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b Université Catholique de Louvain, Department of Mathematical Engineering, Louvain-La-Neuve, 1348, Belgium

c Katholieke Universiteit Leuven, Department of Economics and Applied Economics, Leuven, 3000, Belgium

Received February 2007; received in revised form August 2007; accepted 15 August 2007

Abstract

The CreditRisk+ model is one of the industry standards for estimating the credit default risk for a portfolio of credit loans. The natural
parameterization of this model requires the default probability to be apportioned using a number of (non-negative) factor loadings. However, in
practice only default correlations are often available but not the factor loadings. In this paper we investigate how to deduce the factor loadings
from a given set of default correlations. This is a novel approach and it requires the non-negative factorization of a positive semi-definite matrix
which is by no means trivial. We also present a numerical optimization algorithm to achieve this.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The assessment of credit risk for loan portfolios is now
widely established within the financial world. The basic
components that are needed to model the default risk for each
loan are: the Probability of Default (PD), the Exposure At
Default (EAD) and the Loss Given Default (LGD). We assume
the EAD and the LGD to be deterministic and it follows then
that the distribution function (d.f.) for the total credit portfolio
loss can be calculated provided that one also knows all joint
default probabilities or, equivalently, the copula. Since defaults
are by nature rare events, fitting a copula in a credit context
is far from being a trivial task and most financial institutions
only explicitly model the individual and pairwise default
probabilities from which default correlations can be directly
derived. Indeed, it must be noted that despite its conceptual
simplicity it remains difficult to estimate default correlations.

Ultimately, as no intermediate process is assumed, the use of
observed default data is obviously the best source to estimate
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single and pairwise default frequencies and default correlations
can then be derived from this; see Gordy (2000), Frey and
McNeil (2003), Jobst and de Servigny (2005) and de Servigny
and Renault (2002) for discussions and empirical studies.

However, confronted with a lack of sufficient default data,
financial institutions and also software providers often resort
to equity or asset correlations. These correlations are then
transformed into default correlations by means of the so-
called Merton Model of the firm; we refer the interested
reader to Crouhy et al. (2000) for further details. Whilst the
wider availability of data and the additional sophistication
may then provide some feeling of comfort, this goes at the
cost of more model risk. There is no indication that more
complex approaches to estimate default correlations provide
more reliable estimates; see Chernih et al. (2006) for a
comparative study.

Unfortunately though, since default correlations are related
to individual and pairwise but not multiple default probabilities,
they are not only difficult to estimate but they also do not
provide a full picture of the dependency. Hence, in order
to build a model to estimate their portfolio credit risk,
financial companies had to complement their estimates for PD,
LGD, EAD and default correlations with explicit or implicit
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assumptions regarding the dependency structure. This has given
rise to three widely established credit risk portfolio models in
industry:

(1) the “Merton-based” approach; see Morgan’s CreditMetrics
(JP Morgan & Co. Inc., 1997) or MKMV’s PortfolioMan-
ager (Kealhofer, 1995),

(2) the “Econometric” approach; see McKinsey & Company’s
CreditPortfolioView (Wilson, 1997a,b),

(3) the “Actuarial” approach; see CreditRisk+ (Credit Suisse
Financial Products, 1997).

Koyluoglu and Hickman (1998) showed that these models
can be placed in a single mathematical framework and that
they merely differ through the choice and parameterization of
their copula; see also Crouhy et al. (2000). It follows that the
results of these three approaches may differ significantly even
when using the same marginal distributions and the same set of
default correlations. This is because in general, for a given set
of marginals and correlations, several copulas that preserve the
correlations will exist and each of these copulas will give rise
to one particular probability distribution function for the total
credit portfolio loss S; we refer to Frey and McNeil (2003)
and Embrechts et al. (2003) for various eloquent examples
illustrating this.

A major advantage of the CreditRisk+ model is that an
analytical expression for the moment generating function of
the loss distribution of the portfolio is available and this gives
several possibilities to obtain rapidly the distribution function
of S. The original CreditRisk+ documentation proposed an
algorithm known in actuarial circles as Panjer’s recursion;
see e.g. Panjer and Willmot (1992). This recursion sometimes
suffers from numerical instability and in the literature several
remedies have been suggested to deal with this issue; Gordy
(2002) suggests a saddle-point approximation whereas Reiss
(2003) shows how Fast Fourier Transforms can be used to
obtain the distribution function of S.

