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On the Determ ination o f the Smith-Macmillan  
Form’ o f a  Rationa l Ma trix F rom 

Its Laurent Expansion 
PAUL M . VAN DOOREN, STUDENT MEMBER, IEEE, PATRICK DEWILDE, MEMBER, IEEE, AND 

JOOS VANDEWALLE, MEMBER, IEEE 

Abstmct-A novel method is presented to determine the Smitb- 
Macmillaa form of a  ratfonai m X n  matrix R(p) from Laurent  expansions 
in its poles and  zeros. Based on  that method, a  numerically stable alge 
r i thmisdedueed,whichusesonlyaminimalnumberoftermsofthe 
Lmrent expansion,  bence  providing a  shortcot with respect to cumbersome 
and  unstable procedo~ based  on  elementary transformations witb oni- 
modalar matrices. 

The  method can be  v iewed as a  general ization of Kublauovkaya’s 
algorithm for the complete solution of the e igemWucWe problem for 
AI-A. From II system’s point of view it provides a  bandy  and  numerically 
stable way to determhe the degree of a  zero of a  transfer function and  
unifies a  number  of results from multivariable realization and  invertibiity 
theory. The  paper  presents a  systematic treatment of the relation between 
the efgen-information of a  traosfer function and  the information contained 
in partial fraction or Laurent  expansions.  Although a  number  of results are 
kaown, they are presented in a  systematic way which considerably sim- 
plifies the total picture and  fhoduces in a  natural way a  number  of novel  
tedlniqu~. 

I. INTR~OUCTI~N 

T 
HE PROBLEM of efficient determination of the 
Smith-Macmillan form of a  rational mX n matrix 
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R(p) does not seem to have received a  great deal of 
attention in the past, al though its importance as a  key 
element in systems analysis and  design can hardly be  
denied. The  classical method of using unimodular matrix 
man ipulations is cumbersome and  not suited for numeri- 
cal computations, because it results in an  extraordinarily 
large number  of polynomial man ipulations. In all methods 
based hereon, numerical stability is lost because pivoting 
is not based on  the coefficients of p but on  its power [I]. 

On  the other hand, a  number  of papers are devoted to 
the realization problem for system transfer functions and  
a  host of algorithms have been  devised [2]-[7]. Another 
set of algorithms were proposed for system inversion both 
in the case of systems over a  finite field [8]-[ lo] and  in the 
case of systems over @  or Iw [ 111, and  criteria for system 
invertibility where derived [12], [13]. Most of these 
methods require the handl ing of large size matrices and  
none  devote any attention to the numerical stability prob- 
lem. 

An answer to the invertibility problem is needed,  e.g., in 
coding .theory where one  is interested in deciding whether 
the transfer function has a  unique zero at infinity (of large 
degree) and  if so, in determining the degree of that zero 
and  the inverse of the matrix. Also, in invertibility theory 
one  wishes to know whether there is actually a  zero at 
infinity in which case the system cannot be  inverted. In 
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both cases, the structure of the zero at a  given point and  
its numerical determination is of crucial importance. S(i) t 

Problems of system factorization from the synthesis 
[14], [15] and  from the analysis [16] point of view have 
also been  studied for coprime factorization [17] and  
spectral factorization [ 181, [19]. Most of these techniques 
are based in some way or the other on  properties of the 
Toeplitz matrices resulting from a  Laurent expansion of 
the transfer function ,3(p). 

In this paper, we show that the Laurent expansion of 
R(p) in one  of its poles/zeros (in this case they may 
coincide) provides in a  very simple way all the informa- 
tion needed  to determine the Smith-Macmillan form of 
R(p). The  method as deduced is local and  recursive, treats 
each pole/zero individually, and  uses only the exact 
amount  of information needed  from a  smallest possible 
partial expansion. As soon as all the relevant information 
is collected, the algorithm proceeds to a  next point. 

Fig. 1. 

