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Abstract

In this paper, we extend a known characterization of the
stability radius of a standard eigenvalue problem to the
generalized eigenvalue problem as well as that of cyclic
pencils occuring in periodic systems. We also extend
some of these results to norms different than the 2-norm.

1 Introduction

The complex structured stability radius measures the
ability of a matrix to preserve its stability under com-
plex structured pertubations. Consider a partitioning of
the complex plane C into two disjoint sets Cg and Cb
such that Cg is open, i.e., C = Cg ∪ Cb. A matrix is
called Cg-stable if its spectrum Λ(.) is contained in Cg.
The usual sets Cg are the open unit disk and the open
left complex plane (stability in discret/continuous time)
but it can also be chosen, for example, as a disk of radius
R (R < 1) or the left halfspace {z : Re(z) < α}, α < 0
(strong stability in discrete/continuous time). Let us
denote the singular values of a p × m matrix, ordered
nonincreasingly, by σk(.), k = 1, 2, ...,min{p,m}. The
complex structured stability radius of a matrix triple
(A,B,C) ∈ Cn×n × Cn×m × Cp×n (with A Cg-stable),
with respect to the p-norm, can be defined [1] as

rC(A,B,C) = inf
∆∈Cm×p

{‖∆‖p : Λ(A+B∆C) 6⊂ Cg} (1)

where we denote successively the matrix p-norm and the
vector p-norm by

‖∆‖p := sup
x6=0

‖∆x‖p
‖x‖p

(2)

and

‖x‖p := (|x1|p + · · ·+ |xn|p)1/p . (3)

We also define the vector and matrix ∞-norms as

‖x‖∞ = max
i
|xi|, ‖A‖∞ = max

i=1,...,m

n∑

j=1

|aij |. (4)

When B = I and C = I , rC(A, I, I) is usually abbre-
viated as rC(A) and called the (unstructured) stability
radius of A.

By continuity, we can easily rewrite (1) as

rC(A,B,C) = inf
∆∈Cm×p

{‖∆‖p : Λ(A+B∆C) ∩ ∂Cg 6= ∅}

= inf
λ∈∂Cg

[
inf

∆∈Cm×p
{‖∆‖p:det(λI−A−B∆C)=0}

]

= inf
λ∈∂Cg

[
inf

∆∈Cm×p
{‖∆‖p:det(I−∆C(λI−A)−1B)=0}

]
.

(5)

Hence the key issue in the computation of the stability
radius is to solve the following linear algebra problem:
given M ∈ Cp×m, compute

inf
∆∈Cm×p

{‖∆‖p : det(I −∆M) = 0}.

This problem is solved by the following lemma:

Lemma 1

inf
∆∈Cm×p

{‖∆‖p : det(I −∆M) = 0} = ‖M‖−1p

Proof: We first show that the p-norm of any matrix ∆
satisfying det(I−∆M) = 0 is greater or equal to ‖M‖−1p .
Indeed, there exists a p-unit vector v such that ∆Mv = v
and therefore

1 = ‖v‖p ≤ ‖∆‖p‖M‖p‖v‖p = ‖∆‖p‖M‖p.

Furthermore, such a bound can always be obtained by a
rank 1 matrix ∆∗ = wx∗: let us consider a p-unit vector
w such that ‖M‖p = ‖Mw‖p =: ‖y‖p. Then we define
the vector x by

xi =





|yi|p
yi ‖M‖pp

if p 6=∞

δij if p =∞
(6)



where j is the index of a component of x such that |xj | =
‖x‖∞.

The q-norm of x (with
1

p
+
1

q
= 1) is equal to

1

‖M‖p
.

Finally, we obtain

‖∆‖p = sup
z 6=0

‖w(x∗z)‖p
‖z‖p

≤ sup
z 6=0

‖w‖p‖x‖q‖z‖p
‖z‖p

=
1

‖M‖p

and

(I −∆M)w = w −∆y = w − w (x∗y) = 0.
�

Combining lemma 1 with equation (5), it follows that
we have to solve

infλ∈∂Cg{‖C(λI −A)−1B‖−1p }

=
{
supλ∈∂Cg ‖C(λI −A)−1B‖−1p

}−1

Since C(λI − A)−1B is a rational matrix function in λ,
this is a non-convex optimisation problem on ∂Cg in or-
der to compute the stability radius via this characteri-
zation. This computation often leads to high difficulties
and its complexity can even be non polynomial for cer-
tain norms (see [3]). In section 4, we point out some fast
algorithms for solving this problem for the 2-norm.

