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Positive definite matrices factor into A = LLT (Cholesky).
Symmetric indefinite matrices need a symmetric middle factor
in A = LPLT. Then A and P have the same inertia
(eigenvalues of the same sign). We construct P through
elimination, so the inertias agree for all leading minors of A
and P . When restricting P to be a variant of a symmetric
permutation in which diagonal 1’s can be replaced by 0’s or
−1’s, it is unique.
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1. Main result

This paper is about matrix algebra, not matrix analysis. The matrices are symmetric
and generally indefinite. Pivoting (row exchange) may be numerically necessary in Gaus-
sian elimination, but we don’t do it. If the matrix were positive definite, we would create
its Cholesky factorization A = LLT. In the general case, L can remain lower triangular
and invertible, but the factorization then needs a symmetric matrix P between L and LT:

A = LPLT.
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There are many such factorizations, unless we impose P to have a special structure. We
require that P is almost a symmetric permutation matrix, except that elements 1 on its
main diagonal may be replaced by 0 or −1. We will call this Property A and define it
formally as follows

Property A: P is symmetric and has at most one nonzero entry in each row and column
and P (i, i) ∈ {0, 1,−1}, P (i, j) = P (j, i) ∈ {0, 1}.

Then P 2 is diagonal with 1’s or 0’s on its diagonal. It is the orthogonal projector on
the range of P . Therefore P is its own Moore–Penrose inverse (pseudoinverse): P = P †.
This explains the qualification “almost a symmetric permutation matrix”. We will call P
the inertia matrix1 of A.

A = LPLT says that P is “congruent” to A—perhaps an old-fashioned word. The
Inertia Theorem [4,6] asserts that P and A have the same inertia:

In(P ) = {n, z, p} = In(A).

P and A have the same number of negative eigenvalues, zero eigenvalues, and positive
eigenvalues. More than this, the inertias of all the upper left square submatrices Pk and
Ak also agree:

Property I:

In(Pk) = {nk, zk, pk} = In(Ak).

The point is that each Ak = LkPkL
T
k because L is upper triangular. Notice that Pk also

inherits Property A from the matrix P , from the normal descending order of elimination.
Because we impose Property A on P , we show it is unique.

Theorem. Every real symmetric matrix A factors into A = LPLT with a lower triangular
invertible matrix L and a unique inertia matrix P that has Property A. It then follows
that P has also Property I. �

There are ten 2 × 2 inertia matrices: nine diagonal matrices of 1’s or 0’s or −1’s and
the row exchange matrix.

The proof of our main theorem will be constructive and elementary. Each upper left
submatrix Ak−1 = Lk−1Pk−1L

T
k−1 is bordered by a row and column to create Ak =

LkPkL
T
k :

[
Ak−1 ak
aT
k bk

]
=

[
Lk−1 0
�Tk dk

] [
Pk

] [LT
k−1 �k

0T dk

]
.

1 The same term is used in mechanics but there it clearly has a different meaning
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The chief pleasure lies in identifying the four possible changes of inertia n, z, p at each
step of symmetric elimination. This is captured in the following lemma.

Bordering Lemma. At each step from Ak−1 and Pk−1 to Ak and Pk, the count of negative-
zero-positive eigenvalues satisfies

nk−1 � nk � nk−1 + 1,

zk−1 − 1 � zk � zk−1 + 1,

pk−1 � pk � pk−1 + 1.

The sum n + z + p = k − 1 increases by 1 to k. So there are four possible changes from
the inertia In(Ak−1) = (nk−1, zk−1, pk−1) to In(Ak):

1. {nk, zk, pk} = {nk−1, zk−1 + 1, pk−1},
2. {nk, zk, pk} = {nk−1, zk−1, pk−1 + 1},
3. {nk, zk, pk} = {nk−1 + 1, zk−1, pk−1},
4. {nk, zk, pk} = {nk−1 + 1, zk−1 − 1, pk−1 + 1}.

That fourth possibility is illustrated by the exchange matrix: z1 = 1 but z2 = 0.

A =
[

0 1
1 0

]
= P with In(A1) = (0, 1, 0) and In(A) = (1, 0, 1).

The proof of this lemma is based on the Cauchy interlacing property. Let the ordered
eigenvalues of the symmetric matrices Ak−1 and Ak be μi and λi, with inertias {n, z, p}
and {N,Z, P}:

μ1 � · · · � μn < μn+1 = · · · = μn+z < μn+z+1 � · · · � μn+z+p

λ1 � · · · � λN < λN+1 = · · · = λN+Z < λN+Z+1 � · · · � μN+Z+P .

The Cauchy interlacing property [2] says that

λj � μj � λj+1 for 1 � j � n + z + p.