Moreover we present an  implementable version of the 
algorithm which is fast (because of the work savings) and  
numerically stable (only unitary transformations are per- 
formed on  the data). This fast version is also shown to 
boil down to Silverman’s structure algorithm [l l] when 
used on  state-space descriptions and  also to the eigen- 
structure algorithm of Kublanovskaya (for an  excellent 
discussion of this algorithm, see [20]), when used on  
U-A in one  of the eigenvalues cx .of A. The  present 
theory gives additional insights in both specific applica- 
tions. The  introduced concept of rank function is also 
closely related to Fomey’s use of valuations [25]. The  
algorithm presented is in fact a  handy way for computing 
these valuations. 

W ith respect to a  given R(p) and  one  of its poles or 
zeros (Y, we define a  function S (i) which characterizes the 
Smith-Macmillan form completely as far as the oc- 
currence of the pole/zero (Y in its entries is concerned. Let 
A(p) be  factorized as A(p)=A,(p).G(p) with 

A,= 
I 

% --r,r 1  0  m --r,n--r 1  

and G=diag { gl,+**,g,,} (3) 

where the gi have no  pole or zero at cr (put gi = 1  for 
r<i<n). Let, for O<i<r: 

S (i) = ui for i integer 

II. hELIMINARIES 

Suppose R(p) is a  general  rational m  X n matrix, then it 
has a  unique Smith-Macmillan form A(p) [21], given by 

R(P) = MP)A(P)N(P) (1) 

where M  and  N are m  x m , respectively, n  x it unimodular 
matrices and  

S (i) = a,, for i noninteger and  where i + is the 
upwards rounded version of i. J4) 

The  picture of S(i) is .thus a  step function as shown in 
F ig. 1. Because of the divisibility properties of e, and  -f, 
S(i) is a  nondecreasing staircase. This function also gives 
the order w,(w,) and  the degree S,(S,) of the pole (zero) (Y 
]71,]231: 

The  e, and  A are man ic polynomials, whereby e, divides 
ei+i,J divides&,, and  e, is mutually prime withA [21]. If 
a  finite point (Y EC is a  zero of any e,, then it is called a  
zero of R(p). If it is a  zero of any&, then it is called a  pole 
of R(p). (These definitions are. not exactly standard, but 
common and  logical; for an  extensive discussion see [22].) 
It should be  stressed at this point that a  single point (Y can 
be  at the same time  both a  pole and  a  zero of R(p), each 
with specific order and  degree. 

up  = -u, (if (I, < 0) 

wz = 0, (if a, > 0) 

c 6 , = - 2  a i 

I- 
O , <Q 

8, = x ui. 
(5) 

a,>0 

The  degrees can also be  defined as areas delimited by the 
graph of S(i) (shaded areas in F ig. 1). 

ExampIe I: Let A,(p)=diag {(p - a)-*, 1, (p - CX)~, 
(p - CX)~}. Then  S (i) is given as shown in F ig. 2. n  

Suppose 

R(p)= 5  Ri(p-a)i (6) 
iE-1 

is a  Laurent expansion of R(p) at CX. We  will denote by 
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I S(i) 

Fig. 2. 

wP = 2 I I 6p= 2 

wz=3 6z= 6 

q(R, CX) the Toeplitz matrix (i > - r) 

In the sequel we show how to obtain S(i) at any point (Y 
by working on T(R,a). Our main theorem retrieves this 
information from a smallest possible number of terms in 
the Laurent expansion of R(p) at the point (Y. 

III. SMITH-MACMILLAN INFORMATION 

We demonstrate that the rank information of the Toep- 
litz matrices T(R,a) completely determines A,(p). We 
introduce first some terminology. 

Definition 3. I 
Starting with (6) and using the notation defined by (7) 

we define the rank index p,(R,a) as (we drop R and (Y 
when superfluous because of the context) 

pi P rank q-rank T-,. (8) 
Hereby, we suppose the nonexisting q (i < - I) to have 
rank zero. It is easy to check then that 

rank T. = C pi. 
j= -, (9) 

Definition 3.2 
Let R(p) and Q(p) be two mXn rational matrices 

related by 

R(P) = %)-Q(P)-~;(P) (10) 
where E and F are m  x m , respectively, n x n rational 
matrices. We then say that R and Q are similar at a if E 
and F are regular at (Y (E(a) and F(a) invertible). 

