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Abstract. We revisit the problem of approximating a multiple-input multiple-output (MIMO)

p×m rational transfer function H(s) of high degree by another p×m rational transfer function bH(s)
of much smaller degree, so that the H2 norm of the approximation error is minimized. We show that
in the general case of higher order poles in the reduced order model, called the defective case, the
stationary points of the H2 norm of the approximation error can still be characterized by tangential
interpolation conditions. We also indicate that the sensitivity of the solution of this problem depends
on the parameterization used.
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1. Introduction. In this paper, we consider the problem of approximating a
real p × m rational transfer function H(s) of McMillan degree N by a real p × m

rational transfer function Ĥ(s) of lower McMillan degree n using the H2-norm as
the approximation criterion. We refer to [2] for the relevant background on model
reduction and linear system theory.

Since a transfer function has an unbounded H2-norm if it is not strictly proper, we
will constrain both H(s) and Ĥ(s) to be strictly proper (i.e., they are zero at s = ∞).
Such transfer functions have minimal (i.e., controllable and observable) state-space

realizations (A,B,C) ∈ R
N×N ×R

N×m×R
p×N and (Â, B̂, Ĉ) ∈ R

n×n×R
n×m×R

p×n

satisfying
{
ẋ = Ax+Bu,
y = Cx,

H(s) := C(sIN −A)−1B, (1.1)

and
{

˙̂x = Âx̂+ B̂u,

ŷ = Ĉx̂,
Ĥ(s) := Ĉ(sIn − Â)−1B̂, (1.2)

where u ∈ R
m, y, ŷ ∈ R

p, x ∈ R
N , x̂ ∈ R

n. Expressions for the gradients of the
squared H2-norm error function

J(A,B,C) : (Â, B̂, Ĉ) 7→ ‖C(sIN −A)−1B − Ĉ(sIn − Â)−1B̂‖2
H2

have been known since the work of Wilson [16] (these expressions are recalled in
Theorem 3.2). One can object, however, that the full parameterization

(Â, B̂, Ĉ) 7→ Ĥ(s) = Ĉ(sIn − Â)−1B̂ (1.3)
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is not one to one, since the triple

(ÂT , B̂T , ĈT ) := (T−1ÂT, T−1B̂, ĈT )

for any matrix T ∈ GL(n,R) defines the same transfer function :

Ĥ(s) = Ĉ(sIn − Â)−1B̂ = ĈT (sIn − ÂT )−1B̂T .

If one could eliminate the n2 degrees of freedom of the invertible transformation T , one
could hope to fully parameterize the target system Ĥ(s) with only n(m+ p) indepen-
dent parameters, and to turn Wilson’s conditions into n(m+ p) non redundant scalar
conditions. Concerning the parameterization task, Byrnes and Falb [6, Th. 4.7] show
that the set Ratn

p,m of p×m strictly proper rational transfer functions of degree n can
be parameterized with only n(m+p) real parameters in a locally smooth manner; but
it is also shown there that there exists no globally smooth parameterization of Ratn

p,m

if min(p,m) > 1. An obvious candidate for a minimal parameterization is the Jordan
canonical form, which happens to be smooth almost everywhere except at points where
A is degenerate or non-diagonalizable. When one approaches such matrices, the di-
agonalizing similarity transformation tends to a singular matrix, which explains the
non-smoothness of that representation. Therefore, minimal parameterizations should
be avoided and over-parameterizations considered.

When they have only first-order poles the diagonalizable case, the stationary
points Ĥ(s) of the H2-norm error function (i.e., the points where the gradient of
J(A,B,C) vanishes) can be characterized via interpolation conditions at the negative

of the poles of Ĥ(s). These results are, in fact, a consequence of the relation between
the equations of the gradients of the H2-norm error (as derived originally by Wilson
in [16]) and tangential interpolation based on Sylvester equations (as derived in [3],
[7], [8]). These links were obtained by several authors, using different approaches
([12], [11], [10], [5]).

In this paper, we characterize the stationary points Ĥ(s) of the H2-norm error
function without the assumption that they have only first-order poles and use the
Jordan canonical form to describe the solution. The stationarity conditions elegantly
generalize to higher-order tangential interpolation conditions of degree ki − 1 (in the
sense of [8]), where ki is the size of the ith Jordan block. The interpolation points

remain the negative of the poles λ̂i of Ĥ(s), and the interpolation directions are

polynomial vectors of degree ki − 1, built from the rows of B̂ and the columns of
Ĉ. We can also show (see [15]) that these tangential interpolation conditions contain
n(m + p) non-redundant scalar conditions. The result in Theorem 4.5 has several
precursors: Aigrain and Williams [1] for the SISO case with simple real poles, Meier
and Luenberger [13] for the general SISO case, Halevi [11] for the square MIMO
case (but only for the interpolation points and not for the tangential directions) and
Gugercin et al. [10], Van Dooren et al. [14], and Bunse-Gerstner et al. [5] for the
MIMO case without high order poles.

Since the set of systems with higher-order poles is nowhere dense in Ratn
p,m, the

generalization of the stationarity conditions to higher-order poles (or the defective
case) is chiefly of theoretical interest. However, we also argue in this paper that
the non-smoothness of the Jordan canonical form at the systems with higher-order
poles is a source of difficulties that should not be dismissed. Indeed, model reduction
problems occur in practice where the reduced-order system is close to having higher-
order poles. A typical example is position control of an (essentially) undamped system
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(such as a robot arm) using a force actuator. Since position is the double integral
of acceleration (or force), the ideal (linearized) model for such a system is one with
a double pole at the origin. Any reduced order model that tries to capture such a
specific dynamic is bound to be close to having a second order pole at the origin. We
also argue that the case of higher-order poles is important for both understanding
the nature of the approximation problem and for computational purposes. First, we
show on an example that H2-optimal reduced-order models with higher-order poles
do occur. Second, we point out that because the minimal parameterization changes in
a non-smooth manner at the higher-order poles, the minimal tangential interpolation
conditions for H2-norm stationary points become ill conditioned around systems Ĥ(s)
with higher-order poles. When the influence of a nearby higher-order pole becomes
problematic, it is therefore better to use a smooth parameterization such as the full
reduced order model (1.3). We illustrate this with a simple numerical example.