2 Generalized eigenvalue problems

In section 1, we described the basic standard eigenvalue
problem and the associated optimisation. In this section,
we discuss generalized eigenvalue problems and present
some new results for their resolution.

We are now interested in perturbations ∆E and ∆A
on E and A which leads to Cg-instability of the matrix
λE −A+λ∆E−∆A. By similar developments as in (5),
we obtain that ∆λ := λ∆E −∆A has to verify

det(I +∆λMλ) = 0 (7)

with

Mλ = (λE −A)−1. (8)

We already know, from the proof of lemma 1, that

‖∆λ‖p ≥ ‖Mλ‖−1p (9)

and that this upper bound is attained by a rank 1 matrix
∆∗. But what can be said about ∆E and ∆A? Define
the matrix

∆ = [∆E ; ∆A] . (10)

The following theorem then gives similar results to
lemma 1:

Theorem 1 inf∆∈Cn×2n {‖∆‖p : det(I +∆Mλ) = 0} =
‖Mλ‖−1p
p
√
1 + |λ|p

p 6=∞; ‖Mλ‖−1∞
max(|λ|, 1) p =∞. (11)

Proof: We prove this theorem for p 6= ∞. The case
p = ∞ can be treated in a similar manner. We deduce
from

∆λ = [∆E ; ∆A]

[
λI

−I

]
(12)

that

‖[∆E ; ∆A]‖p ≥
‖∆λ‖2

p
√
1 + |λ|p

≥ ‖Mλ‖−1p
p
√
1 + |λ|p

. (13)

Furthermore, such a lower bound is attained for

∆E =
λ|λ|p−2∆∗
1 + |λ|p and ∆A =

−∆∗
1 + |λ|p . (14)

Indeed, we have

‖[∆E∆A]‖p = sup
x1,x2 6=0

∥∥∥∥∆∗
λ|λ|p−2x1 − x2
1 + |λ|p

∥∥∥∥
p

p
√
‖x1‖pp + ‖x2‖pp

=
1

1 + |λ|p sup
x1,x2 6=0

∥∥w
(
λ|λ|p−2x∗x1 − x∗x2

)∥∥
p

p
√
‖x1‖pp + ‖x2‖pp

≤ 1

1 + |λ|p sup
x1,x2 6=0

‖w‖p‖x‖q‖λ|λ|p−2x1 − x2‖p
p
√
‖x1‖pp + ‖x2‖pp

=
1

(1 + |λ|p)‖Mλ‖p
sup

x1,x2 6=0

‖λ|λ|p−2x1 − x2‖p
p
√
‖x1‖pp + ‖x2‖pp

=
1

(1 + |λ|p)‖Mλ‖p
q
√
|λ|p + 1

=
1

p
√
1 + |λ|p‖Mλ‖p

�

We easily deduce the following corollary from the rank
of the solution:

Corollary 2

inf
∆∈Cn×2n

{‖∆‖F : det(I +∆Mλ) = 0} =
‖Mλ‖2√
1 + |λ|2

Remark 3 The bound (11) can e.g. be rewritten as

‖(ejωE −A)−1‖−1p
p
√
2

: discrete time stability

‖(jωE −A)−1‖−1p
p
√
1 + ωp

: continuous time stability

‖(rejωE −A)−1‖−1p
p
√
1 + rp

: discrete time strong stability

‖((α+ jω)E −A)−1‖−1p
p
√
1 + (α2 + ω2)p/2

: cont. time strong stability



Remark 4 For the discrete time stability, the optimal
perturbations ∆E and ∆A are independant of the chosen
norm:

∆E =
λ∆∗

2
and ∆A =

−∆∗
2
.