Surprisingly, we feel that less attention went to the
parameterization of the CreditRisk+ model and in this paper we
will investigate this aspect when information on PDs, EADs,
LGDs and default correlations is available. The relevance of
such an analysis is underpinned by the fact that it is precisely
this information (only) that financial institutions typically have
at hand when building their portfolio models.

We point out that the CreditRisk+ model traditionally
uses PDs, EADs, LGDs but not default correlation as
input parameter. In fact, the Standard – and most simple
– CreditRisk+ model assumes that default probabilities are
stochastic (with mean equal to PD). The stochasticity depends
on a unique systematic factor that is shared by all credit
exposures and fully determines the default correlations. Next,
the most general CreditRisk+ model allocates the different
credit risks to more than one segment and apportions the
default probability using now a number of (non-negative)
factor loadings. From this the default correlation matrix can be
deduced.

However, in practical situations one often has the default
correlations at hand but not the factor loadings and this puts
a burden on the parameterization of the CreditRisk+ model.
Indeed, it is not straightforward to derive from a given set of
default correlations the positive factor loadings and this will be
the topic of this paper.

Increasing the number of factors in the CreditRisk+ model
is always tied to increasing the rank of the approximation
for the default correlation matrix. Ultimately, the use of as
many factors as credit exposures would allow to reproduce
the correlation matrix exactly. In principle, this would lead
to the most accurate approximations, taking into account the
amount of information at hand, i.e. PD, LGD, EAD and default
correlations. However, a proper use of the CreditRisk+ model
requires all different factor loadings to be positive but there
is no guarantee that the best rank k approximation (obtained
through the singular value decomposition) will also be positive,
even when all default correlations are positive. Even if the best
rank k approximation was positive, there is no guarantee to
find a non-negative symmetric factorization of it. It is therefore
interesting to see how well the default correlation matrix can
be approximated by a low-rank matrix, while constraining the
factor loadings to be positive.

In mathematical language the above problem amounts to
obtaining a non-negative factorization of a symmetric positive
semi-definite matrix (i.e. a matrix with all non-negative
eigenvalues). It was shown in Catral et al. (2004) that the
symmetry condition complicates the problem considerably.
Nevertheless, in the present paper, we consider solutions that
constrain the approximation to be symmetric. Moreover, we use
a modified cost function which includes a weighting of each
individual element of the matrix to be approximated.

The problem of Weighted non-negative Matrix Factorization
was first stated in Paatero and Tapper (1994) and Paatero (1997)
where the cost function was the Weighted Euclidean Distance.
Several algorithms were used to solve the problem, including
Newton-related methods which have a high complexity.
Simpler algorithms were introduced by Lee and Seung (Lee
and Seung, 1999). These are based on a set of multiplicative
updating rules which will be mentioned later in this text.
Modifications of these algorithms are used here to find the
minimizers for the unweighted Euclidean Distance.

Recently, in Guillamet et al. (2003), weights were added in
the divergence cost function, but the weight matrix was limited
to a diagonal scaling of the matrix to be approximated. Our
proposed algorithm incorporates the Lee and Seung algorithm
with a non-negative weight matrix of size equal to that of the
data matrix. We also modify the cost function to be minimized
in order to converge to factors that are nearly symmetric.

In Section 2 we provide a short overview of the CreditRisk+

model whereas Section 3 presents its correlation structure and
Section 4 discusses its parameterization. In Sections 5 and 6, the
problem of approximating a symmetric matrix with completely
positive matrices is introduced and a new algorithm is given.
Finally, some numerical results are given in Section 7.

2. The CreditRisk+ model

We consider a loan portfolio consisting of n risky loans. Let
Ii be the indicator variable which equals 1 if risk i leads to
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failure in the next reference period (e.g., one year time horizon)
and 0 otherwise. The default probability is stochastic and is
denoted by Qi with mean E[Qi ] = qi . It follows that the
probability that risk i leads to a failure in the corresponding
period, is given by qi :

Pr [Ii = 1] = E[Qi ] = qi . (1)

The probability that risks i and j both default, is denoted by
qi j . Furthermore, let EADi denote the “Exposure At Default” or
the maximal amount of loss on risk i , and let LGDi denote the
“Loss Given Default” or the percentage of the loss on risk i ,
given that a default occurs. The “Credit Portfolio Loss” during
the reference period, denoted by S, is then given by:

S =
n∑

i=1

Ii (EAD)i (LGD)i . (2)

We will assume that all (EAD)i and (LGD)i are deterministic.
A general discussion about the use (and abuse) of stochastic
recovery rates in credit portfolio models is considered in
Dhaene et al. (2006) whereas Bürgisser et al. (2001) provides
a generalization of the CreditRisk+ model that deals with
stochastic dependent LGDs.