The paper is organized as follows. After presenting in Section 2 the necessary
background material on the H2 approximation problem, in Section 3 we recall Wil-
son’s formulas for the gradient of the H2-norm error function. In Section 4, Wil-
son’s first-order optimality conditions are expressed in a tangential interpolation form
obtained by representing the reduced-order model in Jordan canonical form—thus
covering the case of higher-order poles in the reduced-order model. The link to tan-
gential interpolation by means of projection matrices that solve Sylvester equations
is discussed in Section 5. The importance of dealing with the case of higher-order
poles is illustrated in Section 6. The discrete-time case is covered in Section 7, and
conclusions are drawn in Section 8.

2. The H2 approximation problem. Much of the material in this section is
standard and can be found in [2]. Let E(s) be an arbitrary strictly proper transfer
function, with realization triple (Ae, Be, Ce). If E(s) is unstable, its H2-norm is
defined to be ∞. Otherwise, its squared H2-norm is defined as the trace of a matrix
integral :

‖E(s)‖2
H2

:= tr

∫ ∞

−∞

E(jω)E(jω)H dω

2π
= tr

∫ ∞

0

[Ce expAetBe][Ce expAetBe]
T dt.

(2.1)
This can be related to an expression involving the gramians Pe and Qe defined as

Pe :=

∫ ∞

0

[expAetBe][expAetBe]
T dt, Qe :=

∫ ∞

0

[Ce expAet]T [Ce expAet]dt,

which are also known to be the solutions of the Lyapunov equations

AePe + PeA
T
e +BeB

T
e = 0, QeAe +AT

e Qe + CT
e Ce = 0. (2.2)

Using these, it easily follows that the squared H2-norm of E(s) can be expressed as

‖E(s)‖2
H2

= tr BT
e QeBe = tr CePeC

T
e . (2.3)

We now apply this to the error function

E(s) := H(s) − Ĥ(s) = C(sIN −A)−1B − Ĉ(sIn − Â)−1B̂.

A realization of E(s) in partitioned form is given by

(Ae, Be, Ce) :=

([
A

Â

]
,

[
B

B̂

]
,
[
C −Ĉ

])
, (2.4)
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and the Lyapunov equations (2.2) become

Pe :=

[
P X

XT P̂

]
,

[
A

Â

] [
P X

XT P̂

]
+

[
P X

XT P̂

] [
AT

ÂT

]
+

[
B

B̂

] [
BT B̂T

]
= 0,

(2.5)
and

Qe :=

[
Q Y

Y T Q̂

]
,

[
AT

ÂT

] [
Q Y

Y T Q̂

]
+

[
Q Y

Y T Q̂

] [
A

Â

]
+

[
CT

−ĈT

] [
C −Ĉ

]
= 0.

(2.6)

To obtain a low-order approximation Ĥ(s) = Ĉ(sIn− Â)−1B̂ of a given full-order

model H(s) = C(sIN−A)−1B, we need to minimize the H2-distance ‖H(s)−Ĥ(s)‖2
H2

also given by the function

J(A,B,C)(Â, B̂, Ĉ) = ‖C(sIN −A)−1B − Ĉ(sIn − Â)−1B̂‖2
H2
. (2.7a)

We will frequently omit the subscript in J(A,B,C)(Â, B̂, Ĉ) when the full-order model

is clear from the context. In view of (2.3), J (Â, B̂, Ĉ) admits the formulation

J (Â, B̂, Ĉ) = tr

([
BT B̂T

] [
Q Y

Y T Q̂

] [
B

B̂

])
= tr

(
BTQB + 2BTY B̂ + B̂T Q̂B̂

)
,

(2.7b)

where Q, Y and Q̂ depend on A, Â, C and Ĉ through the Lyapunov equation (2.6),
or equivalently

J (Â, B̂, Ĉ) = tr

([
C −Ĉ

] [
P X

XT P̂

] [
CT

−ĈT

])
= tr

(
CPCT − 2CXĈT + ĈP̂ ĈT

)
,

(2.7c)

where P , X and P̂ depend on A, Â, B and B̂ through the Lyapunov equation (2.5).
Note that the terms BTQB and CPCT in the above expressions are constant, and
hence can be discarded in the optimization.

3. Gradients of the squared H2-norm error function. The derivations
above can be used to obtain formulas for the gradients of the squared H2-norm error
function J versus Â, B̂, and Ĉ. We define the gradients as follows.

Definition 3.1. The gradient of a real-valued function f(M) of a real matrix
variable M ∈ R

k×l, is the real matrix ∇Mf(M) ∈ R
k×l, defined by

[∇Mf(M)]i,j =
∂

∂Mi,j

f(M), i = 1, . . . , k, j = 1, . . . , l. (3.1)

We will write ∇ bA
f as a compact notation for ∇ bA

f(Â, B̂, Ĉ) when the argument is
clear from the context.

Starting from the characterizations (2.5,2.7c) and (2.6,2.7b) of the H2 norm,
one can derive succinct forms of the gradients. This theorem is originally due to
Wilson [16], but we state here the version derived in [14], where a proof based on
inner products and traces is given.

Lemma 3.2. The gradients ∇ bA
J , ∇ bB

J and ∇ bC
J of the squared H2-norm er-

ror J (2.7), where both (A,B,C) and (Â, B̂, Ĉ) are minimal (i.e., controllable and
observable), are given by

∇ bA
J = 2(Q̂P̂ + Y TX), ∇ bB

J = 2(Q̂B̂ + Y TB), ∇ bC
J = 2(ĈP̂ − CX), (3.2)
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where

ATY + Y Â− CT Ĉ = 0, ÂT Q̂+ Q̂Â+ ĈT Ĉ = 0, (3.3)

XTAT + ÂXT + B̂BT = 0, P̂ ÂT + ÂP̂ + B̂B̂T = 0. (3.4)

4. Stationarity conditions in Jordan form. We will assume that both trans-
fer functions H(s) and Ĥ(s) have real minimal (controllable and observable) realiza-

tions (A,B,C) and (Â, B̂, Ĉ) and we allow Ĥ(s) to have multiple and higher-order
poles. The main result is given in Theorem 4.5, where we show that the stationary
points of the H2-norm error function are characterized by tangential interpolation
conditions whose degree depends on the size of the Jordan blocks of Ĥ(s).

