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1.1 Description of the problem

FG algorithms. FG algorithms are generalizations of the well-known
QR algorithm for calculating the eigenvalues of a matrix. Let F and G
two closed subgroups of the general linear group GLn(IF ) (IF = IR or
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C). Assuming F ∩ G = {I}, each matrix A ∈ GLn(IF ) has at most one
factorization of the form A = FG, where F ∈ F and G ∈ G. Starting
from a given matrix B0 ∈ GLn(IF ), the FG algorithm produces a sequence
of matrices Bm, m = 1, 2, . . ., as follows: Bi is factored into a product
Bi = Fi+1Gi+1 and this product is reversed to define Bi+1 := Gi+1Fi+1.
Thus

Bi = Fi+1Gi+1 ⇒ Bi+1 := Gi+1Fi+1. (1.1)

What is typically expected from the FG algorithm is that the sequence
of iterates {Bi}i≥1 converges to a matrix whose diagonal entries are the
eigenvalues of B0. The sequence is indeed a sequence of similarity transfor-
mations, that is

Bi+1 = F
−1
i+1BiFi+1 = Gi+1BiG

−1
i+1. (1.2)

A key property of the algorithm is

Bm = F−1(m)B0F(m) = G(m)B0G
−1
(m) (1.3)

Bm0 = F(m)G(m) (1.4)

where the notation F(m) stands for the product FmFm−1 . . . F1.
Shifted FG algorithms. In general, some iterate Bi of the algorithm
may fail to have an FG factorization, in which case the algorithm breaks
down. In addition, even if the algorithm converges, the convergence may
be very slow. These two reasons motivate the introduction of shift policies
in the standard FG algorithm. The simplest modification is of the form

Bi − σiI = Fi+1Gi+1 ⇒ Bi+1 := Gi+1Fi+1 + σiI

which still ensures the self-similarity Bi+1 = F
−1
i+1BiFi+1 = Gi+1BiG

−1
i+1.

More general shift policies allow a polynomial

pi(Bi) =
∏

j

(Bi − σij I)

to replace Bi in the standard algorithm. This allows for several steps of
the classic FG algorithm to be concatenated in one step of the generalized
FG algorithm.
Shifted FG algorithms typically lead to improved convergence in the

situations where the FG algorithm converges. In the situations where the
FG algorithm does not converge, shift policies may be used to achieve a
continuation of the algorithm, by avoiding certain singularities ([6]).
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Open problem. The analysis of shifted algorithms and a systematic de-
sign of shift policies to improve convergence of the FG algorithms are essen-
tially open problems in numerical analysis (See Section 4 for some existing
results).

1.2 Reformulation of the problem

Self-similar flows. Self-similar flows are the solutions of differential equa-
tions that can be associated with FG algorithms because of the Lie group
structure of the closed subgroups of GLn(IF ). Under (weak) extra con-
ditions, self-similar flows continuously interpolate the solution of the FG
algorithm, that is, the self-similar flow coincides at integer times with the
iterates of the FG algorithm.
Let Λ(F) and Λ(G) be the Lie algebras associated with the Lie groups F

and G. Suppose that IF n×n = Λ(F)⊕Λ(G). Then every matrixM ∈ IF n×n

can be expressed uniquely as a sum

M = ρ(M) + ν(M)

where ρ(M) ∈ Λ(F) and ν(M) ∈ Λ(G). Let f(.) a function defined on
sp(B) where sp(B) denotes the spectrum of B (this means f(.) and its n
first derivatives must be defined on an open set containing sp(B)). Then
the solution of the differential equation

Ḃ = [B, ρ(f(B))] = [ν(f(B)), B], B(0) = B0 (1.5)

is self-similar, i.e. it satisfies

B(t) = F (t)−1B0F (t) = G(t)B0G(t)
−1, (1.6)

where F and G are solutions of

Ḟ = Fρ(f(B(t)), F (0) = I

and
Ġ = Gν(f(B(t)), G(0) = I.

The key property satisfied by these differential equations is

exp(f(B0)t) = F (t)G(t). (1.7)

Property (1.6) is the continuous analogue of (1.3) while (1.7) is the contin-
uous analogue of (1.4). The interpolating property of self-similar flows is
obtained by choosing f(·) = log(·).
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In shifted FG algorithms, the property (1.4) is replaced by a more
general equation

pm(B0) . . . p2(B0)p1(B0) = F(m)G(m),

where the successive polynomials pi are determined by the shift policy.
The continuous analogue is obtained by switching at integer times between
different functions fi(·) = log(pi(·)). The shift policy is typically a feedback
process since the shift is defined at iteration i as a function of the current
“state” Bi. As a consequence, a shift policy defines a feedback control
strategy for the nonlinear differential equation (1.5), the control variable
being the function f . If the control f is switched at integer times based on
some switching logic, a hybrid feedback control system is associated to the
shifted FG algorithm. This reformulation leads to open questions of the
following type:

• (Analysis) What are the limit sets and the convergence and robustness
properties of the differential equation (1.5) ?