Note that the random variable (r.v.) of interest can be written
as a sum of n compound Bernoulli random variables

S =
n∑

i=1

Ii ci , ci = (EAD)i (LGD)i . (3)

In order to compute the distribution function of S
exactly, knowledge of the multivariate distribution function
for I = [I1 I2 . . . In]

T is required but this is hard or
even impossible to get. Moreover, even if we would know
the multivariate distribution function for I, it appears that
dependent Bernoulli r.v’s Ii are too cumbersome to work with.
Therefore, we will replace the Bernoulli r.v’s Ii by other
dependent r.v’s Ni that are “close” to the individual Ii but are
more easy to work with; see Credit Suisse Financial Products
(1997) and the references therein. Hence instead of S we will
consider the r.v. S∗ defined as:

S∗ =
n∑

i=1

Ni ci . (4)

In order to define the multivariate distribution of N =

[N1 N2 . . . Nn]
T we assume that there exists a random

vector 0 =
[
Γ1 . . . ΓK

]Trepresenting the “state of the
economy” such that the random variables Ni , conditioned by
Γk = γk,(k = 1, 2, . . . , K ), are mutually independent and
Poisson distributed with intensity:

Ri = qi

(
w0,i +

K∑
k=1

wk,iγk

)
, (5)

i.e.(
Ni | 0 = γ1 . . . γK

) d
= Poisson (Ri ) . (6)

The coefficient w0,i reflects the portion of idiosyncratic risk
that can be attributed to the i th risk whereas wk,i reflects its
affiliation to the kth common factor. It is important to note that
in order to have positive intensities in (5), the coefficients wk,i ,
k = 0, 1, . . . , K will be constrained to be non-negative.

The random variables Γi are assumed to be independent
Gamma distributed and the covariance matrix associated with
the random vector 0 is given by:

cov[0] = 6 :=

σ 2
1

. . .

σ 2
K

 .

Since the r.v. aΓk will be distributed like a Gamma r.v. for any
k and a > 0, we can assume without loss of generality that
E[Γi ] = 1.

In the next section we will discuss how to choose the
different parameters wk,i and σ 2

l such that the information
present within N = [ N1 N2 . . . Nn ]

T closely resembles
the information of I. An analytical expression for the moment
generating function of the aggregated loss S is then given by
Haaf et al. (2003):

mS(t) = exp

(
n∑

i=1

w0,i qi (etci − 1)

−

K∑
k=1

1

σ 2
k

ln

[
1− σ 2

k

n∑
i=1

wk,i qi (etci − 1)

])
. (7)

From this last expression, it is not difficult to derive an
algorithm based on the Fast Fourier Transform to compute the
probability distribution function of S; see e.g. Haaf et al. (2003)
or Reiss (2003).

In the remainder of the paper we will assume that for every
risk we (only) know its default probability qi , its Loss Given
Default LGDi , its Exposure at Default EADi , as well as its
default correlation corr[Ii , I j ] with other risks. Since we have
that:

corr[Ii , I j ] =
qi j − qi q j√

qi (1− qi ) q j (1− q j )
, (8)

it follows that we assume that all single and pairwise default
probabilities are known, but not the multiple ones. The
following two sections show how to set up the CreditRisk+

model using this information only.

3. The covariance matrix of the CreditRisk+ model

The covariance matrix cov[N] associated with the random
vector N has elements

cov[N]i j = cov[Ni , N j ]. (9)

It is a well-known result in statistics that for any r.v.’s X, Y and
Z we have that:

cov[X, Y ] = E [cov[X, Y |Z ]] + cov [E [X |Z ] , E [Y |Z ]] . (10)

Furthermore, from the properties of Poisson random variables
it follows that
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var (Ni |Γ ) = E[Ni |Γ ] = qi

(
w0,i +

K∑
k=1

wk,iΓk

)
. (11)