Let Ĥ(s) have the following minimal representation

Ĥ(s) =
ℓ∑

i=1

Ĥi(s), Ĥi(s) := Ĉi(sI−Âi)
−1B̂H

i , Âi :=





λ̂i −1

λ̂i

. . .

. . . −1

λ̂i




, (4.1)

where Âi ∈ C
ki×ki , B̂H

i ∈ C
ki×m, Ĉi ∈ C

p×ki and where {(Âi, B̂
H
i , Ĉi) : i = 1, . . . , ℓ}

is a self-conjugate set. Notice that this is essentially the partial fraction expansion
of Ĥ(s) and that there may be more than one Jordan block Âi associated with the

same complex eigenvalue λ̂i. The minimality of the representation implies linear
independence of the leading columns in each block B̂i and of the trailing rows in
each block Ĉi that correspond to the same eigenvalue λ̂i, since these blocks appear as
subblocks of a minimal realization of Ĥ(s).

We will need Si, T
H
i , the (complex) left and right eigenspaces of the (real) matrix

Â corresponding to the (complex) eigenvalue λ̂i. From the expansion (4.1), we have :

ÂSi = SiÂi, ĈSi = Ĉi, TH
i Â = ÂiT

H
i , TH

i B̂ = B̂H
i , TH

i Si = Ik. (4.2)

Note also that the matrices Si and TH
i are not unique. When there is only one

Jordan block associated with an eigenvalue λ̂i, its degree of freedom is just a block
scaling SiDi and D−1

i TH
i with Di ∈ C

ki×ki invertible. When there is more than one

Jordan block associated with λ̂i, the degrees of freedom are more involved. Below,
we associate right and left bases Si, Ti with each individual Jordan block Ai.

We will also need the following lemmas in preparation for the main theorem.

Lemma 4.1. If −λ is not an eigenvalue of A, the solution of the matrix equation

ATY + Y F − CTL = 0 with F :=





λ −1

λ
. . .

. . . −1
λ




∈ C

k×k, (4.3)
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and L :=
[
ℓ0 ℓ1 . . . ℓk−1

]
, is given by

Y = CA,C(−λ)





ℓ0 ℓ1 . . . ℓk−1

ℓ0
. . .

...
. . . ℓ1

ℓ0




,

where

CA,C(−λ) :=
[
(AT + λI)−1CT . . . (AT + λI)−kCT

]
.

Moreover, let φλ(s) :=
[
1 (s+ λ) . . . (s+ λ)k−1

]T
, y(s) := Y φλ(s), then

y(s) = (AT − sI)−1CTLφλ(s) +O((s+ λ)k)

which means that the ith column yi of Y is also the coefficient of (s + λ)i−1 in the
Taylor expansion of (AT − sI)−1CTLφλ(s).

Proof. The first part easily follows from (AT + λI)y1 = CT ℓ0 and (AT + λI)yi =
CT ℓi−1 + yi−1, i > 1. The second part follows from the identity

(AT − sI)−1CT =

∞∑

i=1

(s+ λ)i−1(AT + λI)−iCT

and from the convolution of this formal series with the polynomial vector Lφλ(s).

We also give the dual version of this lemma without proof.
Lemma 4.2. If −λ is not an eigenvalue of A, the solution of the matrix equation

XHAT + FXH −RHBT = 0

with F ∈ C
k×k as in (4.3) and R :=

[
rk−1 rk−2 . . . r0

]
, is given by

XH =





rH
0 rH

1 . . . rH
k−1

rH
0

. . .
...

. . . rH
1

rH
0




OA,B(−λ), where OA,B(−λ) :=




BT (AT + λI)−k

...
BT (AT + λI)−1



 .

Moreover, let ψλ(s) :=
[
(s+ λ)k−1 . . . (s+ λ) 1

]
, xH(s) := ψλ(s)XH , then

xH(s) = ψλ(s)RHBT (AT − sI)−1 +O((s+ λ)k)

which means that the ith row xH
i of XH is also the coefficient of (s + λ)i−1 in the

Taylor expansion of ψλ(s)RHBT (AT − sI)−1.
We first obtain expressions for ∇ bB

J and ∇ bC
J that exploits the Jordan canonical

form.
Theorem 4.3. Let H(s) = C(sIN −A)−1B and Ĥ(s) = Ĉ(sIn − Â)−1B̂ be real

minimal realizations, and let Âi, B̂i, Ĉi, Si, and Ti, i = 1, . . . , ℓ, describe the Jordan
canonical form of Ĥ(s) as in (4.1) and (4.2). Assume that −λ̂i is not a pole of H(s),
i = 1, . . . , ℓ. Define

ψbλi

(s) :=
[
(s+ λ̂i)

ki−1 . . . (s+ λ̂i) 1
]
, φbλi

(s) :=
[
1 (s+ λ̂i) . . . (s+ λ̂i)

ki−1
]T

.
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Then we have

1

2
(∇ bB

J )TSiφbλi

(s) = [HT (s) − ĤT (s)]Ĉiφbλi

(s) +O(s+ λ̂i)
ki , (4.4)

1

2
ψbλi

(s)TH
i (∇ bC

J )T = ψbλi

(s)B̂H
i [HT (s) − ĤT (s)] +O(s+ λ̂i)

ki , (4.5)

where J is the squared H2-norm error defined in (2.7).