The perturbations ∆E and ∆A have sometimes a par-
ticular structure. One is e.g. interested in Cg-stability
of the matrix

λ (E + F∆EG)− (A+B∆AC) . (15)

By similar developments to those in (5), we obtain that

det [(λE −A) + λF∆EG−B∆AC] = 0
m

det
[
I + (λE −A)−1λF∆EG− (λE −A)−1B∆AC

]
= 0

m

det

[
I + (λE −A)−1 [λF,−B]

[
∆E

∆A

] [
G

C

]]
= 0

m

det

[
I +

[
∆E

∆A

] [
G

C

]
(λE −A)−1 [λF,−B]

]
= 0.

Once again, the key issue in the computation of the
stability radius is to solve a minimization problem: given
Mλ ∈ Cp×n, compute

inf
∆∈D
{‖∆‖p : det(I −∆Mλ) = 0} (16)

with

D = {∆ : ∆ =
[
∆E

∆A

]
}

This minimization is solved in [2] for the 2-norm by
the following lemma:

Lemma 5

inf∆∈D {‖∆‖2 : det(I −∆Mλ) = 0}

=

(
infγ>0

∥∥∥∥
[
M11 γM12
γ−1M12 M22

]∥∥∥∥
2

)−1

where

M =

[
M11 M12
M21 M22

]
(17)

is partitioned conformably to ∆.

Remark 6 This infimum is reached for a real non
zero parameter γ if M12 and M21 are not zero.

Remark 7 This lemma can not be extended to arbitrary
p-norm as shown by the following 2×2 counter-example:

M =

[
1 1
−1 1

]
; min

γ>0

∥∥∥∥∥∥



1 γ
−1
γ
1



∥∥∥∥∥∥
1

= ‖M‖1 = 2

and

inf
∆∈D

{‖∆‖1 : det(I −∆Mλ) = 0} =
√
2

2
.

3 Discrete-time periodic systems

We now consider the periodically time-varying system

Ekxk+1 = Akxk , k ∈ Z0 (18)

where Z is the set of integers. Let us denote by K the
smallest positive integer for which Ek = Ek+K , Ak =
Ak+K , ∀k ∈ Z and by Z the block left shift matrix of
size Kn×Kn:

Z =




In
In
. . .

In


 .

We use the standard notation In for the identity matrix
of size n and Diag((Ai)i=1,...,K) to represent the block
diagonal matrix whose elements are the matricesAi. The
underlying eigenvalue problem now involves the matrix

M−1 = λE−A = λ Diag((Ei)i=1,...,K)−Diag((Ai)i=1,...,K) Z.
We are interested in perturbations ∆E and ∆A having
the same structure as E and A. By a similar reasoning
as in (5), we obtain that λ∆E −∆A has to verify

det(I + (λ∆E −∆A)M) = 0.

The following theorem is the periodic version of lemma
5 and solves the minimization problem

inf
∆∈D
{‖∆‖2 : det(I + (λ∆E −∆A)M) = 0}

with

D = {∆ : ∆ = Diag(E1, ..., EK , A1, ..., AK)} .

Theorem 8

inf∆∈D {‖∆‖2 : det(I + (λ∆E −∆A)M) = 0}

= (minei,ai ‖D1(ei, ai)MD2(ei, ai)‖2)
−1

= maxei,ai
{
σmin

(
D2(ei, ai)

−1M−1D1(ei, ai)
−1
)}

where

D1(ei, ai) = Diag

((√
e2i + a

2
1+(i mod K)

In

)

i=1,...,K

)

=: Diag
(
(αiIn)i=1,...,K

)
(19)

D2(ei, ai) = Diag

((√
e−2i + a

−2
i In

)

i=1,...,K

)
;

=: Diag
(
(βiIn)i=1,...,K

)
(20)

e1 = 1. (21)



Proof: To reduce the conservatism caused by the struc-
ture of ∆, we resort to the widely used technique of scal-
ing. It turns out that this scaling completely eliminates
the conservatism. Let us choose a block diagonal matrix
D of the form

D = Diag(e1In, ..., eKIn, a1In, ..., aKIn),

ei, ai ∈ R+ ∪ {∞}
commuting with ∆. We then have that

det(I + (λ∆E −∆A)M) = 0
m

det

(
I +

[
λIKn −IKn

]
∆

[
IKn
IKnZ

]
M

)
= 0

m

det

(
I +∆D

[
IKn
IKnZ

]
M
[
λIKn −IKn

]
D−1

)
= 0.