When i 6= j (i, j = 1, 2, . . . , n) we then have that:

cov[Ni , N j ] = E
[
cov[Ni , N j ]|Γ

]
+ cov

[
E [Ni |Γ ] , E

[
N j |Γ

]]
= 0+ cov

[
qi

(
w0,i +

K∑
k=1

wk,iΓk

)
,

q j

(
w0, j +

K∑
l=1

wl, jΓl

)]

= qi q j

K∑
k=1

K∑
l=1

wk,iwk, j cov [Γk,Γl ]

= qi q j

K∑
k=1

wk,iwk, jσ
2
k . (12)

For the diagonal terms we find that:

var[Ni ] = E [var[Ni ]|Γ ]+ var [E [Ni |Γ ]]

= qi

(
K∑

k=0

wk,i

)
+ q2

i

K∑
k=1

w2
k,iσ

2
k . (13)

We find now from (12) that (cov[N])i j is given by

cov[N]i j = qi q j

K∑
k=1

wk,iwk, jσ
2
k + δi j qi

K∑
k=0

wk,i . (14)

In this expression δi j denotes the Kronecker delta, i.e. δi j = 1
if i = j and δi j = 0 if i 6= j.

For the variance of S∗ it follows now that

var[S∗] =
n∑

i=1

n∑
j=1

ci c j (cov[N])i j . (15)

From (4) we obtain an expression for the expected loss of S∗:

E[S∗] =
n∑

i=1

ci qi

K∑
k=0

wk,i . (16)

The Eqs. (14)–(16) provide expressions for some key
characteristics of our approximate model and hence this should
be constructed such that for any i, j = 1, 2, . . . , n, the
following conditions C1–C4 are (approximately) fulfilled. Note
that the notation FX (x) is used to denote the d.f. for a r.v. X .

C1: E[S∗] = E[S]
C2: var[S∗] = var[S]
C3: cov[N] = cov[I].
C4: FNi (x) = FIi (x) for all i = 1, 2, . . . , n and x = 0, 1,

2 . . . , n.

We notice that the different conditions are not all
independent from each other. In particular, condition C4 implies
that E[Ni ] = E[Ii ] should hold for i = 1, 2, . . . , n, and
in this case condition C1 will also be fulfilled automatically.
Moreover, since the Ni are conditionally Poisson distributed
whereas the Ii are conditionally Bernoulli distributed, condition
C4 can never be met exactly. Hence, our model is subject to
some approximation error which will be addressed further in
the paper.

In the remainder of the paper we will always assume that
E[Ni ] = E[Ii ] but this means that for any i = 1, 2, . . . , n we
must have that:

K∑
k=0

wk,i = 1. (17)

In the next section we will discuss how to choose the
coefficients wi, j and σi such that the available information
from the individual true model is preserved by our approximate
model.

4. Parameterization of the model

4.1. The standard CreditRisk+ model

The standard CreditRisk+ model assumes that there is no
idiosyncratic risk and only one common factor, i.e. w1,i > 0,
σ 2

1 > 0 whereas all other parameters vanish. It remains to
determine w1,i and σ 2

1 such that the different conditions C1 to
C4 are (approximately) met.

From (17) it follows immediately that w1,i = 1. In order to
make sure that also condition C2 is fulfilled, we find now from
(15) that

n∑
i=1

n∑
j=1

ci c j qi q j σ 2
1 +

n∑
i=1

c2
i qi = var [S] (18)

should hold and from this it follows that σ 2
1 is given by:

σ 2
1 =

var(S)−

(
n∑

i=1
c2

i qi

)
(

n∑
i=1

ci qi

)2 . (19)

Note that in order to guarantee that σ 2
1 > 0 we must have

var(S) >

(
n∑

i=1

c2
i qi

)
>

n∑
i=1

c2
i qi (1− qi ) = var(Sind), (20)

where Sind denotes the aggregate claims under the individual
model assuming that all risks are independent. Hence, the
approximate model only makes sense in the case that the
different correlations are (on average) positive. Since different
loans are subject to some common economic factors this
condition will in practice always be fulfilled.

We conclude that this parameterization guarantees that
conditions C1 and C2 are met. The question is now to which
extent conditions C3 and C4 will be fulfilled.