Proof. Define Yi := Y Si, Q̂i := −Q̂Si, Xi := −XTi and P̂i := −P̂ Ti. Then

ATYi + YiÂi = CT Ĉi, ÂT Q̂i + Q̂iÂi = ĈT Ĉi,

XH
i A

T + ÂiX
H
i = B̂H

i B
T , P̂H

i ÂT + ÂiP̂
H
i = B̂H

i B̂
T .

If −λ̂i is not an eigenvalue of A or Â, both (AT − sI)−1 and (ÂT − sI)−1 have Taylor

expansions in (s+ λ̂i). It then follows from Lemmas 4.1 and 4.2 that

Yiφbλi

(s) = (AT − sI)−1CT Ĉiφbλi

(s) +O(s+ λ̂i)
ki , (4.6)

Q̂iφbλi

(s) = (ÂT − sI)−1ĈT Ĉiφbλi

(s) +O(s+ λ̂i)
ki , (4.7)

ψbλi

(s)XH
i = ψbλi

(s)B̂H
i B

T (AT − sI)−1 +O(s+ λ̂i)
ki , (4.8)

ψbλi

(s)P̂H
i = ψbλi

(s)B̂H
i B̂

T (ÂT − sI)−1 +O(s+ λ̂i)
ki . (4.9)

This then yields, by Lemma 3.2,

1

2
(∇ bB

J )TSiφbλi

(s) = (B̂T Q̂+BTY )Siφbλi

(s) = [HT (s)−ĤT (s)]Ĉiφbλi

(s)+O(s+λ̂i)
ki ,

1

2
ψbλi

(s)TH
i (∇ bC

J )T = ψbλi

(s)TH
i (P̂ ĈT−XTCT ) = ψbλi

(s)B̂H
i [HT (s)−ĤT (s)]+O(s+λ̂i)

ki .

The condition that −λ̂i is not a pole of H(s) is satisfied when choosing stable

interpolation points λ̂i, which is typically the case in the algorithms we discuss below.
Theorem 4.4. With the notation and assumptions of Theorem 4.3, if ∇ bB

J = 0

and ∇ bC
J = 0, then for each Jordan block Âi in the realization of Ĥ(s), we have in

addition the relation

1

2
ψbλi

(s)TH
i (∇ bA

J )TSiφbλi

(s) = ψbλi

(s)B̂H
i [HT (s) − ĤT (s)]Ĉiφbλi

(s) +O(s+ λ)2ki .

(4.10)

Proof. Let Si, T
H
i be as in Theorem 4.3. Define as before

Ĉi := ĈSi, Yi := Y Si, Q̂i := −Q̂Si, B̂
H
i := TH

i B̂, XH
i = −TH

i XT , P̂H
i := −TH

i P̂ ,

then we have

ATYi + YiÂi = CT Ĉi, ÂT Q̂i + Q̂iÂi = ĈT Ĉi,
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XH
i A

T + ÂiX
H
i = B̂H

i B
T , P̂H

i ÂT + ÂiP̂
H
i = B̂H

i B̂
T .

From Lemma 3.2 it follows that 1
2∇ bA

J = P̂ Q̂+XTY . If we use Lemmas 4.1, 4.2 and
(4.20) below, we then obtain

1

2
ψbλi

(s)TH
i (∇ bA

J )TSiφbλi

(s) = ψbλi

(s)B̂H
i [HT (s) − ĤT (s)]Ĉiφbλi

(s) +O(s+ λ̂i)
2ki .

Theorem 4.5. With the notation and assumptions of Theorem 4.3, if ∇ bB
J = 0,

∇ bC
J = 0 and ∇ bA

J = 0, then the following tangential interpolation conditions are
satisfied for i = 1, . . . , ℓ:

[HT (s) − ĤT (s)]ĉi(s) = O(s+ λ̂i)
ki , (4.11)

b̂i(s)
H [HT (s) − ĤT (s)] = O(s+ λ̂i)

ki , (4.12)

b̂i(s)
H [HT (s) − ĤT (s)]ĉi(s) = O(s+ λ̂i)

2ki , (4.13)

where b̂Hi (s) := ψbλi

(s)B̂H
i and ĉi(s) := Ĉiφbλi

(s).
Proof. Conditions (4.11) and (4.12) follow immediately from Theorem 4.3. It

remains to show that (4.13) holds. We can interpret conditions (4.11)–(4.13) in terms

of Taylor expansions of the error function E(s) := H(s) − Ĥ(s). Let

E(s) :=

∞∑

j=0

Ei(s+ λ̂i)
j , ĉi(s) :=

ki∑

j=0

lj(s+ λ̂i)
j , b̂Hi (s) :=

ki∑

j=0

rH
j (s+ λ̂i)

j ,

be the Taylor expansions around s = −λ̂i of the rational function E(s) and of the

polynomials ĉi(s) and b̂i(s)
H . Then conditions (4.11)–(4.13) are respectively equiva-

lent to




EH
0 EH

1 . . . EH
ki−1

EH
0

. . .
...

. . . EH
1

EH
0









l0 l1 . . . lki−1

l0
. . .

...
. . . l1

l0




= 0, (4.14)





rH
0 rH

1 . . . rH
ki−1

rH
0

. . .
...

. . . rH
1

rH
0









EH
0 EH

1 . . . EH
ki−1

EH
0

. . .
...

. . . EH
1

EH
0




= 0, (4.15)

and




rH
0 rH

1 . . . rH
2ki−1

rH
0

. . .
...

. . . rH
1

rH
0









EH
0 EH

1 . . . EH
2ki−1

EH
0

. . .
...

. . . EH
1

EH
0









l0 l1 . . . l2ki−1

l0
. . .

...
. . . l1

l0




= 0.

(4.16)
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The condition that the first ki or 2ki terms of the Taylor expansion vanish is equiv-
alent to the fact that the above partial convolutions are zero. We know that (4.14)
and (4.15) hold, since (4.11) and (4.12) hold; it remains to show (4.16) to conclude
the proof.

We will need the identity




EH

ki
. . . EH

2ki−1
...

. . .
...