Proposition 3.3 
If R(p) and Q(p) are similar at (Y then they have the 

same rank indices at (Y. 
Proof: Since E and F are regular at (Y they both have 

a Taylor expansion at a: 

where E,= E(a) and FO= F(a). 
Expanding R(p) and Q(p) in Laurent series at (Y, it is 

easy to see from (10) that they have the same order I for 
the pole (Y and that their coefficients satisfy 

(12) 
for i > - 1. Since E, and F, are invertible, the Toeplitz 
matrices built on E(p) and F(p) are also. From (12) it 
follows then that 

rank q(R,cw)=rank q(Q,cy) (13) 
for i > - I. n 

Corollas 3.4 
A rational matrix R has the same rank indices as its 

Smith-Macmillan form in any finite point. 
Proof: Unimodular matrices have no finite poles or 

zeros and are thus, regular in any finite point (Y EC. A 
rational matrix is thus similar to its Smith-Macmillan 
form at any finite point (Y. The proof is then completed by 
Proposition 3.3. H 

Corollary 3.5 
A rational matrix R has the same rank indices at (Y as 

A,(p) (where A, is given by (3)). 
Proof R and A have the same rank indices at any finite 

point, and A and A, are obviously similar at (Y (see (3)) 
since G is regular at CX. n 

Since R(p) and A,(p) have the same rank indices at (Y 
we can deduce their properties from the Toeplitz matrices 
q(Aa,o). Those have special properties because of the 
specific form of A,(p): 1) all rows of Ti(A,,cr) are either 
zero or have only one nonzero entry, and 2) the nonzero 
rows of Ti(Aa,o) are linearly independent. Because of this 
last property the following holds: 

p,=rank c(A,,cr)-rank q-,(A,,a) 

=rank [A-,;. . ,Ai] (14) 

where A, is thejth coefficient in the Laurent expansion of 
A,(p) at CY. From the higher mentioned properties of 
TJA,,cw) it follows then that this rank equals the number 
of l’s in [A-,;** ,Ai] or also the number of powers 5 
smaller than i in A,(p). This can immediately be read off 
from S(i) of R(p) at CY. 

Example 2: Resuming example 1: A,(p) =diag {(p - 
CI-~, 1, (p - (Y)~, (p - a)‘} (see Fig. 3). H 

If we associate a rank function C%(i) to the rank indices 
pi as follows (staircase function): 
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S(i) I I 
3-p3 3 

p3 
1, 

IT 

P3 = 4 

2- p2 2 p2 
w  P2 = 2 

1 p1 p1 z 
l- Pl = 2 

PO i 
c 

p-1 12 3 4’ 
PO=2 

-1 - 
p- 

wP 
Pel= 1 

-2 4 t Pm2’ 1 ! 
P3 = 4 

w  P2 = 2 
z 

PI = 2 

i 
PO = 2 

wP Pel= 1 

Pm2' 1 

Pm3= 0 

Fig. 3. 

R(i) 
L 

rank r=4 

1 

, 6P' , , i 

-4 -3 -2 -1 01 2 3 4 

Fig. 4. 

a(i) = pi for i integer 

S(i) = pi- for i noninteger where i - is the 
downwards rounded version of i 

then obviously the %  staircase is the reflection of the s 
staircase with respect to the bisectrice (see examples 1  and  
2) except that 9l is also defined for i < -up and  ,i >o,. 
Remark that 9% is also nondecreasing. 

Example 3: Using example 2  we obtain a(i) 1s shown 
in F ig. 4. n  

From this similarity between 9, and  S the following 
results immediately follow trivially. 

Corollary 3.6 

W P  - - -min {ilp,#O} 1  (if>O) 

(if > 0) (where r is the rank 
of R(p), and  can be  <m,n). 

Corollary 3.7 

/ 

a,= 2  pi 
i= --a P 

These easy results were derived earlier (e.g., [23]) but are 
put here in a  form convenient for the sequel. 

A rank search of the Toeplitz matrices q( R, a) gives all 
information about the occurrence of the pole/zero (Y in 
the Smith -Macmillan form of R(p). As soon as a  rank 
index pk equals the normal rank r of R(p) the search can 
be  terminated. By then, a  m inimal number  of coefficients 
of the Laurent expansion at (Y has been  emp loyed in the 
computation. In the next section we develop a  fast recur- 
sive algorithm that performs this rank search in a  numeri- 
cally stable way. 