In order to determine the distribution function of Ni , we
determine its moment generation function. We find:
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E
[
exp(t Ni )

]
= E

[
E
[
exp(t Ni ) | 0

]]
= E

[
exp (qi Γ1 (exp(t)− 1))

]
= mΓ1 (qi (exp(t)− 1))

=

(
β1

β1 − qi (exp(t)− 1)

)β1

=

 β1
β1+qi

1−
(

1− β1
β1+qi

)
exp(t)

β1

, (21)

with β1 defined as

β1 =
1

σ 2
1

. (22)

Inspection of (21) tells us that

Ni
d
=NB

(
β1,

β1

β1 + qi

)
, (23)

where NB denotes the Negative Binomial distribution. We see
now that the the distributions of Ii and Ni will be “close” to
each other, and hence that condition C4 is approximately met,
provided that qi

β
is small enough such that the higher-order

terms can be neglected. It appears that in practical situations this
condition is often fulfilled; see Credit Suisse Financial Products
(1997). Indeed, we have that

Pr [Ni = 0] =
(

β1

β1 + qi

)β1

≈ 1− qi = Pr [Ii = 0] , (24)

while

Pr [Ni = 1] = β1

(
β1

β1 + qi

)β1
(

1−
β1

β1 + qi

)
≈ qi

= Pr [Ii = 1] . (25)

Note that var [Ii ] = qi (1− qi ) ≤ var [Ni ] = qi

(
1+ qi

β

)
.

In order to assess condition C3 we note that for i 6= j , the
pairwise correlations in the approximated model are given by

cor[Ni , N j ] =

√
qi q j

β1

1√
1+ qi

β

√
1+ q j

β

≈

√
qi q j

β1
. (26)

Hence, the approximation will perform best if the “exact” cor-

relations corr[Ii , I j ] are approximately equal to
√

qi q j

β
.

4.2. The generalized CreditRisk+ model

From (26) it follows that in the Standard CreditRisk+ model
risky loans with the same default probability can be grouped
into a so-called cluster. A cluster is defined to contain risks
with the same stochastic default probability. It follows that
the risks that are present within a cluster (intra cluster) are
all equally correlated with each other and also have the same
correlation with the different risks from any other given cluster
(inter cluster).

In order to parameterize a Generalized CreditRisk+ model
that (approximately) satisfies conditions C1–C4 it is useful to
rewrite (14) into a matrix equation.
Let us define the following vectors and matrices:

W =
[
w1 . . . wn

]
, wi =

[
w1,i . . . wK ,i

]T
.

Furthermore we introduce the matrices Q and c as follows:

Q :=

q1
. . .

qn

 and c =
[
c1 . . . cn

]T
. (27)

Finally, we consider the following unit vector,

1 =
[
1 . . . 1

]T
. (28)

We find now from (12) that the final expression for the
covariance structure of N is given by:

cov[N] = QWT6WQ+ Q. (29)

For the variance of S∗ we find from (29) the following
expression:

var[S∗] = cT(QWT6WQ+ Q)c. (30)

The objective of this section is to find for each of the i risks
(i = 1, 2, . . . , n) the non-negative factor loadings wi, j and
the K volatilities σk, ( j = 0, 1, . . . , K ; k = 1, 2, . . . , K ),
i.e. the matrices W and 6 of a CreditRisk+ model such that the
conditions C1–C4 are (approximately) met. From our definition
of a cluster it follows that all the risks belonging to the same
cluster will be assigned the same parameters wi, j .

Let N denote the number of clusters. For each 1 ≤ i ≤ N ,
denote the i th column of the identity matrix IN by the vector
ei ∈ RN , i.e.

e1 :=
[
1 0 . . . 0

]T
, . . . , eN :=

[
0 . . . 0 1

]T
.

Denote by Cl ∈ Nn the vector such that Cli ∈ {1, . . . , N } is the
cluster number to which risk i belongs. Define the following
matrix E ∈ RN×n :

E :=
[
eCl1 eCl2 . . . eCln

]
. (31)

Note that ETE = In . Define the matrix C ∈ RN×N such that
Ci, j is equal to the (given) correlation between risks of cluster k
and risks of cluster l. We will assume that C is non-negative and
positive semi-definite. The non-negativity assumption Ci j ≥ 0
reflects that different credit risks are, at least to some extent,
subject to some common economic factors and these drive the
correlations to be non-negative. As we will see it will also make
sure that the matrix W of factor loadings will be non-negative,
which is strictly needed in order to have non-negative intensities
Ri in (6) necessary to construct any CreditRisk+ model. The
semi-definiteness assumption vTCv

≥ 0,∀v 6= 0 ensures that
the variance of any portfolio is non-negative.