EH
1 . . . EH

ki



 = OA,B(−λi)CA,C(−λi) −O bA, bB
(−λi)C bA, bC

(−λi) (4.17)

which holds since

EH
f+g−1 = BT (AT + λiI)

−f (AT + λiI)
−gCT − B̂T (ÂT + λiI)

−f (ÂT + λiI)
−gĈT .

Define

Yi := Y Si, Q̂i := −Q̂Si, X
H
i = −TH

i XT , P̂H
i := −TH

i P̂ . (4.18)

Using Wilson’s formulas (Theorem 3.2) for the first equality, Lemmas 4.1 and 4.2 for
the second one, and the identity (4.17) for the third, we have

TH
i (∇ bA

J )TSi = P̂H
i Q̂i −XH

i Yi

=





rH
0 rH

1 . . . rH
ki−1

rH
0

. . .
...

. . . rH
1

rH
0




O bA, bB

(−λi)C bA, bC
(−λi)





l0 l1 . . . lki−1

l0
. . .

...
. . . l1

l0





−





rH
0 rH

1 . . . rH
ki−1

rH
0

. . .
...

. . . rH
1

rH
0




OA,B(−λi)CA,C(−λi)





l0 l1 . . . lki−1

l0
. . .

...
. . . l1

l0





= −





rH
0 rH

1 . . . rH
ki−1

rH
0

. . .
...

. . . rH
1

rH
0








EH

ki
. . . EH

2ki−1
...

. . .
...

EH
1 . . . EH

ki









l0 l1 . . . lki−1

l0
. . .

...
. . . l1

l0




. (4.19)

We are now ready to show (4.16). Since (4.14) and (4.15) hold, the left-hand side
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of (4.16) satisfies





rH
0 rH

1 . . . rH
2ki−1

rH
0

. . .
...

. . . rH
1

rH
0









EH
0 EH

1 . . . EH
2ki−1

EH
0

. . .
...

. . . EH
1

EH
0









l0 l1 . . . l2ki−1

l0
. . .

...
. . . l1

l0





=





0




rH
0 . . . rH

ki−1

. . .
...
rH
0








EH

ki
. . . EH

2ki−1
...

. . .
...

EH
1 . . . EH

ki








l0 . . . lki−1

. . .
...
l0





0 0





=




0 −TH

i (∇ bA
J )TSi

0 0



 , (4.20)

where the first equality follows from a careful blockwise inspection, and the second
equality uses (4.19). Since ∇ bA

J = 0, it follows that (4.16) holds, and thus (4.13)
holds.

5. Relation with tangential interpolation by projection. The gradient
forms of Theorem 3.2 yield the following theorem (proved in [14]) that provides an
important link to tangential interpolation by projection.

Theorem 5.1. At every stationary point of J (2.7) where P̂ and Q̂ are invertible,
we have the following identities

Â = WTAV, B̂ = WTB, Ĉ = CV, WTV = In (5.1)

where W := −Y Q̂−1, V := XP̂−1 and X, Y , P̂ and Q̂ satisfy the Sylvester equations
(3.3,3.4).

If we rewrite the above theorem as a projection problem, then we are constructing
a projector Π := VWT (implying WTV = In) where V and W are given by the
following (transposed) Sylvester equations

(Q̂WT )A+ ÂT (Q̂WT ) + ĈTC = 0, A(V P̂ ) + (V P̂ )ÂT +BB̂T = 0. (5.2)

Note that P̂ and Q̂ can be interpreted as normalizations to ensure that WTV = In.
Rewriting the Sylvester equations (5.2) as

WTA+ (Q̂−1ÂQ̂)WT + (ĈQ̂−1)C = 0, (5.3a)

AV + V (P̂ ÂT P̂−1) +B(B̂T P̂−1) = 0, (5.3b)

shows the relation with the tangential interpolation described in [8]. There it is shown
that when solving two Sylvester equations for the unknowns W,V ∈ R

N×n

WTA− ΣT
µW

T + LTC = 0, (5.4)

AV − V Σσ +BR = 0, (5.5)

and constructing the reduced-order model (of degree n) as follows

(Â, B̂, Ĉ) := ((WTV )−1WTAV, (WTV )−1WTB,CV ), (5.6)
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amounts to a tangential interpolation problem (provided the matrix WTV is invert-
ible). The “interpolation conditions” (Σσ, R) and (Σµ, L) (where Σµ,Σσ ∈ R

n×n,
R ∈ R

m×n and L ∈ R
p×n) are known to uniquely determine the projected system

(Â, B̂, Ĉ) [8]. Moreover, they reproduce exactly the conditions derived in the pre-
vious section since they can be expressed in another coordinate system by applying
invertible transformations of the type

(
Q−1ΣσQ,RQ

)
and

(
P−1ΣµP,LP

)
to the in-

terpolation conditions. This yields transformed matrices V P and WQ but does not
affect the transfer function of the reduced-order model (Â, B̂, Ĉ) (see [8] for more de-
tails). The novelty of the derivation in this paper is the case of higher-order poles: the
tangential interpolation conditions in Theorem 4.5 contain fewer redundant equations
than those that would follow from [8].

6. Low order versus high order poles. In this section we show that H2-
optimal reduced-order models with higher order poles can indeed occur and that
in their neighborhood one can expect the tangential interpolation approach to have
serious numerical difficulties. We start with a lemma that will allow us to demonstrate
this.

Lemma 6.1. A stable n-th degree transfer function Ĥ(s) = Ĉ(sIn − Â)−1B̂ is

a stationary point of the error function ‖Ĥ(s) −H(s)‖2
H2

if and only if H(s) can be
realized as follows

A =

[
Â A12

A21 A22

]
, B =

[
B̂
B2

]
, C =

[
Ĉ C2

]
, (6.1)

where moreover

ÂP̂ + P̂ ÂT + B̂B̂T = 0, A21P̂ +B2B̂
T = 0, (6.2)

Q̂Â+ ÂT Q̂+ ĈT Ĉ = 0, Q̂A12 + ĈTC2 = 0. (6.3)

Proof. The proof follows from the stationarity conditions in Theorem 3.2. The

“if” part is direct: the stationarity conditions hold with X =
[

bP
0

]
and Y = −

[
bQ
0

]
.