IV. TOEPLITZ RANK SEARCH 

In this section we describe a  recursive algorithm to 
transform a  Toeplitz matrix ZJ to a  matrix whose nonzero 
rows are linearly independent.  We  use, therefore, row 
transformations to reduce an  arbitrary matrix A to the 
form 

A- >P u.A= - 1 1 0 

whereby A - has p  linearly independent rows. In the 
sequel we call such a  transformation a  row compression of 
the matrix A. 

Since each Toeplitz matrix q(R, a) is an  embedding of 
any lower order Toeplitz matrix TJR, a) (for j <i), it can 
be  expected that the compression of these smaller Toeplitz 
matrices can be  used to transform T. This idea of making 
full use of the Toeplitz structure of q  is applied in the 
following recursive Toeplitz rank search. 

The  algorithm, acting on  the sequence R-,, * * * ,&, de- 
fines a  set of indices {p _  I,. . . , pi} which will be  proven to 
be  the rank indices of q. 

Algorithm 4.1 
1) j= -I; l&=R, fork=-l;..,i. 
2) Construct-a row transformation q  that computes 

the rank pj of Ri and  puts it in compressed form 

q.xj = 
3) Mu ltiply & (for k =j+ 1; . . ,i) left with q  and  

partition analogously to 2) 

Rk- > fj 
qk= - I 1  Rk+ b’j’ 

4) Update the & as 

lTk= 
Rky 1 I 1  Rk+’ 

for k=j+ 1;. * ,i. 

5) Ifj<ithenj=j+l; go  to 2  
else stop. n  

Remark that the symbols ik, Rk-, and  Rk+ denote in 
each step a  different object. In a  more rigorous notation 
we should use an  additional index referring to the current 
step j, giving iko), RkwQ, Rk?. For sake of conciseness, 
we only add  this index when confusion is possible. 
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For better understanding we draw the actions of step j 
on the matrix 

FA [ $A 1 lq, 1 . . . 1 R”i’il, ( R”,o’) 1. (15) 

Steps 2 and 3 then multiply f left with C$ such that 

(16) 

with Rj-Q having full rank 4. The new f matrix is then 
(by steps 4 and 5) one block shorter and looks like 

(17) 
which is (16) with the 9 bottom rows shifted to the- left 
and the last block then chopped off. After the definition 
of the ip+i) blocks this is also equal to 

f= [ &ii;” 1 &;I’ 1 . . . 1 R”i’jf,‘) 1 R”io’+‘) ]. (18) 

This is repeated until f is vanishing (at j= i). In the 
algorithm the old version of ? is deleted and replaced by 
its new version (18) which also justifies the dropping of 
the step indices. 

Theorem 4.2 
Algorithm 4.1 produces the rank indices of the Toeplitz 

matrix q defined on the sequence R-,, * * * , Ri. 
Proof: We prove this inductively. In the first step G= 

- I) the required rank index p _, = rank (R _ ,) is indeed 
computed by compressing the rows of R -,. We then 
multiply left each block row of Ti with the transformation 
U-,(let UPdiag[U-,;.*,U-,I): 

v-q= 

and (18): 

-R--,(-l) ~RQ$--;)( . . . . (R;(-1) 

p*u*q= o 

0 0 

p Iq-+ )pi. (20) 

1 

I 
0 ) 0 1 b-1 

By premultiplying K with the transformation P-U we have 
compressed the Toeplitz matrix T-, to the full rank 
matrix V-, and separated the remaining rows in the form 
of a new Toeplitz matrix (without any additional com- 
putations). We show by induction that this is maintained 
in each step. 