For any pair i, j with i 6= j we have that

corr(Ii , I j ) = CCli ,Cl j = eT
Cli CeCl j . (32)

Note that the diagonal elements of C are not equal to 1 because
they represent the average correlation between two different
risks which are in the same cluster, and not the correlation
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between a risk and itself. As a consequence, C is strictly
speaking not a correlation matrix. By taking this into account,
(32) can be rewritten as follows:

corr[I] = ETCE+ In − diag[ETCE]. (33)

It follows that:

cov[I] = [Q(I − Q)]1/2ETCE[Q(I − Q)]1/2

+ [Q(I − Q)]1/2
(

In − diag ETCE
)
[Q(I − Q)]1/2. (34)

Because default probabilities and default correlations are small,

[Q(I − Q)]1/2
(

In − diag[ETCE]
)
[Q(I − Q)]1/2

≈ Q. (35)

Note that this approximation only affects the diagonal part of
cov[I]. By using this approximation and by equating (29) and
(34) we obtain the following equation:

[Q(I − Q)]1/2ETCE[Q(I − Q)]1/2
= QWT6WQ (36)

and it remains to determine W and 6. Let us denote by Q̂ ∈
RN×N the diagonal matrix that contains the (expected) default
probability per cluster:

Q̂i,i = q j , ∀ j such that Cl j = i.

In order to find W and 6 that satisfy (36), let us assume that
there exists a matrix W0 ∈ RN×K with only non-negative
elements such that

C = W0WT
0 . (37)

Obtaining such a factorization, which requires C to be non-
negative, is by no way trivial and will be developed in Section 5.
One obtains now from (36) that

WT6W = Q−1/2(I − Q)1/2ETCEQ−1/2(I − Q)1/2

= ETQ̂−1/2(I − Q̂)1/2W0WT
0 Q̂−1/2(I − Q̂)1/2E

= WT
1 W1 (38)

with W1 ∈ RK×n a matrix with only non-negative elements
given by

W1 = WT
0 (I − Q̂)1/2Q̂−1/2E. (39)

Let us now determine W and 6. Remember that the W matrix
must only have non-negative elements smaller than 1. In order
to correct this in W1, we propose the following solution. Define

σ := max
i, j

W1(i, j), W :=
1
σ

W1, (40)

6 := σ 2IK , w0 := 1n −WT1k, (41)

where IK denotes the identity matrix of dimension K and 1n is
the column vector of dimension n with all its elements equal to
1. It is clear that

WT6W = WT
1 W1. (42)

Moreover, from (40), (39) and (37) it follows that the matrix W
is non-negative, as required, and (17) is satisfied as well. From
these matrices, the coefficients of the Multifactor CreditRisk+

model with K idiosyncratic factors are the following:

(1) The Gamma variables Γi (i = 1, 2, . . . , K ) have the same
variance σ 2 and expectation 1.

(2) Each coefficient for the idiosyncratic risk is equal to the
corresponding coefficient in the vector w0:

w0,i := w0(i).

(3) For any i ∈ {1, . . . , n} and k ∈ {1, . . . , K },

wk,i := W(k, i).

From the preceding discussion, it follows that with this choice
conditions C1–C3 are approximately fulfilled and a similar
reasoning as in Section 4.1 shows that also condition C4 is
approximately met.

Remark 4.1. Note that the computations have to be done only
once. Indeed, once the matrix

Ŵ := WT
0 (I − Q̂)1/2Q̂−1/2

has been computed, the W-matrix for a given portfolio is just
a copy of columns of Ŵ that correspond to the clusters of each
risk of the portfolio.

5. Non-negative matrix factorization (NNMF)

It follows from (37) that a key step of the proposed model
consists in factorizing the matrix C into a product of two non-
negative matrices and this will be discussed in this Section.

We will present the Non-Negative Matrix Factorization
(NNMF) problem. In fact, this is a more general problem than
we actually have but when adding a symmetry constraint it
reduces to our original problem. The symmetry issue will be
considered in Section 6.

In this section, we will need the following notation. The
Hadamard product A◦B and Hadamard division [A]

[B]
of the m×n

matrices A and B, are the m×n matrices with elements Ai, j Bi, j
and Ai, j/Bi, j , respectively.

