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1 Introduction

Pricing and hedging exotic credit derivatives, even simple bespoke single tranche CDOs or First-
To-Defaults, has been a challenge the past few years and has become even more difficult since the
beginning of the credit crisis mid 2007. In order to fit the implied Index loss distribution in one
consistent model [3], many methodologies have been proposed in the literature since the correlation
crisis in 2005, ranging from simple mapping methods to more sophisticated models.

Mapping methods often fit the market but are difficult to use in order to price other payoffs than
standard single tranches. Models that can price several payoffs, like CDO2, have often difficulties
in matching Index tranche quotes and single name CDS’s in a consistent manner. The difficulty
is to find a compromise between simplicity and robustness, which are necessary in order to price
and hedge efficiently such products, and accuracy, i.e. ability to reproduce precisely daily quoted
CDO index tranche prices. In an attempt to solve these issues, Andersen and Sidenius extend the
Gaussian copula with random factor loadings and recovery rates [1]. They include a study on a
correlation between recovery rates and the number of defaults. This feature is present in a natural
way in the model we will present in this paper. Hull and White propose to find a probability
distribution for the Market Factors in order to match the tranche quotes [7], [5] and [6]. Julien Turc
introduces the concept of local correlation in [10]. In [3], Gregory and Laurent give an overview
and a comparison of the several approaches.

However, none of these models can be easily extended to cope with a full rank correlation matrix.
This feature is important in order to take into account the name by name correlation risk as viewed
by the traders or the risk managers. Moreover, most of the preceding models have difficulties in
preserving exactly the CDS spreads, the default probabilities and the expected recovery rate at
default for all the obligors and all maturities.

In this paper, we propose a consistent pricing model for structured credit derivatives based on
the market’s standard Gaussian copula model that can perform all of these desirable features. The
key idea is to use the gaussian copula with stochastic correlation and stochastic recovery rate. The
two-dimensional probability distribution is the result of a calibration that tries to match quoted
tranche prices. In order to obtain a smooth and stable probability surface, an entropy maximization
regularization is used in the calibration process.

This paper is organized as follows. After some preliminary results in Section 2, the proposed
model is introduced in Section 3. The optimization algorithm used for the model calibration is
introduced in Section 4. Numerical examples are given in Section 5. Concluding remarks are given
in Section 6.

2 Preliminary Results : The gaussian copula model

In this section we introduce the notation used in the rest of this paper as well as a brief reminder
of the Gaussian copula model. We assume that we have a portfolio of N issuers, where

• Si(t) is the probability of survival of issuer i before time t,

• Qi(t) is the probability of default of issuer i before time t,

• τi is the default time of issuer i,

• RRi is the expected recovery rate of issuer i,

• C is an N ×N default correlation matrix.
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The survival probability curve is generally stripped in order to match the market CDS quotes. Note
that the expected recovery rate assumption has an influence on the survival probabilities. Under
the standard Gaussian copula approach, the default dependence of the issuers is modelled by a
Gaussian copula. The joint probability that τi < T for all i is

P (τ1 < T, . . . , τN < T ) = ΦC(Φ−1(Q1(T )), . . . ,Φ−1(Qi(T )), . . . ,Φ−1(QN (T ))), (2.1)

with

• Φ(·), the standard normal distribution : Φ(a) = 1√
2π

∫ a
−∞ e

−x2

2 dx,

• ΦC(·), the multivariate standard normal distribution with correlation matrix C :

Φ(a1, . . . , aN ) =
1

(2π)
N
2 |C|

1
2

∫ a1

−∞
. . .

∫ aN

−∞
e−

1
2
XTC−1Xdx1 . . . dxN ,

where |C| denotes the determinant of C.

With this model, the recovery rate are most of the time assumed to be fixed (at 40% in case of the
index).

It is well known that this model is unable to reproduce market tranche quotes. It gives rise
to the well-known base correlation skew when trying to reproduce Market Tranche quotes with a
homogeneous correlation matrix C. In the next section we will enhance this simple model to fit the
tranche market in a better way.

3 The stochastic correlation model

Pricing credit structures boils down to choosing a default time copula and a recovery rate distri-
bution. As it is impossible with the standard Gaussian copula model to recover market prices with
a unique correlation matrix and fixed recovery rates we propose to put a probability distribution
on the correlation matrices and recovery rates. The probability distribution will be calibrated from
market prices using an entropy maximization entropy algorithm. In order to describe the model
more formally, let us first define the shifted scenarios.