Induction step j: Suppose that at the beginning of step j, 
‘T,. is already transformed to 

j-1 

>$-I= kzm,fk 

j-1 

‘kg,vk R”(j) w iti e)= ’ R”,o” 1 1 0 \ do, C21) 
J 

RI, I I 0 

Ri- 
Ri+ 
RiI, 
RiT1 

Rfo1 
Rfh 1 

RI, 
0 

>P-l 

3 

a 

3 

3 

>v-1 

(19) 

After permuting block rows of equal block length (the + and with q:.- i of full rank I?$-. , which is the rank of Tj- ,. 
blocks are permuted with the - blocks as indicated by Step j acts on c(J) analogously to (19) and (20) and 
the arrows), we obtain, using the indexed notation of (17) transforms it to: 
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0 

i [ 

fy+ 1) 

‘I 

* (22) I 

0  0  19  

Embedding this in (21), we again obtain (21) for j incre- 
mented by 1. Thereby, kJ. has the form (for some X) 

l&j-I 

>@ ' 

Since both Rim0 and  I$, have full rank, 3  also has full 
rank equal  to pi + %- ,. The  row operations applied on  T i 
do  not affect the original column ordering of q  nor of 
any of its embedded  Toeplitz submatrices (e.g., q). This 
means  that q  and  vj have the same row space and  hence 
the same rank. Therefore, b  is indeed the required rank 
index and  5  is a  row-compression of T j. n  

Corollary 4.3 
Algorithm 4.1 implicitly computes a  row transformation 

U which transforms q  to the following compressed form 
where the RjmQ blocks have full rank pi. 

. . . 

0  

&:(-I) 

. . . R,O’) 

. 

1 
R ; (0 

If-l 

Ipi . 

IPi i 

’ k?-lvk 

(23) 

n 
It is useful at this point to discuss several aspects related 
to the algorithm. 

1) For efficient rank determination one  is forced to use 
the singular value decomposit ion (SVD) [20]. The  C$ 
matrices are then derived from the SVD of $  (* denot ing 
Hermitian conjugate): 

On  putting the singular values smaller than E, equal  to 
zero one  gets 

(25) 

where the rows of Rj- are orthogonal to each other and  

have norms greater than l . By using the row transforma- 
tions q?  the overall transformation matrix U in (23) will 
also be  unitary, which guarantees the numerical stability 
of the Toeplitz rank search. 

2) An SVD of T  would require 0[ m%(f + i + 1)3] opera- 
tions while the fast version using the Toeplitz structure 
requires only 0[ m%( I + i + 1)2] operations (moreover it 
yields the ranks of all lower order Toeplitz matrices). 

3) Stop criterion: 
a) When  only the rank indices p  -,, . . . , pi are derived, 

then Algorithm 4.1 will compute them, when acting on  the 
sequence R-,; . . , Ri. This is for instance the case when 
one  is only interested in the polar structure at (Y [2]. 

b) If the total Smith-Macmillan information is re- 
quired there are different possibilities. 

i) The  order d  of the zero (Y is known. Then  Algo- 
rithm 4.1 acting on  R -,, . * * , Rd utill give all required 
information. 

ii) The  order d  of the zero (Y is not known but R(p) 
has a  finite expansion at (Y. This is, e.g., always the case 
with polynomial matrices (see Section V). Then  the algo- 
rithm will be  performed on  this finite sequence and  can be  
continued an  arbitrary number  of steps, if one  cares to 
shift in zeros at the end. It should be  remarked that the 
Toeplitz rank search does not stop when reaching the end  
of the sequence. Example 4  (Section V) wiIl show an  
instance where Toeplitz ranks keep increasing even after 
the length of the sequence has been  reached. Yet, the 
algorithm will only process the significant blocks while the 
transformations on  zero blocks remain trivially zero. 

iii) The  order d  is unknown and  R(p) has an  infinite 
expansion. Then  we start with an  arbitrary sequence 
R-,; . * ,& (i can also be  equal  to - /) and  perform 
Algorithm 4.1. If at the end  of this, pi is not equal  to the 
normal rank r, the sequence should be  enlarged to, e.g., 
R 3. * * ,Ri,Ri+l* Algorithm 4.1 can be  adapted for such 
gr&ing sections but if one  wants to avoid double work, 
some intermediary results and  transformations must be  
kept in memory. This can be  done  efficiently with a  
m inimal memory content by following algorithm (using 
indexed notation). 

Algorithm 4.4 
1) j,= - I; 
2) R!-‘, = R: 
3) if>>-Z&enfori=-Iuntilj-1 do: 

a) mu ltiply ij@  with Vi and  partition rows 

b) define R”!‘+ ‘) as J 
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4) construct a row transformation q that computes 
the rank Q of &j(j) and puts it in compressed form: R(i) 

i 
S(i) 

5) if pj = r then stop 
elsej=j+ I; go to 2. 