We deduce, from lemma 1, that

‖∆‖2 ≥
∥∥∥∥D
[
IKn
IKnZ

]
M
[
λIKn −IKn

]
D−1

∥∥∥∥
−1

2

=

∥∥∥∥
[
Diag ((eiIn)i=1,...,K)
Diag ((aiIn)i=1,...,K)Z

]
M

[
Diag

(
(λe−1i In)i=1,...,K

)

Diag
(
(−a−1i In)i=1,...,K

)
]T ∥∥∥∥∥

−1

2

= ‖UD1(ei, ai)MD2(ei, ai)V ∗‖−12
for some isometries U and V . We conclude that

‖∆‖2 ≥ sup
ei,ai

‖D1(ei, ai)MD2(ei, ai)‖−12

= sup
ei,ai

{
σmin

(
D2(ei, ai)

−1M−1D1(ei, ai)
−1
)}

We now show that the supremum

sup
ei,ai

{
σmin

(
D2(ei, ai)

−1M−1D1(ei, ai)
−1
)}

is attained for real non zero parameters êi and âi.

1. Let us first show that no ei, at the optimum, can
grow unboundedly. The structure ofM−1 = λE −A
implies the following relation to avoid a zero singular
value

(ei →∞) =⇒ (e1+(i mod K) →∞). (22)

Indeed, let us suppose that ei tends to infinity
and e1+(i mod K) does not grow unboundedly. The

(i + 1, i) scaled block of M−1 is then equal to zero
and therefore none of the (j, j) (j = 1, ...,K) scaled
blocks can be equal to zero. We then deduce recur-
sively (from the non zero (j, j) (j = i, ..., 1) scaled
blocks) that ei−1, ..., e1 grow to infinity. This is in
contradiction with e1 = 1. Hence we have proved
that (ei → ∞) implies (e1 → ∞), which once again
contradicts e1 = 1.

2. Therefore, no ai can grow unboundedly at the opti-
mum since

(ai →∞) =⇒ (ei →∞) or (epi−1q →∞) (23)

where we define paq by

paq = (a− 1) mod K + 1.

3. By a similar reasoning, we can prove that neither ei
nor ai can tend to 0 at the optimum.

Let us finally construct a matrix ∆ such that

‖∆‖2 = σmin
(
D2(êi, âi)

−1M−1D1(êi, âi)
−1
)
=: σ.

We can choose a pair of left and right singular vectors

u =



u1
...
uK


 and v =



v1
...
vK


 corresponding to σ such

that [2], by optimality of the parameters ei and ai, that,
u and v satisfy

u∗
∂
(
D2(ei, ai)

−1M−1D1(ei, ai)
−1
)

∂ei
(êi, âi)v = 0 (24)

and

u∗
∂
(
D2(ei, ai)

−1M−1D1(ei, ai)
−1
)

∂ai
(êi, âi)v = 0. (25)

Because of the special structure of D1, D2 and M
−1,

these equations can be rewritten as

‖ui‖2
‖vi‖2

=
êi
2
βi

αi
(26)

and

‖ui‖2
‖vpi−1q‖2

=
âi
2
βi

αpi−1q
. (27)

We define ∆Ei and ∆Ai by

∆Ei = −
λ σ αi

βi êi
2 ‖vi‖22

uiv
∗
i ; (28)

∆Ai =
σ αpi−1q

βi âi
2 ‖vpi−1q‖22

uiv
∗
pi−1q. (29)

We deduce from (26) and (27) that

‖∆Ei‖2 = ‖∆Ai‖2 = σ

and therefore

‖∆‖2 = max (‖∆Ei‖2, ‖∆Ai‖2) = σ.



Furthermore, the matrix I + (λ∆E −∆A)M is singular
since

(
I +∆D

[
IKn
IKnZ

]
M
[
λIKn −IKn

]
D−1

)
V u

= (I +∆UD1(êi, âi)MD2(êi, âi)V
∗)V u

= V u+∆UD1(êi, âi)D2(êi, âi)u

= V u+
1

σ
∆Uv.

