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a b s t r a c t

In thisworkwe reduce the computation of the singular values of a general product/quotient
of matrices to the computation of the singular values of an upper triangular semiseparable
matrix. Compared to the reduction into a bidiagonal matrix the reduction into
semiseparable form exhibits a nested subspace iteration. Hence, when there are large gaps
between the singular values, these gaps manifest themselves already during the reduction
algorithm in contrast to the bidiagonal case.
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1. Introduction

The Singular Value Decomposition (SVD) of matrices is a widely used tool. The Golub–Kahan algorithm [1], used to find
the SVD of a matrix, first reduces the matrix to bidiagonal form using orthogonal transformations. Then the QR method is
performed to reduce the bidiagonalmatrix to a diagonal one. Vandebril et al. presented a similarmethod in [2]which uses an
upper triangular semiseparablematrix as an intermediatematrix. Here anupper triangularmatrix S is called semiseparable if
all submatrices taken out of the upper triangular part have rank atmost 1. An advantage of the approach using semiseparable
matrices is that after a few steps of the reduction, large singular values and gaps in the spectrum are often revealed.
Consider a matrix P of the following form:

P = As11 A
s2
2 · · · A

sk
k (1)

with si ∈ {1,−1}. There exist several algorithms for computing the SVD of P without explicitly computing the product.
There are some algorithms which compute the SVD of a product of two or three matrices, such as those of Heath, Laub,
Paige and Ward in [3] and Ewerbring, Luk, Bojanczyk and Van Dooren in [4]. These algorithms use a Jacobi-type method to
compute the SVD because that easily extends to products.
Golub, Sølna and Van Dooren proposed an implicit QR-like method for the SVD of a general matrix product/quotient [5]

with a complexity that was less than that of the Jacobi-type methods. As in the classical Golub–Kahan procedure for
computing the singular value decomposition, thismethod uses a bidiagonal form of the product/quotient as an intermediate
result. In general, when the number of matrices in the product increases, the gaps between the successive singular values
increase as well. Therefore an approach with an upper triangular semiseparable matrix could be advantageous. This
approach is the subject of this paper.
Section 2 describes the reduction of a product/quotient ofmatrices to semiseparable form. The accuracy and convergence

properties of these algorithms are discussed in Section 3 by means of numerical experiments. Finally some conclusions are
presented in Section 4.
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2. Reduction

In this section the reduction using orthogonal matrices of a sequence of matrices to an upper triangular semiseparable
matrix is explained. But first wewill introduce some notation. If a certain capital letter is used to denote amatrix (e.g. A) then
the corresponding lower case letter with subscript ij refers to the (ij) entry of that matrix (e.g. aij). Submatrices are denoted
in a Matlab-like fashion, for example M(i:j, k:l) is the submatrix consisting of rows i to j and columns k to l of the matrix
M . The group of Householder transformations that operate on a submatrixM(i:j, i:j) is denoted byH(i, j), and the group of
Givens transformations that operate on rows/columns (i, i + 1) is denoted by G(i, i + 1). We use several matrix figures to
explain the different steps of our algorithms. In these figures non-zero elements of amatrix are denoted by×, elements that
satisfy the semiseparable structure by � and elements that are be annihilated in the next transformation by ⊗. Although
some elements are not computed explicitly, they are included in the figures when they clarify the process but are omitted
from the figures otherwise. They are alsomarked in bold in order to distinguish them from the explicitly computed elements.

2.1. Reduction of a product

Consider the matrix P as defined in (1) with all si = 1. Without loss of generality we can assume all matrices Ai to be
square n × nmatrices since, for a given sequence of matrices with compatible dimensions, one can always derive another
sequence of squarematriceswhose product has the same singular values as the product of the original sequence. TheQR-like
reduction used for this transformation is described in [6]. The first step of the reduction consists of creating a rank 1 block
in P(1:2, 2:n). To this end we annihilate all but one element in the first row of the product P , such that it is of the following
form: (×0 · · · 0). In order to avoid computation of the whole product, Householder transformations are applied to the Ai
separately as follows. The first Householder transformation H(0)

1 ∈ H(1, n) is applied to the right of A1 and annihilates all
but one element in its first row. In order to preserve the product,H(0)T