The step indices used in the algorithm refer to earlier 
Fig. 5. 

notations and help the reader to check the procedure. 
While Algorithm 4.1 computes the form (23) row by row, 
the algorithm above does it column by column. Therefore, 

u _ A at x = 2 is 

the procedure does not need to know a priori how many 1 -1 1 
blocks to process. 2 -2 2 

4) Extension for p = CCJ 1 -1 1 
The Smith-Macmillan form of a rational matrix does 

I +I*@--2). 

not reveal the pole/zero structure of the point p = 00 since Since the only eigenvalue of A is X=2, we can construct 
the transformations performed are not regular at infinity. the Smith form by looking only at the rank indices of 
Our approach with Laurent expansions however can still X = 2. As remarked previously, we can work on T = [B I I] 
go through. If R(p) has an expansion at infinity of the only, keeping in m ind that null blocks are following (refer 
type to formulas (15) and following for notation). 

R(p)=Ds’+D,-,p’-‘+...D,+D-,p-‘+... (26) 
Step 0: 

1 0 0 
then the rank search of Toeplitz matrices of the type u,F= 

I I 
-2 1 0 *F 
-1 0 1 D/ - D-i q= I I \A (27) 

I 
will give the pole/zero structure at p = ao. It is easy to 
prove that this corresponds to the Smith-Macmillan redefine 
structure of the point A= 0 of the transformed matrix 
R(X - ‘) (this way of coping with the point at infinity is not 
standard, but seems logical in present context). 

V. EIGENSTRUCTLJRIZ ALGORITHM 

and pa=1 

(zeros are shifted in). 

Suppose (Y is an eigenvalue of the r X r matrix A and we 
want to compute the Jordan structure of hl- A at (Y. It is 
known [I] that this is the same as the behavior at the point 
(Y of the Smith-form A(A) of that polynomial matrix. The 
Laurent expansion at (Y of that matrix is 

Step 

UI 
f= /I 1 0 0 

0 1 
-1 -1 0-f I 1 

((III-A)+(&cw)ZA B+(h-a)Z. (28) 
By computing the rank indices of the sequence 
B,Z,O; . . ,O we thus obtain the required information. The 
rank function at(i) will give us the function S (i) of XI- A 
at (Y which also determines the Jordan structure of A at (Y 
since each elementary divisor (h-a)’ corresponds to a 
Jordan block of size 9 [l]. 

Example 4: In order to illustrate the basic idea, let us 
compute the eigenstructure for 

A=[ I; ; I;] 

which has a unique eigenvalue at A=2. Also we use 
elementary rather than orthogonal transformations for 
illustrative simplicity. In numerical practice, orthogonal 
transformations would be used. The Laurent expansion of 

=[ -d -i i 1-p. i !l andp,=2 

redefine 

?= [ li -d % I i i g] (zeros are shifted in). 

Step 2: F  has leading block of full rank: p2=3. The 
rank function and the function S(i) are thus given as in 
Fig. 5. This means that the Smith form is A(A)=diag 
{ 1, (h - 2), (h - 2)2} and A has a Jordan canonical form as 
(Jordan sizes 1 and 2): 

2 0 0 
A=M-‘. H-1 0 2 I *M. I 

0 0 2 
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We now show that the eigenstructure algorithm of 
Kublanovskaya [20] is similar to our rank search (except 
for some additional saving of work because of the special 
type of expansion B + (A i a)Z). 

This algorithm can be written as follows, keeping the 
same number ing as in Algorithm 4.1. 

Algorithm 5.1 
1) j=O; B”=B, 
2) compute a  SVD of B” and  its rank 5  : B” = UZ V*, 
3) compress rows of B” to full rank by a  similarity 

transformation, 

5 n j 
4) update &B,, , 
5) if nj>O thenj=j+ 1; go  to 2  

else stop. n  
The  nj are the null ranks at each step and  are equal  to 

our 5. The  5  are not the rank indices (since the size of the 
block B” is decreasing) but are related to them: 

In order to show the similarity between both algorithms 
we remark that multiplication with a constant invertible 
column transformation does not affect the rank search. 
This means  that each block of f may be  right-multiplied 
by an  invertible matrix. Let us put Algorithm 4.1 in the 
form (15)-(17) using the matrix ?=[jIZ] and  allow slight 
mod ifications in order to obtain Algorithm 5.1. 