3.1 Shifted Scenario

In order to put a probability distribution on the correlations and the recovery rates, we first define
a stressed scenario with correlation shift α and recovery rate shift β as follows:

• The shifted correlation matrix Cα is a convex combination of the original correlation matrix
and an extreme (either uncorrelated or perfectly correlated) correlation matrix as follows:

– If −1 < α ≤ 0, Cα = (1 + α)C − αIN .

– If 0 ≤ α < 1, Cα = (1− α)C + α1N .

• The shifted recovery rate for obligor i, denoted by RRi,β, is computed similarly:

– If −1 < β ≤ 0, RRi,β = RRi(1 + β).
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– If 0 ≤ β < 1, RRi,β = RRi(1 + β)M , where M is a coefficient that depends on the
portfolio and that is chosen such that the highest recovery rate cannot exceed 1. For
instance, if the expected recovery rates of all the obligors of the portfolio are equal to
0.4, M will be equal to 1.25. For an arbitrary portfolio, one can choose the maximum
possible recovery rate shift as follows:

M =
N

min
i=1

1
2RRi

.

This ensures that any shifted recovery rate stays smaller than 1.

3.2 Assigning a Discrete Probability Distribution

In order to put a probability distribution on the shifted scenarios, we first need to discretize the
universe of possible shifts. Let us fix the number of recovery rate shifts by kRR and the number of
correlation shifts by kC . The total number of possible scenarios is equal to kRR × kC . These are
chosen in order to pave in a uniform way the square [−1, 1]× [−1, 1]: Assume for instance that kRR
and kC are odd integers. Then, ∀ 1 ≤ i ≤ kC , ∀1 ≤ j ≤ kRR,

αi =
2i− kC − 1
kC − 1

, βj =
2j − kRR − 1
kRR − 1

.

The next step is to assign probabilities to each correlation and recovery rate scenario. Denote
the probability associated to the scenario corresponding to the i-th correlation shift and the j-th
recovery rate shift by pi,j . We need to find the optimal probability matrix

P :=

 p1,1 . . . p1,kRR

...
. . .

...
pkC ,1 . . . pkC ,kRR

 .
These market implied probabilities are chosen in order to match the Market tranche quotes as
closely as possible. Denote by MtMi,j,k the Mark-to-Market corresponding the the k−th tranche of
the scenario with the i-th correlation shift and the j-th recovery rate shift. Let us assume that there
are n tranches to fit (typically, n equals 6). In order to allow more flexibility for the optimization
part, let us associate a weight to each of the n tranches to fit, say wi. When it is not possible to fit
all the Market quotes perfectly, the weights can be used in the objective function of the optimization
algorithm in order to allow to better fit the most important tranches. Assume that the probability
matrix P is fixed. Using the properties of conditional expectations, the MtM of tranche i, denoted
by MtMP,i, is equal to

MtMP,i =
∑
k,l

pk,lMtMk,l,i. (3.2)

The objective function, say f(P ), is the norm of the vector of Mark-to-Markets

f(P ) :=

∥∥∥∥∥∥∥
 w1MtMP,1

...
wnMtMP,n


∥∥∥∥∥∥∥ . (3.3)

This function has to be minimized under the following constraints:

• All the probabilities have to be non-negative.
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• The sum of probabilities must equal 1:

kC∑
i=1

kRR∑
j=1

pi,j = 1. (3.4)

• The expected recovery rate for each obligor must be preserved:

kC∑
i=1

kRR−1

2∑
j=1

βjpi,j +
kC∑
i=1

kRR∑
j=

kRR+1

2

Mβjpi,j = 0. (3.5)

Remark 1 Condition (3.5) ensures that the Mark-To-Markets of the CDS of each obligor of the
portfolio are preserved. Indeed, the Mark-To-Market of a CDS is not affected by default correlation
assumptions nor by recovery rate distribution as long as the expected value of the recovery rate
conditional on default is preserved. Equation (3.5) ensures the latter.

Note that all the preceding constraints are linear with respect to the probability coefficients pi,j . In
practice, the calibration procedure requires two steps :

• Compute all Mark-To-Markets, pvo1’s and expected losses of the market tranches in every
stressed scenario. We need to compute n× kC × kRR tranche prices. This step is clearly time
consuming, but needs to be performed only once a day.