1 is applied to the left of A2. Next a second Householder
transformation H(0)

2 ∈ H(1, n) is chosen to reduce the first row of A2 to the same form. This transformation is performed on
the columns of A2 and on the rows of A3. The first row of the remaining matrices Ai, i = 3 . . . k− 1, are reduced in a similar
manner until we have

P = A(0)
1 H

(0)
1 H

(0)T
1 A(0)

2 H
(0)
2 H

(0)T
2 A(0)

3 · · · A
(0)
k−1H

(0)
k−1H

(0)T
k−1 A

(0)
k

= A(1)
1 A

(1)
2 A

(1)
3 · · · A

(1)
k−1A

(1)
k

where all A(1)
i with i = 1 . . . k− 1 have the following form:

× 0 · · · 0
× × · · · ×

...
...

...
× × · · · ×

 .

It is clear that the Householder transformation H(0)
k , designed to reduce the first row of A

(0)
k to the desired form, also

creates the necessary zeros in the first row of P .
At this point the first column of P is computed as the product of the first column of A(1)

k with the matrices to the left of it.
All elements of this column are annihilated by the Householder transformationH(0)

P ∈ H(2, n) except for p11 and p21.H
(0)
P is

also applied to the left of the matrix A(1)
1 . The Givens transformation G

(0)
1 ∈ G(1, 2) is responsible for the annihilation of p21.

In applying this Givens transformation to the first two rows of P , the first rank 1 block is virtually created, as pictured below.

G(0)
1


× 0 · · · 0
⊗ × · · · ×

0 × · · · ×

...
...

...
0 × · · · ×

 =


��� � · · · �
0 � · · · �
0 × · · · ×

...
...

...
0 × · · · ×

 .

Notice that since only the first column of P has been computed, G(0)
1 is stored to be used later on. As a final part of this first

step, the first row and column of each of the Ai are discarded. The next steps of the algorithm are similar to this first step; the
only difference is that the structure already present in P has to be preserved. Also since some rows/columns of the Ai have
been deleted, we need the stored Givens transformations to compute the next column of P . The process is illustrated below.
For reasons of clarity a product of two (5× 5)matrices is shown. Consider the following stage of the algorithm where two
rank 1 blocks have already been created in P . × × ×

× × ×

× × ×


 × × ×

× × ×

× × ×

⇒


��� ��� � � �
0 ��� � � �
0 0 � � �
0 0 × × ×

0 0 × × ×

 .
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Householder transformations H(2)
1 and H

(2)
2 ∈ H(3, 5) are computed in order to annihilate the last two elements in the

third row of A1 and A2. They are applied in the following manner:

P = A1H
(2)
1 H

(2)T
1 A2H

(2)
2 .

The resultingmatrices are pictured below. Notice that because of the rank structure already present in P , the transformation
H(2)
2 annihilates P(1:3, 4:5). × 0 0

× × ×

× × ×


 × 0 0

× × ×

× × ×

⇒


��� ��� � 0 0
0 ��� � 0 0
0 0 � 0 0
0 0 × × ×

0 0 × × ×

 .

The unstructured part of the third column of P is calculated next as the product of A1(3:5, 3:5) and A2(3:5, 3). Using the
stored Givens transformations G(2)

3 ∈ G(1, 2) and G(2)
1 ∈ G(2, 3) of the previous step, the remaining part of the third column

of P can be retrieved, and this property will be needed later on.
Next a Householder transformation H(3)

1 ∈ G(4, 5) is applied to P(4:5, 1:3) and A1(4:5, 3:5) which annihilates P(5, 3).
Note that since only one element needs to be annihilated, one could perform a Givens transformation instead. A Givens
transformation G(3)

1 ∈ G(3, 4) is responsible for the annihilation of P(4, 3) and the creation of a rank 1 block. Just like in
previous steps, this transformation is stored for later use.

G(3)
1


��� ��� ��� 0 0
0 ��� ��� 0 0
0 0 ��� 0 0
0 0 ⊗ × ×

0 0 0 × ×

 =


��� ��� ��� 0 0
0 ��� ��� 0 0
0 0 ��� � �
0 0 0 � �
0 0 0 × ×

 .