The NNMF problem imposes only non-negativity conditions
on the factors (i.e. C ≈

∑k
i=1 uiv

T
i , ui , vi ≥ 0) and can be

stated as follows:
NNMF: Given a non-negative (m × n) matrix C, find
two non-negative matrices U(m × p) and V(p × n) that
minimize F(C, UV), where F is a cost function defining the
“nearness” between two matrices.

The choice of F will impact on how to find the minimizers,
and hence, the solution of the minimization problem. The
most popular choice is the Frobenius norm (or the Euclidean
Distance)

F(C, UV) =
1
2
‖C− UV‖2 =

1
2

∑
i j

(Ci j − [UV]i j )
2

=
1
2

∑
i j

[C− UV]2i j .

Lee and Seung (1999) propose a simple algorithm for
NNMF which is based on multiplicative updating rules related
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to the cost function above. We also derive a similar algorithm
for the problem of Weighted Non-Negative Matrix Factorization
(WNNMF) which minimizes the Weighted Euclidean Distance

FK(C, UV) = ‖C− UV‖2K

=
1
2

∑
i j

[K ◦ (C− UV) ◦ (C− UV)]i j . (43)

Note that for solving the NNMF, there is also another
popular choice of cost function which is the Kullback–Leibler
Divergence; see Lee and Seung (1999, 2000).

We first review some known information and results about
NNMF.

5.1. Gradient information

Although ‖C−UV‖2 is convex in U and in V, it is not convex
in the two at the same time. One can show that there are many
local minimizers. A simple strategy is to alternately minimize
one of the matrices (U or V) while keeping the other one fixed.
Upon convergence of such an iteration, both gradients versus
U and V are zero, and hence a stationary point is reached.
Typically, this will be a local minimizer. One can explicitly
obtain the gradients:

∇U‖C− UV‖2 = −(C− UV)VT,

∇V‖C− UV‖2 = −UT(C− UV).

The Kuhn–Tucker optimality conditions for the constrained
optimization problem are:

U ◦ (CVT
− UVVT) = 0 , V ◦ (UTC− UTUV) = 0.

Additional properties of the stationary points are mentioned in
Catral et al. (2004).

5.2. Multiplicative updating rules

In Lee and Seung (1999), algorithms for NNMF are
proposed that are based on a number of multiplicative updating
rules described in the following theorems:

Theorem 1. The Euclidean distance ‖C − UV‖2 is non-
increasing under the updating rules:

V← V ◦
[UTC]

[UTUV]
, U← U ◦

[CVT
]

[UVVT]
. (44)

The proof of this theorem can be found in Lee and Seung (2000)
and will be extended for the weighted cases in Theorem 3. Note
also that the above updating rules are the same as in Lee and
Seung (1999, 2000) but are rewritten into matrix form using the
Hadamard product and Hadamard division, in order to allow an
easy comparison with the updating rules for the weighted cases.

In order to derive properties of these updating rules we need
a simple lemma.

Lemma 2. Let A be a symmetric non-negative matrix and v
be a positive vector. Let Dx = diag(x) denote a diagonal
matrix with the entries of x on diagonal. Then the matrix

Â = diag
(

[Av]
[v]

)
− A is positive semi-definite.
Proof 1. It is easy to see that diag
(

[Av]
[v]

)
= D−1

v DAv. The

scaled version of Â: Âs = DvÂDv = DAvDv − DvADv is
then easily seen to be diagonally dominant, i.e. each diagonal
element is positive and larger than or equal to the sum of the
absolute values of the off-diagonal elements in the same row. It
is well-known that such matrices are also positive semi-definite;
see Horn and Johnson (1999). Hence, Â is also positive semi-
definite. �

The following theorem then generalizes Theorem 1 to the
weighted case:

Theorem 3. The weighted Euclidean distance ‖C − UV‖2K is
non-increasing under the updating rules:

V← V ◦
[UT(K ◦ C)]

[UT(K ◦ (UV))]
, U← U ◦

[(K ◦ C)VT
]

[(K ◦ (UV))VT]
.

(45)

Proof 2. We only treat the updating rule for V, the other can be
proven similarly.