• Use an optimization algorithm to minimize (3.3). This part of the calibration process is usually
very fast (at most a few seconds).

Depending on the choice of the norm to minimize and additional smoothing conditions, several
optimisation schemes are possible. If the objective function is the infinity norm of the Mark-to-
Market vector, a simple choice would be to use the classical Simplex Algorithm. The problem is
that one would obtain as a typical result only n + 2 scenario with a positive probability, all the
rest being zero. Moreover, a small change in the inputs (MtMs) can lead to a large change in the
outputs (optimal probability distribution).

To cope with these problems, one can modify the optimisation scheme by adding an entropy
term to the objective function (3.3):

f(P ) :=

∥∥∥∥∥∥∥
 w1MtMP,1

...
wnMtMP,n


∥∥∥∥∥∥∥+ δ

∑
i,j

pi,j ln pi,j , (3.6)

where δ is a smoothness parameter. The optimization problem becomes then strongly convex and
can be solved efficiently. This stabilizes the solution. The detailed optimization algorithm is studied
in Section 4.

4 Regularized solution in convex minimization

In this section, we propose a dual gradient algorithm that solves the optimization problem efficiently.
For an introduction to convex optimization, see for instance [2, 9].
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Let us write down the problem of our interest in the following form:

min
x∈Q

f(x). (4.7)

where function f(x) is convex and continuously differentiable on some closed convex set Q. Note
that in general the set of optimal solutions of problem (4.7) can be unstable with respect to small
perturbations of the objective function.

In order to treat this instability, we propose to use a regularized solution to this problem. For
that, we need to choose an appropriate prox-function d(x) of the set Q. This is a continuously
differentiable non-negative function, which attains zero at some point x0 ∈ Q. Moreover, it must
be strongly convex on Q with some convexity parameter σ > 0:

d(y) ≥ d(x) + 〈∇d(x), y − x〉+ 1
2σ‖y − x‖

2, x, y ∈ Q. (4.8)

Now we can define a trajectory of regularized optimal solutions to problem (4.7) as follows:

x∗f (δ) = arg min
x∈Q

[
f δ(x) def= f(x) + δ · d(x)

]
, (4.9)

where δ > 0 is a tolerance parameter. In the remaining part of the paper, we justify a simple
technique for approximating the points of this trajectory.

We assume that our variables belong to finite-dimensional real vector spaceRn. For two (column)
vectors x and y from Rn their scalar product is defined in the standard way:

〈x, y〉 =
n∑
i=1

x(i)y(i).

If we fix for Rn some norm ‖ · ‖, then the dual norm is defined by

‖s‖∗ = max
‖x‖=1

〈s, x〉.

Of course, the most important norm is the Euclidean one:

‖x‖(2)
def= 〈x, x〉1/2.

Finally, we done by ∇f(x) ∈ Rn the gradient of function f at some point x ∈ Rn.

4.1 Dual gradient method

The stability of trajectory x∗f (δ) is justified by the following fact.

Lemma 1 Define the distance between two functions f1 and f2 in the following way:

∆(f1, f2) = max
x∈Q
‖∇f1(x)−∇f2(x)‖∗. (4.1)

Then, for any δ > 0 we have

‖x∗f1(δ)− x∗f2(δ)‖ ≤ ∆(f1,f2)
σ·δ . (4.2)
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Proof:
The first-order optimality conditions for function f δi , i = 1, 2, can be written as follows:

〈∇fi(x∗fi
(δ)) + δ∇d(x∗fi

(δ)), y − x∗fi
(δ))〉 ≡ 〈∇f δi (x∗fi

(δ)), y − x∗fi
(δ))〉 ≥ 0 (4.3)

for all y ∈ Q. Since function f δ1 is strongly convex with parameter σδ, we have

σδ‖x∗f1(δ)− x∗f2(δ)‖2 ≤ 〈∇f δ1 (x∗f1(δ))−∇f δ1 (x∗f2(δ)), x∗f1(δ)− x∗f2(δ)〉

(4.3)

≤ 〈∇f δ1 (x∗f2(δ)), x∗f2(δ)− x∗f1(δ)〉

= 〈∇f1(x∗f2(δ)) + δ∇d(x∗f2(δ)), x∗f2(δ)− x∗f1(δ)〉

(by (4.3) with i = 2, y = x∗f1(δ)) ≤ 〈∇f1(x∗f2(δ))−∇f2(x∗f2(δ)), x∗f2(δ)− x∗f1(δ)〉

≤ ∆(f1, f2) · ‖x∗f2(δ)− x∗f1(δ)‖.