Steps 2  and  3: The  SVD of Z?  gives 5  and  q. 

and  allowing a  right transformation Uj 

Steps 4  and  5: Redefine 

An additional row transformation can zero out B,,*, and  
shows that we can work equally well on  ?= [B, llZ,] = 
[B 1  Z,] (this size reduction preserves null ranks, not rank 
indices). 

Since pi = r - 5  = r - nj the stop criterion is indeed ni = 0 
or pi = r, the normal rank of AZ, - A. 

The  use of similarity transformations in Alg_oiithm 5.1 
maintains the unit matrix as second block in T, whereby 
one  can work only on  B”. Also, when proceeding to a  next 
eigenvalue, an easy updating of B” is possible without 

restoring the original size r [20]. These modifications 
cannot be  performed in the general  case treated in this 
paper, because at each new step novel information m ight 
be shifted in, which is not the case here. Therefore, we 
may assert that Algorithm 4.1 is a  straightforward gener-  
alization of Algorithm 5.1. 

The  connection with Kublanovskaya’s algorithm allows 
us to make some considerations about numerical proper- 
ties of the general ized eigenvalue problem. It is known 
that for the eigenvalue problem AZ- A an  expansion 
(cxZ- A) + (A - a)Z is needed  in order to retrieve the 
Jordan information of A [20]. Indeed, when such an  
expansion is not known, every attempt to retrieve a  
Jordan chain causes the mu ltiple eigenvalue to split up  in 
a  cluster of not necessarily close eigenvalues [20]. Analo- 
gously in the case of the Smith-Macmillan information, 
we would end  up  with all first-order poles and  zeros when 
no  expansions are used as starting point. 

When  using Laurent expansion of the matrix R(p), the 
problem can be  converted to a  rank-definition problem 
for which the singular value .decomposit ion can be  
successfully used. Just as in the eigenvalue problem [20] 
we see how the SVD allows us, in a  certain sense, to clear 
off the errors that would cause the poles or zeros to split 
up. Therefore, the knowledge of the eigenvalue and  an  
expansion in that point are required. 

VI. APPLICATIONS 

In this section we discuss briefly a  number  of applica- 
tions of the theory previously treated. In each case we will 
refer to the relevant papers in the specific application. The  
numerical algorithm presented is to be  introduced 
wherever a  Toeplitz reduction is to be  performed. 

During revision of this paper  other papers were pub-  
lished by Emre and  Silverman [26]’ and  by Van Dooren 
and  Dewilde [2], covering part of the results of Section IV. 
However, the connection with the Smith-Macmillan in- 
formation and  the general ized eigenvalue problem are not 
shown. It is exactly this relation that generates the wide 
variety of applications summed up  hereafter. 

A) Coprime Factorization 
When  R(p) is given in a  partial fraction expansion 

PW 

R(p)= i: qP)+%+R,(P) 
i=l 

(30) 

then we have the polar parts of the Laurent expansion in 
each pole explicitly given. The  coprime factorization 

R(P)= D -‘(P)+(P) (31) 

can be  viewed [ 171  as the construction of a  m inimal 
operator D(p) that displaces the finite poles of R(p) at 
infinity in the product 

D(P).R(P) = N(P)- (32) 
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The m inimality of D(p) ensures the coprimeness between 
D(P) and N(P) 1171. 

One proves [17], [2] that this can be done with the 
present structure algorithm when performed on each polar 
section R,(p) consecutively. The structure of the poles cui 
will indeed be reflected in D(p) since the poles cui must 
cancel in the product (32). The rank search of the Toep- 
litzes T- ,(R,,(Y~) will give all necessary information to 
build up D(p) and will also guarantee its m inimality [17]. 

B) Realization 
Using the PFE (30) the problem of realizing D(p) boils 

down to determining its polar structure in each of its finite 
poles. In [2] we prove that the present ideas lead to a fast 
and stable algorithm for realizing ,each finite pole of R(p). 
A total realization is then merely a block arrangement of 
these partial realizations. The superiority of this algorithm 
above other realization algorithms, both in fastness and 
stability, is also demonstrated in that paper. 