For the “only if” part, the assumption that Ĥ(s) is stable and of degree n, guarantees

that the matrices P̂ and Q̂ exist and are invertible. Using Y TX = −P̂ Q̂ one can then
always choose a coordinate system for the realization of H(s) in which

X =

[
P̂
0

]
, Y = −

[
Q̂
0

]

and hence

W = XP̂−1 =

[
In
0

]
, V = −Y Q̂−1 =

[
In
0

]
.

Therefore we have A11 = Â, B1 = B̂, C1 = Ĉ.

The special coordinate system of Lemma 6.1 can be used to construct a transfer
function H(s) for which a given Ĥ(s) is the best H2 norm approximation of H(s).

Theorem 6.2. Let Ĥ(s) = Ĉ(sIn − Â)−1B̂ be a given stable n-th degree trans-
fer function, then there always exists a stable N -th degree transfer function H(s) =
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C(sIN − A)−1B with N > n, for which Ĥ(s) is a stationary point of the H2 error
function.

Proof. It suffices to construct P̂ and Q̂ satisfying the Lyapunov equations in (6.2)

and (6.3), and then choose A21 = −B2B̂
T P̂−1 and A12 = −Q̂−1ĈTC2 to satisfy the

conditions of Lemma 6.1. Notice that this always has a solution since P̂ and Q̂ are
invertible because Ĥ(s) is stable and minimal. In order to guarantee that H(s) is also
stable, one needs to choose the remaining degrees of freedom, i.e. A22, B2 and C2

to satisfy this condition. This can be achieved in several ways, but the simplest one
is to choose A22 stable, and the matrices B2 and C2 sufficiently small. The matrices
A21 = −B2B̂

T P̂−1 and A12 = −Q̂−1ĈTC2 will then also be small, and A will then
be essentially block diagonal and hence stable.

The above theorem does not show that the constructed stationary point is also
a local minimum, but the following example shows that this is not too difficult to
construct. Choose Ĥ(s) = 1/(s− a)3 with a = −1 and a realization

Â =
[

a 1 0
0 a 1
0 0 a

]
, B̂ =

[
0
0
1

]
, Ĉ = [ 1 0 0 ]

then the realization

A =

[
a 1 0 f
0 a 1 e
0 0 a d
d e f g

]
, B =

[
0
0
1
h

]
, C = [ 1 0 0 h ]

with d = −1/2, e = 3/4, f = −3/8, g = −10, h = 1/16, is stable and satisfies
the stationarity conditions of Lemma 6.1. Moreover, 1000 random perturbations of
the stationary point Ĥ(s) clearly indicate that this is a local minimum of the error

function ‖H − Ĥ‖2
H2

.

This example shows that if we aim for an H2-optimal reduced-order model Ĥ(s)
with multiple poles, the model reduction technique that restricts itself to first-order
poles will not be able to produce that solution. However, what happens if we perturb
H(s) or Ĥ(s)? What can we say about the mapping from one to the other? This is

addressed in the following theorem, which shows that if Ĥ(s) is a stationary point of

the H2-distance to H(s), then every sufficiently nearby transfer function Ĥ∆(s) is a
stationary point of a nearby system H∆(s).

Theorem 6.3. Let Ĥ(s) = Ĉ(sIn − Â)−1B̂ and H(s) = C(sIN − A)−1B be

stable and minimal transfer functions such that Ĥ(s) is a stationary point (resp.,

nondegenerate local minimum) of the error function ‖H(s) − Ĥ(s)‖2
H2

. Then, for

every neighborhood U of H(s) in Ratn
p,m, there exists a neighborhood Û of Ĥ(s) in

RatN
p,m such that, for all Ĥ∆(s) ∈ Û , there exists H∆(s) ∈ U for which Ĥ∆(s) is a

stationary point (resp., nondegenerate local minimum) of the H2-distance to H∆(s).
Proof. The proof consists of constructing a continuous mapping ψ from a neigh-

borhood V of Ĥ(s) in Ratn
p,m into RatN

p,m such that Ĥ∆(s) is a stationary point of

the H2-distance to ψ(Ĥ∆(s)) for all Ĥ∆(s) in V. We use Lemma 6.1 to do this.

Let (Â∆, B̂∆, Ĉ∆) be a nearby realization of the nearby system Ĥ∆(s). The solu-

tion P̂∆ and Q̂∆ of the perturbed Lyapunov equations in (6.2) and (6.3), will be

close to P̂ and Q̂ by continuity of the solution of a non-singular system of equations.
For the same reason we can construct nearby solutions A21∆ = −B2B̂

T
∆P̂

−1
∆ and

A12∆ = −Q̂−1
∆ ĈT

∆C2 to finally yield a realization

A∆ =

[
Â∆ A12∆

A21∆ A22

]
, B∆ =

[
B̂∆

B2

]
, C∆ =

[
Ĉ∆ C2

]
,
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for a transfer function H∆(s) =: ψ(Ĥ∆(s)) which is close to H(s) and satisfies the
conditions of Lemma 6.1. Since, in view of its expression (2.1), the H2-norm error
function is locally smooth in terms of the coefficients of system parameters of H(s)

and Ĥ(s), every stationary point that is a nondegenerate local minimum remains a
local minimum for sufficiently small perturbations. The proof therefore applies to
such points.

Theorem 6.3 implies that the set of full-order modelsH(s) that have H2-stationary
reduced-order models with only simple poles, is open and dense in RatN

p,m. This fol-
lows from the following reasoning. From the continuity of the mapping from H(s)

to Ĥ(s) and from the fact that the set of systems with only simple poles is open,
it follows that, around a system H(s) with reduced-order models with only simple
poles, there is a neighborhood of systems with reduced-order models with only simple
poles. If H(s) has a reduced-order model Ĥ(s) with multiple poles, then, because
the “reduction” map is an open map and the set of systems with only simple poles
has an empty interior, it follows that any neighborhood of H(s) contains a full-order
model with a reduced-order model with only simple poles. One could conclude from
this that one needs only consider first-order interpolation techniques, but, when one
approaches a system for which the target function Ĥ(s) has higher order poles, the
first-order conditions obtained from a minimal parameterization, will become linearly
dependent and they will no longer define the reduced-order model accurately.