2

Example 1 Consider the case when Q ⊆ ∆n ≡ {x ∈ Rn+ : 〈en, x〉 = 1}. Then it is natural to
define prox-function d(x) using the entropy function:

η(x) =
n∑
i=1

x(i) lnx(i),

In this case, we can measure distances in ∆n in l1-norm:

‖h‖ =
n∑
i=1
|h(i)|, h ∈ Rn.

The corresponding dual norm is then

‖s‖∗ = max
1≤i≤n

|s(i)|, s ∈ Rn.

Note that the entropy function is strongly convex with respect to l1-norm with constant σ = 1.
Hence, we can choose

d(x) = ωη(x0, x),

where x0 = arg min
x0∈Q

η(x), and ωη(x0, x) is the Bregman distance between x0 and x measured by

function η(·):
ωη(x0, x) def= η(x)− η(x0)− 〈∇η(x0), x− x0〉. (4.4)

Note that function ωη(x, y) is strongly convex in y with the same parameter σ as η(·). In view of
its definition, we have ∇d(x) = ∇η(x)−∇η(x0).

Consider now two quadratic functions:

fA(x) = 1
2‖Ax‖

2
(2), fB(x) = 1

2‖Bx‖
2
(2),
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where A,B ∈ Rm×n. Then ∇fA(x) = ATAx, and ∇fB(x) = BTBx. Therefore,

∆(fA, fB) ≤ max
x∈∆n

‖(ATA−BTB)x‖∗ = max
1≤i≤n

‖(ATA−BTB)ei‖∗

= max
1≤i,j≤n

|〈ai, aj〉 − 〈bi, bj〉|,

where ai and bi are the columns of corresponding matrices. Denote εi = ai − bi. Then

〈ai, aj〉 − 〈bi, bj〉 = 〈ai, bj + εj〉 − 〈ai − εi, bj〉

= 〈ai, εj〉+ 〈bj , εi〉.

Defining now the matrix norms

‖A‖ = max
1≤i≤n

‖ai‖, ‖A‖d = max
1≤i≤n

‖ai‖∗,

we obtain
∆(fA, fB) ≤ (‖A‖+ ‖B‖) · ‖A−B‖d.

2

In the sequel, we need several simple properties of Bregman distances.

(P1) For any linear function l(x) we have ωl(x, y) ≡ 0.

(P2) For any convex function φ and coefficient β > 0 we have ωβφ(x, y) = βωφ(x, y).

(P3) For two convex functions φ1 and φ2 we have ωφ1+φ2(x, y) = ωφ1(x, y) + ωφ2(x, y).

Finally, the Bregman distance can be used for estimating growth of convex function with respect
to its minimal value.

Lemma 2 Let function φ be convex and differentiable on Q. Then for any x ∈ Q we have

φ(x) ≥ φ(x∗) + ωφ(x∗, x), (4.5)

where x∗ ∈ Arg min
y∈Q

φ(y).

Proof:
Indeed, from the first-order optimality condition we know that

〈∇φ(x∗), x− x∗〉 ≥ 0, x ∈ Q.

Therefore, for any x ∈ Q we have

φ(x) = φ(x∗) + 〈∇φ(x∗), x− x∗〉+ ωφ(x∗, x) ≥ φ(x∗) + ωφ(x∗, x).

2
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Let us show how to find a good feasible approximation to x∗f (δ) by a simple (dual) gradient
scheme. We assume that the objective function f has Lipschitz-continuous gradient:

‖∇f(x)−∇f(y)‖∗ ≤ Lf‖x− y‖, x, y ∈ Q. (4.6)

Let us describe first the dual mapping based on the prox-function d(x). This mapping as applied
to some vector g is defined as follows:

Tγ(g) = arg min
y∈Q

[ 〈g, y〉+ γd(y) ] . (4.7)

Lemma 3 Let γ ≥ 1
σLf . Then for any x ∈ Q we have

f δ(Tγ+δ(∇f(x)− γ∇d(x))) ≤ min
y∈Q

[ f(x) + 〈∇f(x), y − x〉+ γωd(x, y) + δ · d(y) ] . (4.8)

Proof:
Let us fix an arbitrary x ∈ Q. Denote the objective function of the problem in the right-hand side
of inequality (4.8) by ψγ,δ(y). Since d is strongly convex, we have

ωd(x, y) ≥ 1
2σ‖x− y‖

2.