Notice that when applying this transformation to P the semiseparable structure is lost, but only in the block P(1:3, 3:5),
which has rank 2 instead of 1. The semiseparable structure can be restored by chasing this rank 2 block out of the matrix, as
shown below.

��� ��� ⊗ 0 0
0 ��� ⊗ 0 0
0 0 ��� � �
0 0 0 � �
0 0 0 × ×

G(3)
2 =


��� ��� 0 0 0
0 ��� 0 0 0
0 × ��� � �
0 0 0 � �
0 0 0 × ×

 .

Because of the structure present in P , G(3)
2 ∈ G(2, 3) annihilates all elements in the strictly upper triangular part of the third

column of P . When applying this transformation a disturbance is introduced in the lower triangular part. This disturbance
is annihilated by a Givens transformation G(3)

3 ∈ G(2, 3), and now P(1:2, 2:5) is the block of rank 2 instead of 1. Note that
G(3)
3 is again stored for later use.

G(3)
3


��� ��� 0 0 0
0 ��� 0 0 0
0 ⊗ × � �
0 0 0 � �
0 0 0 × ×

 =


��� ��� 0 0 0
0 ��� ��� � �
0 0 ��� � �
0 0 0 � �
0 0 0 × ×

 .

Two extra Givens transformations G(3)
4 and G

(3)
5 ∈ G(1, 2) are needed to fully restore the semiseparable structure of P as

illustrated below.
��� ⊗ 0 0 0
0 ��� ��� � �
0 0 ��� � �
0 0 0 � �
0 0 0 × ×

G(3)
4 =


��� 0 0 0 0
× ��� ��� � �
0 0 ��� � �
0 0 0 � �
0 0 0 × ×

 ,

G(3)
5


��� 0 0 0 0
⊗ ��� ��� � �
0 0 ��� � �
0 0 0 � �
0 0 0 × ×

 =


��� ��� ��� � �
0 ��� ��� � �
0 0 ��� � �
0 0 0 � �
0 0 0 × ×

 .

At the end of this step an extra row and column are deleted from the Ai matrices. The other rank 1 blocks can be created in
a similar manner.
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Fig. 1. This figure illustrates the singular values of the product of 16 randommatrices.

2.2. Reduction of a quotient

In case in (1) some of the si are equal to−1, additional operations have to be performed at the beginning of the reduction.
More precisely, the corresponding matrices Ai are triangularized to facilitate the computation of the columns of P . Consider
the following example:

P = A1A−12 A3

in which the matrix A2 has to be triangularized. This can be done by a QR factorization. Let Q
(0)
2 be the sequence of

Householder transformations that triangularizes A2. Then P can be written as

P = A1(Q
(0)
2 A2)

−1(Q (0)
2 A3).

After this preliminary phase the above procedure can again be followed,with the only difference that Givens transformations
are applied to each upper triangular Ai instead of Householder transformations in order to preserve the upper triangular
form of the matrix, since each disturbance created by a Givens transformation can easily be annihilated by another Givens
transformation applied to the other side of Ai. For a more detailed description and an illustrating example we refer to [5].

3. Numerical experiments

In this section we will show through numerical examples that the method proposed above is accurate and has a special
convergence behaviour. All experiments described in this section were executed in Matlab1 on a Linux workstation.

3.1. Accuracy

In order to illustrate the accuracy of the method, the product of 16 (20 × 20) normally distributed random matrices
was computed explicitly along with its singular values using extended precision in Matlab. These singular values were
considered to be the exact singular values of the product and are pictured in Fig. 1. We reduced the product to upper
triangular semiseparable form using the algorithm described above. Then the singular values of the semiseparable matrix
can be computed by the algorithm described in [2]. The singular values were also computed using the bidiagonal approach
of Golub, Sølna and Van Dooren. Both sets of singular values were compared to the exact ones. This is illustrated in Fig. 2
on the left. The relative errors resulting from the singular values computed using our approach are denoted by ‘∗’ and those
computed by the bidiagonal approach are denoted by ‘◦’. One can see that bothmethods give comparable results and that all
the singular values are computed to high relative accuracy, despite the fact that they differ by several orders of magnitude.
The figure on the right also contains relative errors of both methods, but this time the problem was a quotient of matrices.
The relative errors are again comparable in size.