This implies that Ak has at least n negative eigenvalues, z − 1 zero eigenvalues and p

positive eigenvalues. The count n+ z+p+1 = N +Z +P yields the desired bounds and
therefore also the four cases shown above. �

In the recursive construction of the matrices L and P , suppose we have reached
Ak−1 = Lk−1Pk−1L

T
k−1. Then we also have a first decomposition for the bordered matrix:
[
Ak−1 ak
aT bk

]
=

[
Lk−1
0 1

][
Pk−1 ck
cT bk

][
LT
k−1 0

1

]
(1)
k k
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where ck is the unique solution of Lk−1ck = ak. We now eliminate as much as possible
of the vector ck by using the elimination vector �k = Pk−1ck:[

Pk−1 ck
cTk bk

]
=

[
Ik−1
�Tk 1

][
Pk−1 ek
eT
k fk

][
Ik−1 �k

1

]
, (2)

where ek = ck − Pk−1�k = (Ik−1 − P 2
k−1)ck. That vector is orthogonal to the range

of Pk−1 since it satisfies Pk−1ek = 0. The new diagonal entry is fk = bk − cTk Pk−1ck.
Combining (1) and (2) we have reached

[
Ak−1 ak
aT
k bk

]
=

[
Lk−1
�Tk 1

][
Pk−1 ek
eT
k fk

][
LT
k−1 �k

1

]
. (3)

If ek = 0 the construction is essentially complete. We are in cases 1–3, where the
diagonal entry fk should become 0 or 1 or −1. For this we just choose the positive
diagonal entry dk of L:

Cases 1, 2, 3. Choose dk = 1 or
√
fk or

√
−fk. Then pk = 0 or 1 or −1.

[
Ak−1 ak
aT
k bk

]
=

[
Lk−1
�Tk dk

][
Pk−1 0
0T pk

][
LT
k−1 �k

dk

]
. (4)

If ek �= 0 in (3), we are in case 4. The nullity drops to zk = zk−1 − 1 and there is
more work to do. Let i be the index of the first nonzero entry of ek. If the unit column
vector ui = (0, . . . , 1, . . . , 0) has 1 in position i, then we want ui to replace ek in Pk, so
that every row and column of Pk has at most one nonzero element. This then ensures
that Property A is preserved in Pk.

Pk−1ek = 0 implies that Pk−1ui = 0. The triangular update matrix Lup then gives
the desired inertia matrix Pk starting from (3):

[
Pk−1 ek
eT
k fk

]
= Lup

[
Pk−1 ui

uT
i 0

]
LT
up if Lup =

[
Ik−1 + (ek − ui)uT

i 0
fku

T
i /2 1

]
. (5)

Now the inertial factorization Ak = LkPkL
T
k is complete:

Lk :=
[
Lk−1
�Tk 1

]
Lup and Pk :=

[
Pk−1 ui

uT
i 0

]
. (6)

This covers the four cases and completes the proof of our main theorem. �
Pk is clearly unique in cases 1, 2, 3. Uniqueness in case 4 comes from the uniqueness

of i (the index of the first nonzero entry).
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L is not unique. But the recursive construction shows that the only degrees of freedom
lie in the diagonal elements of L that correspond to nonzero diagonal elements in P

(cases 2 and 3), and in the columns of L that correspond to zero columns of P (case 1).
A corresponding decomposition for complex Hermitian matrices H = LPL∗ is

straightforward. L is now a complex triangular (and nonsingular) matrix, and P still
has Properties A and I.

Notice that P is completely defined by the inertias of the leading minors of A. As a
consequence we have the following corollary.

Corollary. Two symmetric matrices A and B are congruent with a lower triangular in-
vertible matrix L if and only if they have the same inertia matrix P . It follows directly
that the inertia matrix is a canonical form under the group of lower triangular congruence
transformations. �
2. Symmetric factorizations

This decomposition is of course similar to the symmetric factorization of Bunch–
Parlett and its variants [3]. A is still symmetric and possibly indefinite, and is factorized
as:

PAPT = LDLT

where the permutation P is crucial to make sure that L has bounded elements, and that
D is made of 1×1 or 2×2 diagonal blocks. There exist pivoting strategies with reasonable
complexity that ensure boundedness of elements of L, but the factorization says nothing
about the inertias of the leading principal minors of A. We refer to [3, Section 11.1] for
a discussion on complete, partial and rook pivoting. On the other hand, the inertias of
the leading principal minors of PAPT are easily derived from the small blocks in D.

Another related result is the anti-triangular factorization of Mastronardi and
Van Dooren [5], which is a decomposition of the form

UAUT =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 Y T

0 0 X ZT

0 Y Z W

⎤
⎥⎥⎥⎦ .

U is an orthogonal transformation, X and W are symmetric, and X and Y are invertible.
Here the dimensions of the blocks on the right hand side reveal the inertia of A.

Both these factorizations are backward stable, because much care is taken in con-
structing the transformations P and U . But they do not yield the information provided
by the present factorization. Our decomposition, on the other hand, is unstable since we
are not allowed to perform any pivoting. A backward stable alternative to our decom-
position would be to use a stable decomposition to each of the leading submatrices A
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but that would result in an O(n4) algorithm. Notice that P is not a continuous function
of the parameters of A when some of the leading submatrices are singular, since arbi-
trary small perturbations will result in a different matrix P . Using a backward stable
algorithm does not affect the possible ill-condition of the problem.

The inertia of the leading principal minors is e.g. important when dealing with sym-
metric (block)-Hankel matrices. It was shown in [1] that the rank pattern of the growing
block Hankel matrix

H =

⎡
⎢⎢⎢⎢⎢⎣

H1 H2 H3 . . .

H2 H3
. . . . . .

H3
. . . . . . . . .

...
. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎦ ,

decides the controllability and observability indices of the realization of the formal power
series H(z) =

∑∞
i=1 Hiz

−i. This is important since these indices describe how much time
is needed to drive a particular state to zero.
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