Therefore, for γ ≥ 1
σLf , we have

ψγ,δ(y) ≥ f(x) + 〈∇f(x), y − x〉+ 1
2Lf‖y − x‖

2 + δd(y)

≥ f(y) + δd(y) ≡ f δ(y).

It remains to note that Tγ+δ(∇f(x)− γ∇d(x)) = arg min
y∈Q

ψγ,δ(y). 2

We will justify the dual gradient method by the technique of estimate sequences. In accordance
to this approach, we need to update recursively the sequence of estimate functions

ψk(x) =
k−1∑
i=0

ai[f(vi) + 〈∇f(vi), x− vi〉] + (1 + δAk)d(x),

where {ai} are some positive weights, Ak =
k−1∑
i=0

ai, and {vi} ⊂ Q are some auxiliary points which

we will specify later. It is convenient to set A0 = 0 and ψ0(x) = d(x).
Note that by construction we have

ψk(x) ≤ Akf
δ(x) + d(x), x ∈ Q. (4.9)

Let us show how we can maintain another important condition:

k−1∑
i=0

aif
δ(yi) ≤ ψ∗k

def= min
x∈Q

ψk(x). (4.10)

where {yk} is a minimization sequence for optimization problem in definition (4.9). Denote

vk = arg min
x∈Q

ψk(x), k ≥ 0.
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In view of Lemma 2, for any x ∈ Q and k ≥ 0 we have

ψk(x) ≥ ψ∗k + ωψk
(vk, x)

(P3),(P1)
= ψ∗k + ω(1+δAk)d(vk, x)

(P2)
= ψ∗k + (1 + δAk)ωd(vk, x).

(4.11)

Note that condition (4.10) is valid for k = 0. Assume that it is valid for some k ≥ 0. Then

ψ∗k+1 = min
x∈Q
{ ψk(x) + ak[f(vk) + 〈∇f(vk), x− vk〉+ δd(x) ] }

(4.11)

≥ min
x∈Q
{ ψ∗k + (1 + δAk)ωd(vk, x) + ak[f(vk) + 〈∇f(vk), x− vk〉+ δd(x) ] }

(4.10)

≥
k−1∑
i=0

aif
δ(yi) + ak min

x∈Q
[ f(vk) + 〈∇f(vk), x− vk〉+ γkωd(vk, x) + δd(x) ],

where γk = (1 + δAk)/ak. Hence, if we choose

ak ≤ σ1 + δAk
Lf
,

yk = Tγk+δ(∇f(vk)− γk∇d(vk)),

then, in view of Lemma 3, condition (4.10) will be valid for iteration counter k + 1. If constant Lf
is known, then we get the following method.

Set ψ0(x) = d(x), A0 = 0, γ = 1
σLf . For k ≥ 0 iterate:

1. Compute vk = arg min
x∈Q

ψk(x).

2. Define ak = σ1 + δAk
Lf

, Ak+1 = Ak + ak.

3. Compute yk = Tγ+δ(∇f(vk)− γk∇d(vk)).

4. Update ψk+1(x) = ψk(x) + ak[f(vk) + 〈∇f(vk), x− vk〉+ δd(x)].

(4.12)

By simple induction, it is easy to see that the coefficients ak and Ak in this scheme admit a closed-
form representation:

ak = σ
Lf

(
1 + σ · δ

Lf

)k
, Ak = 1

δ

[(
1 + σ · δ

Lf

)k
− 1
]
, k ≥ 0. (4.13)

Hence, in view of inequalities (4.9), (4.10), the rate of convergence of this scheme is linear:

k−1∑
i=0

ai

[
f δ(yi)− f δ(x∗f (δ))

]
≤ d(x∗f (δ)). (4.14)

The main drawback of the method (4.12) is the presence of usually unknown parameter Lf . However,
it can be easily estimated by a well known very efficient backtracking strategy (see, for example,
[8]).
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4.2 Auxiliary problems

It remains to show how we can find the solution to the auxiliary problem (4.7). Let us assume that
the feasible set Q has the following structure:

Q = {x ∈ S : Ax = b}, (4.1)

where A is an m × n-matrix, and the set S is simple. This means that we can solve explicitly the
following minimization problem:

V (s) = arg min
x∈S

[〈s, x〉+ d(x)]. (4.2)

In this case, the problem (4.7) can be written in the dual form:

min
x∈Q

[〈g, x〉+ γd(x)] = min
x∈S

max
y∈Rm

[〈g, x〉+ γd(x) + 〈y, b−Ax〉]

= max
y∈Rm

{
〈b, y〉+ min

x∈S
[〈g −AT y, x〉+ γd(x)]

}

= max
y∈Rm

{
〈b, y〉+ γψ

(
1
γ (g −AT y)

)}
,

where the concave function ψ(s) is easily computable:

ψ(s) = 〈s, V (s)〉+ d(V (s)).

Thus, our initial projection problem can be solved in the dual form:

max
y∈Rm

{
〈b, y〉+ γψ

(
1
γ (g −AT y)

)}
. (4.3)

In many important situations, the number of the linear constraints defining the set Q is small, so
the problem (4.3) is simple. Note that the optimal solution y∗γ(g) to this problem can be used for
computing the optimal solution of the problem (4.7):

Tγ(g) = V
(

1
γ (g −AT y∗γ(g)

)
. (4.4)

5 Practical Results

The Stochastic Correlation model has been calibrated using the 5-years tranche prices of the iTraxx
index from March 2007 to September 2008. Clearly, one distinguishes two different regimes. Before
August 2007, the probability distribution is mainly located in scenarii corresponding to very low
correlations and around the expected recovery rate. The market seems to price only idiosyncratic
risks corresponding to correlation shifts close to -1.

Note that a small probability bump already exists in March 2007, but it is almost not visible in
Figure 1. As shown in Table 1, the calibrated model reproduces the market spreads very precisely.
On August 2007, a systematic risk appears and gains in importance until today. This coincides with
the subprime crisis that appeared in the summer 2007 in the credit market. Clearly, two probability
peaks appear on Figure 2. The peak with a correlation shift at -1 corresponds to the idiosyncratic
risk. The peak around a correlation shift of 1 and a recovery rate shift of -1 corresponds to the new
important systemic risk initiated with the subprime crisis. Today, the model does not fit precisely
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Figure 1: iTraxx Europe Implied Probability Distribution

Tranche Level Market Spread Obtained Spread Error
0%-3% 6.25 % 6.243 % -0.007 %
3%-6% 0.40 % 0.407 % 0.008 %
6%-9% 0.10 % 0.093 % -0.009 %
9%-12% 0.05 % 0.052 % 0.007 %
12%-22% 0.02 % 0.029 % 0.010 %
22%-100% 0.01 % 0.006 % 0.001 %

Table 1: iTraxx Spread Calibration Error, May 31th, 2007

Figure 2: iTraxx Europe Implied Probability Distribution
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the 12%-22% and 22%-100% tranches. Typically, the obtained fair spread of the former tranche
is higher than the market tranche and inversely for the latter. A typical error of 12bp for the
12− 22 tranche and −5bp for the 22− 100 tranche is observed today on the ITraxx Serie 10. Note
however that under the present crisis situation in the Credit Market, today indices prices should be
interpreted with great care.

6 Concluding Remarks

Compared with other models proposed in the literature, the proposed model has several advantages.
As shown in Section 5, the proposed model is simple to understand and the obtained probability
surface is easy to interpret. The calibration results are very satisfactory. Under normal market
conditions previous to summer 2007, the fit is very good for all the tranches. Even in today’s
stressed situation, the fit remains globally satisfactory, except for the highest tranches.

Moreover, unlike the approach proposed in [5, 4], the CDS spreads, survival probabilities and
expected recovery rates are all automatically preserved for all maturities and all the obligors. In
other approaches, the CDS spreads are not easily preserved or preserved for one maturity only. An
advantage compared to the more straightforward base correlation approach is that any payoff that
depends on the loss distribution of the portfolio can be computed directly. Indeed, once the model
is calibrated, simulating the defaults in a Monte-Carlo setting is straightforward. Note also that a
natural mapping methodology is generated by the model. Indeed, once the probability distribution
is found, it can be applied to any portfolio. Finally, thanks to the proposed optimisation scheme,
the model parameters have proved to be particularly smooth and stable through time.
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