We illustrate this with the 4th order SISO example given earlier and an iterative
scheme based on a fixed point iteration. One can indeed view (3.3,3.4) and (5.1) as
two coupled systems of equations

(X,Y, P̂ , Q̂) = F (Â, B̂, Ĉ) and (Â, B̂, Ĉ) = G(X,Y, P̂ , Q̂)

for which we have a fixed point (Â, B̂, Ĉ) = G(F (Â, B̂, Ĉ)) at every stationary point

of J (Â, B̂, Ĉ). This suggests an iterative procedure of the type

(X,Y, P̂ , Q̂)i+1 = F (Â, B̂, Ĉ)i, (Â, B̂, Ĉ)i+1 = G(X,Y, P̂ , Q̂)i+1,

which is expected to converge to a nearby fixed point. This is the idea behind the
IRKA algorithm of [10] : one first solves for X,Y, P̂ and Q̂ from the Sylvester and

Lyapunov equations (3.3,3.4), and then one constructs V = XP̂−1, W = −Y Q̂−1

normalized to satisfy WTV = In and yielding Â = WTAV, B̂ = WTB, Ĉ = CV .
If one chooses Â to be diagonal (with diagonal elements λ̂i), the images of the

matrices V and W are then essentially spanned by (A+λ̂iI)
−1B and (AT +λ̂iI)

−1CT ,
respectively (these are vectors since we are in the SISO case). This amounts to

using a minimal representation for the interpolation conditions, where Â is in Jordan
canonical form. But if two values λ̂i tend to each other, the corresponding vectors
will become linearly dependent, and numerical difficulties can be expected. If, on
the other hand, one solves the Sylvester equations in an over-parameterized form,
such problems can be avoided. One can for example use the Schur form for Â to
solve for the matrices X,Y, P̂ and Q̂ at a reasonable additional cost. This does not
correspond to a minimal parameterization but allows for a smooth parameterization
around defective matrices. Our numerical experiments show that the iteration using
the minimal representation is significantly more sensitive, especially as one approaches
the reduced order model with higher order poles, since the matrix Â tends to become
defective.
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Fig. 6.1. Convergence behavior of the log norms of the gradients ∇J bA
, ∇J bB

and ∇J bC
, for

the minimal parameterization (solid lines) and the Schur parameterization (dashed lines)
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In Figure 6.1 we show the log-norms of the gradients ∇J bA
, ∇J bB

and ∇J bC
for

both the minimal Jordan form (solid lines) and the over-parameterized Schur form
representations (dashed lines) of the reduced order model. A reduced order model
obtained from a balanced truncation is used as the initial guess, which explains why
the gradients have small norms since the quality of the initial approximation is quite
good. One can see that the first few steps of the fixed point iteration are comparable
for both methods (the poles are not too close to each other then) but that the Jordan
form iteration loses about seven figures of accuracy as one approaches the optimal
solution (and is hence consistent with convergence to a pole of higher order). The error
function for the Jordan approach was also worse than that of the Schur approach, but
the difference was less explicit. But one should keep in mind that the error functions
are significantly more costly to compute than the gradients, and hence are typically
not computed for large scale systems. This loss of accuracy and erratic behavior can
therefore be significant algorithmically since the gradient norm influences decisions
such as termination of the iteration.

7. The discrete-time case. In this section we consider the equivalent formu-
lation in the discrete-time case. We then have the dynamical systems

{
xk+1 = Axk +Buk

yk = Cxk
and

{
x̂k+1 = Âx̂k + B̂u

ŷk = Ĉx̂k

with transfer functions

H(z) = C(zI −A)−1B, and Ĥ(z) = Ĉ(zI − Â)−1B̂.

The squared H2-norm of the error function E(z) := H(z) − Ĥ(z) is then defined
as

J :=‖ E(z) ‖2
H2

:= tr

∫ ∞

−∞

E(ejω)E(ejω)H dω

2π
= tr

∞∑

k=0

(CeA
k
eBe)(CeA

k
eBe)

T (7.1)
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where (Ae, Be, Ce) defined in (2.4) is again a realization of the error transfer function
E(z). The H2-norm can now be rewritten in terms of the solutions of the Stein
equations

AePeA
T
e +BeB

T
e = Pe, AT

e QeAe + CT
e Ce = Qe (7.2)

as

J = tr
(
CePeC

T
e

)
= tr

(
BT

e QeBe

)
.

Partition again the solutions

Pe :=

[
P X

XT P̂

]
, Qe :=

[
Q Y

Y T Q̂

]
,

to obtain the Stein equations in the form
[
A

Â

] [
P X

XT P̂

] [
AT

ÂT

]
+

[
B

B̂

] [
BT B̂T

]
=

[
P X

XT P̂

]
,

[
AT

ÂT

] [
Q Y

Y T Q̂

] [
A

Â

]
+

[
CT

−ĈT

] [
C − Ĉ

]
=

[
Q Y

Y T Q̂

]
.

Theorem 7.1. The gradients ∇ bA
J , ∇ bB

J and ∇ bC
J of J := ‖E(s)‖2

H2
are given

by

∇ bA
J = 2(Q̂ÂP̂ +Y TAX), ∇ bB

J = 2(Q̂B̂+Y TB), ∇ bC
J = 2(ĈP̂ −CX), (7.3)

where

ATY Â− CT Ĉ = Y, ÂT Q̂Â+ ĈT Ĉ = Q̂, (7.4)

ÂXTAT + B̂BT = XT , ÂP̂ ÂT + B̂B̂T = P̂ . (7.5)

Setting the gradient of J to zero yields the stationarity conditions derived in [5].
These are the discrete-time counterpart of Wilson’s conditions (see [16] or Theo-
rem 3.2). Again, at a stationary point (where all gradients are zero) we have that the
projection matrices

W := −Y Q̂−1, V := XP̂−1

satisfy Â = WTAV , B̂ = WTB, Ĉ = CV , WTV = I and the Sylvester equations
{

ÂT (Q̂WT )A+ ĈTC = (Q̂WT )

A(V P̂ )ÂT +BB̂T = (V P̂ )

indicating that we are solving a tangential interpolation problem in the inverses of
the eigenvalues of Â, and this both left and right.