3.2. Convergence

The added convergence behaviour, which was mentioned in the introduction, will be illustrated here. In the first
experiments of this section we use a matrix product P that can be constructed as follows. The singular value decomposition
of a randomly generated n × n matrix is computed, resulting in two unitary matrices U and V . Let S be a diagonal matrix,
with diagonal elements (1.2)i where i ranges from 1 . . . n. Define two matrices A and B as

A = USV ∗

B = VSU∗.

1 Matlab is a registered trademark of the Mathworks Inc.
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Fig. 2. The figure on the left contains relative errors made in the singular values of a product by the bidiagonal approach ‘◦’ and by the semiseparable
approach ‘∗’. Relative errors made by both algorithms in the singular values of a quotient of matrices are pictured on the right.

Fig. 3. The elements of the reduced product in bidiagonal form are illustrated in the figure on the left. The semiseparable form of the product is illustrated
on the right.

Then the product P = (AB)k has (1.2)2ki as singular values. This means that there are large gaps between the singular values
of the product.
For the first experiment we took k = 4 and n = 40. The product was reduced to upper triangular semiseparable form

using themethod described above. The algorithmdescribed in [5]was used to reduce the same product to bidiagonal form as
well.When visualizing the two reducedmatrices,we divided each rowby their diagonal element because the elements of the
reduced matrices have a large range. These scaled matrices are pictured in Fig. 3. As one can see, at the end of the reduction
a lot of singular values have already been found in the semiseparable case. When P is reduced to a bidiagonal matrix this
is not the case. However, the reduction to semiseparable form is more expensive than the reduction to a bidiagonal matrix.
So one could easily extract the singular values from the bidiagonal matrix without performing more operations in total. The
advantage of the semiseparable approach lies in the fact that the convergence happens during the reduction and if one is
only interested in a few dominant singular values, the reduction can be terminated prematurely.
In order to illustrate this, we considered the case where n = 50 and k = 5, 10, 20. The same procedure as described

above was followed but in this case the reduction to semiseparable formwas stopped as soon as the first dominant singular
value was found. In order to be able to time the execution we repeated the procedure fifty times. Then the experiment was
repeated to find the first 2, 3 . . . 20 dominant singular values. For each value of k the bidiagonal approachwas timed as well.
The results of this experiment are pictured in Fig. 4. The dotted lines represent the timings for k = 5, the dashed ones for
k = 10 and the remaining lines are for k = 20. Looking at the curves we see that the difference in performance is more
noticeable when k is larger. This was to be expected since, as the number of matrices in the product increases, so do the gaps
between the singular values. The slopes of the lines indicate that the new approach is not recommended if one needs all
the singular values.
As a final example consider a product P similar to the one described at the beginning of this section with n = 20 and

k = 8, the only differences being that now the diagonal elements of S equal (1, 2, 3 . . . 19, 25). The gap between 19 and 25
will cause a significant gap between the largest and second-largest singular value of P . In Fig. 5 in each step of the reduction,
the first diagonal element of the matrix P is compared to the largest singular value. One can see that after four steps this
singular value has already appeared on the diagonal. If one is only interested in this dominant singular value the reduction
can already be stopped at this point. The same has been done for the other singular values. All but the last four needed ten
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Fig. 4. This figure illustrates the time required by both the bidiagonal and the semiseparable approach to find the first 1 to 20 dominant singular values.
The horizontal lines represent the timings for the bidiagonal approach.

Fig. 5. The accuracy of the estimate of the dominant singular value is pictured on the left. On the right the relative error of the estimate of the second-largest
eigenvalue is illustrated.

to twelve iterations to be found on the diagonal. This is pictured in Fig. 5 for the second-largest singular value. When the
singular values are clustered with large gaps between the clusters, one can therefore expect the clusters to be separated
during the reduction process. One can then use a divide and conquer approach to compute all individual singular values.

4. Conclusion

In thisworkweproposed anewmethod for computing the singular values of a product/quotient of a sequence ofmatrices.
The algorithm described in this work reduces the product/quotient of a given sequence to an upper triangular semiseparable
matrix. Then the singular values can be computed using the algorithm described in [2]. Important in this reduction is the
observed nested subspace iteration, which leads to extra convergence behaviour.
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