Moreover, we have

V =


 Diag

(
(λêi

−1
In)i=1,...,K

)

Diag
(
(−âi−1In)i=1,...,K

)

D2(êi, âi)−1 (30)

and

U =

[
Diag ((êiIn)i=1,...,K)
Diag ((âiIn)i=1,...,K)Z

]
D1(êi, âi)

−1. (31)

Therefore, V u+
1

σ
∆Uv can be rewritten as




λê1
−1
β−11 u1
...

λêK
−1
β−1K uK

−â1−1β−11 u1
−â2−1β−12 u2

...

−âK−1β−1K uK




+
∆

σ




ê1α
−1
1 v1
...

êKα
−1
K vK

â1α
−1
K vK

â2α
−1
1 v1
...

âKα
−1
K−1vK−1




which is equal to the zero vector by (26), (27), (28) and
(29). This equality completes the proof.

�

Remark 9 Similar results can be obtained for time-
invariant matrices A and E with periodic perturbations.
The corresponding version of theorem 8 is the following:

Theorem 10

inf∆∈D

{
‖∆‖2 : det(I + (λ∆E −∆A) (λE −A)−1) = 0

}

=

∥∥∥(λE −A)−1
∥∥∥
−1

2

2
=
σmin (λE −A)

2
.

We observe that no diagonal scalings are needed any
more. This remark is particularly relevant for recur-
rences of the type Exk+1 = Axk which under rounding
errors are known to satisfy exactly

(E +∆Ek+1)xk+1 = (A+∆Ak)xk

where x denotes the rounded version of the vector x.

Remark 11 Similar results can also be obtained for the
2-norm of [∆E , ∆A] and time-variant matrices Ei and
Ai

Theorem 12

inf∆E,∆A

{
‖[∆E , ∆A]‖2 : det(I + (λ∆E −∆A) (λE −A)−1) = 0

}

=
(
mindi

∥∥∥D1(di) (λE −A)−1D2(di)
∥∥∥
2

)−1

= maxdi
{
σmin

(
D2(di)

−1 (λE −A)D1(di)−1
)}

where

D1(di) = Diag

((√
d2i + d

2
i mod K+1

In

)
i=1,...,K

)

(32)

D2(di) =: Diag
((
d−1i In

)
i=1,...,K

)
; (33)

d1 = 1 (34)

or time-invariant matrices E and A with periodic per-
turbations:

Theorem 13

inf∆E,∆A

{
‖[∆E , ∆A]‖2 : det(I + (λ∆E −∆A) (λE −A)−1) = 0

}

=

∥∥∥(λE −A)−1
∥∥∥
−1

2√
2

=
σmin (λE −A)√

2
.

4 Numerical algorithms

In earlier sections, we derived analytic expressions for
the stability radii of several generalizations of the classi-
cal eigenvalue problem. These expressions were in terms
of norms of a matrix function H(λ) where λ varied over
∂Cg , the boundary between the so called stable and un-
stable regions of the complex plane. This is in fact a non
convex optimization problem but for the specific case of
the 2-norm, there are quite performant algorithms that
find the global optimum for such a problem. We illus-
trate the general procedure for the discrete time strong
stability:

inf
ω

∥∥(rejωE −A)−1
∥∥−1
2√

1 + r2
=

r√
1 + r2

(
sup
ω

∥∥∥∥(ejωE −
A

r
)−1
∥∥∥∥
2

)−1
.

The function
∥∥∥∥(ejωE −

A

r
)−1
∥∥∥∥
2

= σmax

(
ejωE − A

r

)−1

is a non convex function of ω but it is easy to test if a
particular value of ξ is below the optimal value

ξmax = sup
ω
σmax

(
ejωE − A

r

)−1
. (35)

It turns out [4] that (ejθE − A
r
)−1 has singular value ξ

iff ejθ is an eigenvalue of

λ




E
1

ξ
I

0
A∗

r


−




A

r
0

1

ξ
I E∗


 .



This correspondance between the generalized singular
values of a transfer matrix along the unit circle and the
generalized unit norm eigenvalues of a related Hamilto-
nian matrix yields a simple bisection algorithm [4] to
compute the above maximization. This algorithm, along
with additional information, then leads to a quadrati-
cally convergent algorithm.
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