not or are “almost” not regular will be detected by 

Algorithm 1 but not always by the QZ algorithm (see [17], [28], [29] for more 
details). 

For the singular case (i.e. when the normal rank r < m and/or n) one had 
recourse to the computation of the Smith canonical form or to related forms 
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based on elementary column and row operations on P(X) (see [19] and 
references therein), but these methods are known to be numerically unstable 
[ 19,291. It was only recently that other algorithms based on concepts of linear 
system theory (such as generalized state space systems [13]) were developed 
for tackling the singular case. Unfortunately these first attempts were unstable 
(see [19] and references therein). The present paper fills the resulting gap in a 
numerically sound manner and tries to make the connections with the system 
theoretic literature, because most of its ideas originated there and most of its 
applications also are to be found there [19]. 

The main reason why the singular case was never tackled in the numerical 
literature is, we believe, the possible ill conditioning of this extension. 
Although the algorithms proposed in this paper are numerically stable, one 
has then to redefine appropriately the conditioning of the computed eigen- 
structure (see [19]), since arbitrary perturbations may alter the computed 
results completely (see [17]); but such a discussion is beyond the scope of this 
paper. 

REFERENCES 

1 

2 

3 

4 

5 

6 

7 

8 
9 

10 

11 

12 

13 

P. Anselone and L. Rall, The solution of characteristic value-vector problems by 

Newton’s method, Xumer. ‘Math. 11:38845 (1968). 
0. Bosgra and A. van der Weiden, Realization in generalized state-space form for 
polynomial system matrices and the definitions of poles zeros and decoupling 

zeros at infinity, Internat. J. Control 33:393-411 (1981). 
G. D. Forney, Jr., Minimal bases of rational vector spaces with applications to 

multivariable linear systems, SIAM J. Control 13:493-520 (1975). 

F. R. Gantmacher, Theory of Matrices Vols. I, II, Chelsea, New York, 1959. 
B. S. Garbow et al., Mutrix Eigensystem Routines -EISPACK Guide Extension. 

Springer, New York, 1977. 

L. Kronecker, Algebraische Reduction der Schaaren Bilinearer Formen, 

Sitzungsber. Akad., 1890, pp. 763-776. 
V. Kublanovskaya, On an approach to the solution of the generalized latent value 
problem for A-matrices, SIAM J. Numer. Anal. 7:532-537 (1970). 
P. Lancaster, Lambda-Matrices and Vibrating Systems, Pergamon, Oxford, 1966. 
B. McMillan, Introduction to formal realizability theory I, II, Bell System Tech. J. 
31:217-279, 54-600 (1952). 
C. Moler and G. Stewart, An algorithm for the generalized matrix eigenvalue 
problem, SIAM J. Numer. Anul. 10:241-256 (1973). 
G. Peters and J. Wilkinson, Ax = X Br and the generalized eigenproblem, SIAM J. 
Numer. Anal. 7:479-492 (1970). 
H. H. Rosenbrock, State-space und Multiauriuble Theory, Wiley, New York, 
1970. 
H. H. Rosenbrock, Structural properties of linear dynamical systems, Internut. J. 
Control 20:191-202 (1974). 



EIGENSTRUCTURE OF A POLYNOMIAL MATRIX 579 
, 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 
27 
28 

29 

30 
31 

32 

33 

A. Ruhe, Algorithms for the nonlinear eigenvalue problem, SIAM J. Numer. Anal. 

10:674-689 (1973) 
H. J. S. Smith, On systems of linear congruences, Proc. London Math. Sot. 

IV:241-249 (1873). 
P. Van Dooren, The generalized eigenstructure problem-Applications in linear 
system theory, Doctoral Thesis, Univ. of Louvain, 1979. 
P. Van Dooren, The computation of Kronecker’s canonical form of a singular 
pencil, Linear AEgebra Appl. 27:103-140 (1979). 
P. Van Dooren, Computing the eigenvalues of a polynomial matrix, in Proceed- 

ings of the IBM-NFWO Symposium, Brussels, 1979, pp. 213-223. 
P. Van Dooren, The generalized eigenstructure problem in linear system theory, 
IEEE Trans. Automat. Control 26:111-129 (1981). 
P. Van Dooren, P. Dewilde, and J. Vandewalle, On the determination of the 
Smith-McMillan form of a rational matrix from its Laurent expansion, IEEE 

Trans. Circuits and Systems 26:180-189 (1979). 
G. Verghese, Infinite frequency behaviour in generalized dynamical systems, 
Ph.D. Thesis, Stanford Univ., 1978. 
G. Verghese, Comments on “Properties of the system matrix of a generalized 
state-space system, Internat. J. Control 31:1007-1009 (1980). 
G. Verghese, B. Levy, and T. Kailath, Generalized state-space systems, IEEE 
Trans. Automat. Control 26:811-831 (1981). 
G. Verghese, P. Van Dooren, and T. Kailath, Properties of the system matrix of a 
generalized state-space system, Internat. J. Control 30:235-243 (1979). 
R. C. Ward, The combination shift QZ algorithm, SIAM J. Numer. Anal. 

12:835-853 (1975). 
J. Wedderburn, Lectures on Matrices, Dover, New York, 1964. 
J. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon, Oxford, 1965. 
J. Wilkinson, Linear differential equations and Kronecker’s canonical form, in 
Recent Advances in Numerical Analysis (C. de Boor and G. Golub, Eds.), 
Academic, New York, 1978. 
J. Wilkinson, Kronecker’s canonical form and the QZ algorithm, Linear Algebra 
Appl. 28:285-303 (1979). 
T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, N.J., 1980. 
V. KuEera, Discrete Linear Control: The Polynomial Approach, Wiley, New York, 
1979. 
L. Pernebo, An algebraic theory for the design of controllers for linear multivari 
able systems. Parts I, II, IEEE Trans. Automat. Control AC-26:171-182, 183-194 
(1981). 
G. Verghese and T. Kailath, Rational matrix structure, IEEE Trans. Automat. 
Control AC-26:434-439 (1981). 