• (Synthesis) Design a switching controller which guarantees the ab-
sence of finite escape time (continuous analogue of the FG algorithm
breaking down after a finite number of iterations) and ensures con-
vergence to a desired equilibrium (stabilization problem).

1.3 Motivation and history of the problem

The existence of continuous analogues of matrix algorithms was noticed in
early developments of numerical analysis (Rutishauser himself [5] derived
a continuous analogue of the quotient-difference algorithm, a predecessor
of the QR algorithm). The complete connection between (shifted) FG
algorithms and their corresponding self-similar flows is more recent and is
due to Watkins and Elsner [6].

The potential importance of such connections was brought to the atten-
tion of the control community by Brockett [2, 3] who established the connec-
tion between the “double-bracket” flow and several algorithmic problems,
including the QR algorithm. This line of research has quickly developed
over the last few years and is reported in a recent book by Helmke and
Moore [4]. The double-bracket flow reveals the gradient nature of the self-
similar flow associated with the QR algorithm (for symmetric matrices with
distinct eigenvalues), thereby connecting FG algorithms to other optimiza-
tion problems defined on Riemannian manifolds.
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1.4 Available results and desired extensions

The QR like algorithms always start with a preliminary reduction to a ma-
trix B1 = F

−1
1 B0F1 = G1B0G

−1
1 in so-called condensed form. For the QR

algorithm his e.g. a Hessenberg form for general matrices and a tridiagonal
form for symmetric or Hermitian matrices. These condensed forms are very
useful since they allow to estimate a particular eigenvalue, which is then
used as shift. In the case of real matrices one uses typically second order
polynomial with two complex conjugate shifts. This procedure works very
well for tridiagonal matrices where appropriate shift techniques have been
proved to yield global and/or cubic convergence [7]. For Hessenberg ma-
trices the results are already less complete and for the more general class
of FG algorithms there are no solid results available : for some shifts, the
algorithm may even break down because the factorization (1.1) may not
exist.
So far, the connections between matrix algorithms and their continuous-

time analogues were always made a posteriori and did not lead to results
of direct use for numerical analysts. The situation may be different in
the study of shift policies. The geometric study of the double bracket
flow [1, 3] indicates that the current developments of modern mechanics
may help understanding the dynamics of self-similar flows. In addition, the
control of hybrid systems is a quickly expanding research area including the
hybrid control of continuous-time systems. For these reasons, the authors
have some hope that the study of shift policies from a control theoretic
perspective will contribute to the field of numerical analysis.

Acknowledgement

During the reviewing process of this manuscript, we were pointed out
that Uwe Helmke (Würzburg University) had presented similar ideas at
the MTNS conference of 1996 in St. Louis, but these were not reported in
conference proceedings. He mentioned the issue of controllability of shifted
QR algorithms, which we believe to be an important one.
This paper presents research results of the Belgian Programme on In-

teruniversity Poles of Attraction, initiated by the Belgian State, Prime
Minister’s Office for Science, Technology and Culture. The scientific re-
sponsibility rests with its authors.



6 QR SHIFTS AND FEEDBACK CONTROL



Bibliography

[1] A.M. Bloch, R.W. Brockett, and T. Ratiu, “Completely Integrable Gra-
dient Flows”, Communications in Mathematical Physics, 147, pp. 57-74
(1992).

[2] R.W. Brockett, “Dynamical Systems That Sort Lists, Diagonalize Ma-
trices and Solve Linear Programming Problems”, Linear Algebra and
its Applications, 146, pp. 79-91 (1991).

[3] R.W. Brockett, “Differential geometry and the design of gradient algo-
rithms”, Proc. Symp. Pure Math., AMS 54, part I, pp. 69-92.

[4] U. Helmke and J. B. Moore, Optimization and Dynamical Systems,
Springer-Verlag, London, 1994.

[5] H. Rutishauser, “Ein infinitesimales Analogon zum Quotienten-
Differenzen-Algorithmus”, Arch. Math. 5, pp. 132-137 (1954).

[6] D. Watkins and L. Elsner, “Self-Similar Flows”, Linear Algebra and its
Applications, 110, pp. 213-242 (1988).

[7] J. H. Wilkinson, The Algebraic Eiegenvalue Problem, Oxford Univ.
Press, Oxford, 1965.

7