C) Inversion of Systems 
The problem here [ 111, [24] is to find an inverse (left or 

right) for the system 

R(p)= C(pZ-A)-‘B+ D (33) 

where D is constant. If D is not invertible (left or right) 
transformations have to be performed on a growing 
Toeplitz matrix 

q=[DeqJIJ (34) 

until a modified D is found that can be inverted. It is easy 
to show that D + CBp i ’ + CABp -’ + . . . is an expansion 
of R(p) at infinity and that the Toeplitz search of Silver- 
man [l l] is nothing but our rank search at the point 
p = cc. This will thus deliver the zero structure of R(p) at 
p = co. As soon as D has full rank (corresponding to a 
rank index which equals the normal rank), the zero struc- 
ture is completely determined, and the system can be 
inverted. This alternative way of looking at the problem 
gives an easy understanding of the inversion problem. 
Moreover, when one has to cope with a polynomial D in 
(33) the extension is trivial since the expansion of R(p) is 

R(p) = D&+ . . . D,p+D,+CBp-‘+CABp-‘+... 

(35) 
and the Toeplitz matrix becomes 

D) Linearization of Polynomial Matrices 
When using present ideas on the polynomial matrix 

D(p)=D,+D,p+...Dp’ (37) 

we can obtain a m inimal linearization pS- T  which has 
the same zero structure as D(p). In order to insure 
m inimality, a rank search of 

T-,= Dt\t [ 1 I (38) 

is required [27]. Linearizations of polynomial matrices 
have the advantage of bringing the probl.em in a suitable 
form for computation of its zero structure; numerically 
stable algorithms have been developed [28], [29] for com- 
putation of generalized eigenvalue problems of the type 
AS-T. 

E) Eigenstructure of Polynomial and Rational Matrices 
When using jointly the realization algorithm B) and the 

linearization algorithm D) on an arbitrary rational matrix 
we obtain a linearization of R(p) in the sense that it has 
the same zero structure as R(p) [27]. When the m  x n 
matrix R(p) has normal rar&r smaller than m  and/or n 
this linearization also yields interesting results about the 
role of a left and/or right dual basis for the zero structure 
of the matrix [27], as well as a unifying theory for inver- 
sion of rational matrices. 

F) Factorization of Rational Matrices 
When factoring R(p) as R,(p) *R,(p) (eventually 

spectral factorization) a choice of poles and zeros must be 
done. Also the spaces which accompany those points [ 141, 
[ 161, [ 181 have to be determined. A handsome way of 
doing this is by determining the realization of R(p) with 
the present algorithm [2], and by computing the zeros with 
the linearization of R(p). A factorization of R(p) can then 
be computed (if it exists) by updating its realization so 
that it splits into the tandem system R,(p)*R,(p) [30]. 

VII. CONCLUSIONS 
The numerically stable algorithm presented in this 

paper is derived in a particularly simple way from the 
Smith-Macmillan theory. The major concern of the paper 
is to provide a good insight in the algebraic structure of 
this generalized eigenvalue problem. The connection with 
the Kublanovskaya algorithm, e.g., shows how fragile the 
Smith-Macmillan information is and how heavily it relies 
on the knowledge of poles and zeros and expansions in 
these points. In some applications, where only partial 
results are requested, such information is indeed available 
(see applications C) and D)). In other cases one can solve 
the problem without the knowledge of poles and zeros but 
with the implications thereof (absence of multiple 
poles/zeros, eventual unstability, etc.). The algorithm has 
been implemented on computer and has been used in a 
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number  of applications. Another interesting aspect of the 
theory is the l inkage it provides between a  number  of 
seemingly disjoint topics: 1) the Kublanovskaya algorithm 
in numerical analysis as described in [20], 2) the realiza- 
tion theory of a  transfer function in ABCD form, 3) the 
inversion theory as used in coding theory and  the so- 
called structure algorithm, 4) factorization theory spectral 
or general, and  5) network realization theory through 
coprime factorization [19]. Some features of the theory 
may appear  almost trivial, but seen against the prolifera- 
tion of difficult arguments found in the literature on  this 
very topic, it seems useful to stress the basic simplicity 
obtained. 
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