The tangential interpolation conditions for the discrete-time case are treated in
much the same way for the continuous-time case. We give here immediately the
interpolation conditions in terms of the transfer function H∗(z) := z−1HT (z−1) :

H∗(z) := BT (I − zAT )−1CT = −

∞∑

i=0

(λ− z)iBTAT i
(λAT − I)−i−1CT .
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Since the proof is essentially the same as the one for the continuous-time case, it is
omitted.

Theorem 7.2. Let Ĥ(z) =
∑ℓ

i=1 Ĥi(z), Ĥi(z) := Ĉi(zI − Âi)
−1B̂H

i where

{(Âi, B̂
H
i , Ĉi) : i = 1, . . . , ℓ} is a self-conjugate set and Âi is just one Jordan block of

size ki associated with eigenvalue λ̂i, and where λ̂−1
i is not a pole of H(z) or Ĥ(z).

Then with

b̂i(z)
H :=

[
(λ̂i − z)ki−1 . . . (λ̂i − z) 1

]
B̂H

i ,

ĉi(z) := Ĉi

[
1 (λ̂i − z) . . . (λ̂i − z)ki−1

]T

,

we have

[HT
∗ (z) − ĤT

∗ (z)]ĉi(z) = O(λ̂i − z)ki , (7.6)

b̂i(z)
H [HT

∗ (z) − ĤT
∗ (z)] = O(λ̂i − z)ki , (7.7)

b̂i(z)
H [HT

∗ (z) − ĤT
∗ (z)]ĉi(z) = O(λ̂i − z)2ki , (7.8)

where Si, Ti are as defined in (4.2).
In the case of first-order poles, the conditions reduce to the result derived in [5]

in an equivalent form.

8. Conclusion. In this paper, we have characterized the stationary points of
the H2-norm approximation error ‖H(s) − Ĥ(s)‖2

H2
in the MIMO case, with the

reduced-order system Ĥ(s) in Jordan canonical form. The stationarity conditions
take the form of tangential interpolation conditions—whose degree depend on the
size of the Jordan blocks—written in terms of the Jordan parameters of Ĥ(s). The
conditions are thus implicit, which calls for iterative algorithms. However, we have
shown that the Jordan-based approach becomes ill-conditioned in the neighborhood
of target transfer functions Ĥ(s) with higher-order poles. It is therefore more robust
to use the interpolation conditions in the Sylvester equation form (Theorem 5.1) since

the H2 norm is smooth in the parameters (Â, B̂, Ĉ) of these equations. The case of
discrete-time systems has also been considered.

9. Acknowledgment. The authors would like to thank Samuel Melchior for
performing the computations for the example in this paper and the anonymous referees
for their constructive comments.

REFERENCES

[1] P. R. Aigrain and E. M. Williams Synthesis of n-reactance networks for desired transient
response. J. Appl. Phys., 20:597-600, 1949.

[2] A. C. Antoulas. Approximation of Large-Scale Dynamical Systems. Siam Publications,
Philadelphia (2005).

[3] J. Ball, I. Gohberg and L. Rodman. Interpolation of Rational Matrix Functions, Birkhauser
Verlag (1990).

[4] C. Beattie and S. Gugercin. Krylov-based minimization for optimal H2 model reduction. Pro-
ceedings 46th IEEE Conference on Decision and Control, 2007.



ON H2-OPTIMAL APPROXIMATION OF LINEAR MIMO SYSTEMS 17

[5] A. Bunse-Gerstner, D. Kubalinska, G. Vossen, and D. Wilczek. H2-norm optimal model reduc-
tion for large-scale discrete dynamical MIMO systems. Internal Report Bremen University,
2007.

[6] C. Byrnes and P. Falb. Applications of algebraic geometry in systems theory. American Journal
of Mathematics, 101(2):337-363, April 1979.

[7] K. Gallivan, A. Vandendorpe, and P. Van Dooren. Sylvester equations and projection-based
model reduction. J. Comp. Appl. Math., 162:213-229, 2004.

[8] K. Gallivan, A. Vandendorpe, and P. Van Dooren. Model reduction of MIMO systems via
tangential interpolation. SIAM J. Matrix Anal. Appl., 26(2):328-349, 2004.

[9] S. Gugercin. Projection methods for model reduction of large-scale linear dynamical systems.
PhD Thesis, ECE Dept., Rice Univ., December 2002.

[10] S. Gugercin, A. Antoulas and C. Beattie. H2 model reduction for large-scale linear dynamical
systems. SIAM J. Matrix Anal. Appl., 30:609-638, 2008.

[11] Y. Halevi. Projection properties of the L2 optimal reduced order model. Int. J. Control,
79(4):298-310, 2006.

[12] D. C. Hyland and D. S. Bernstein. The optimal projection equations and the relationships
between the methods of Wilson, Skelton and Moore. IEEE Trans. Aut. Contr., AC30:1201-
1211, 1985.

[13] L. Meier and D. Luenberger. Approximation of linear constant systems. IEEE Trans. Aut.
Contr., 12:585-588, 1967.

[14] P. Van Dooren, K. Gallivan and P.-A. Absil. H2-optimal model reduction of MIMO systems.
Appl. Math. Lett., 21(12):1267-1273, 2008.

[15] P. Van Dooren, K. Gallivan and P.-A. Absil. H2-optimal approximation of MIMO linear
dynamical systems. ArXiv paper arXiv:0807.4807v1, July 2008.

[16] D. A. Wilson, Optimum solution of model reduction problem, Proc. Inst. Elec. Eng.,
117:11611165, 1970.

[17] J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press (1965).