First, we split the cost function column by column and
consider the partial cost function of each column of C, V and
K, which we denoted by c, v and k respectively:

F(v) = Fq(c, Uv) =
1
2

∑
i

(ki (ci − [Uv]i )2)

=
1
2
(c− Uv)TDk(c− Uv), (46)

where Dk = diag(k). Let vt be the current approximation of
the minimizer of F(v) then one can rewrite F in the following
quadratic form:

F(v) = F(vt )+ (v− vt )T
∇F(vt )

+
1
2
(v− vt )TUTDkU(v− vt ), (47)

where the gradient ∇F(vt ) can be explicitly written as

∇F(vt ) = −UTDk(c− Uvt ). (48)

Next, we approximate F by a simpler quadratic model (see
Fig. 1):

G(v, vt ) = F(vt )+ (v− vt )T
∇F(vt )

+
1
2
(v− vt )TD(vt )(v− vt ), (49)

where G(vt , vt ) = F(vt ) and D(vt ) is a diagonal matrix
chosen to make D(vt )−UTDkU positive definite implying that
G(v, vt )− F(v) ≥ 0,∀v. The choice for D(vt ) is similar to that
of the Lee and Seung algorithm:

D(vt ) = diag

(
[UTDkUvt

]

[vt ]

)
. (50)

Lemma 2 assures the positive semi-definiteness of D(vt ) −

UTDkU. As a result, we have

F(vt ) = G(vt , vt ) ≥ min
v

G(v, vt )

= G(vt+1, vt ) ≥ F(vt+1), (51)
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Fig. 1. Error minimization using auxiliary function.

where vt+1 is found by solving ∂G(v,vt )
∂v = 0:

vt+1
= vt
− D(vt )−1

∇F(vt ) (52)

= vt
+ diag

(
[vt
]

[UTDkUvt ]

)
UTDk(c− Uvt ) (53)

= vt
+ vt
◦

[
UTDk(a − Uvt )

][
UTDkUvt

] (54)

= vt
◦

[
UTDkc

][
UTDkUvt

] (55)

= vt
◦

[
UT(k ◦ c)

][
UT(k ◦ (Uvt ))

] . (56)

Putting together the updating rules for all the columns of
V gives the desired updating rule for the whole matrix V as
in (45). The relation (51) shows that the weighted Euclidean
distance is non-increasing under the update rule for V. �

Remark 1. The unweighted case can be considered as a special
case of the weighted case, where all weights are set to 1.
Therefore, the above proof also holds for the unweighted case.

Remark 2. The best rank− k approximation is not necessarily
a sub-matrix of the best rank − (k + 1) approximation.

Remark 3. The non-negativity constraint on the matrices U
and V is automatically satisfied by these updating rules if the
starting matrices U0 and V0 are non-negative.

Remark 4. In order to prevent zero-division exceptions during
the execution of the algorithm, we replace in practice the above
updating rules by the following ones:

V← V ◦
[UT(K ◦ C)]

[UT(K ◦ (UV))] + ε1k×n

,

U← U ◦
[(K ◦ C)VT

]

[(K ◦ (UV))VT] + ε1m×k

,

(57)

where ε is a small positive constant.
Remark 5. The fixed point obtained from the above algorithm
may not be a stationary point of the cost function but a
simple modification of the above algorithm can fix this, as
pointed out in Lin (2005). Since the problem is not convex, the
approximation error plays a more important role than the type
of fixed point. Therefore, it is useful to restart the algorithm
several times to have the best possible approximation.

6. Symmetric non-negative matrix factorization (SNNMF)

In the previous section, we have introduced a method for the
NNMF problem. In this section, we will modify this method
for symmetric non-negative matrices to produce the desired
factorization. Formally, the problem we are dealing with is the
following:

(SNNMF) minimize ‖C− UUT
‖

2
K subject to U ∈ Rn×k

+ ,

where C and K are symmetric non-negative matrices.
We call this a Symmetric Non-Negative Matrix Factorization

(SNNMF), and it is obviously a special case of NNMF that
approximates the matrix C by a completely positive (cp) matrix
UUT (Barioli and Berman, 2003). We cite here some facts about
completely positive matrices:

• A real non-negative matrix C which can be decomposed as
UUT (U ≥ 0) is a completely positive matrix.
• The smallest number of columns of U ≥ 0 such that C =

UUT is called the completely positive rank (cp-rank) of C.
• No polynomial time algorithms are known yet to address the

following questions. Is a given matrix completely positive?
and What is the cp-rank of a given matrix?

Therefore, it is not realistic to solve the true SNNMF problem
but one needs to consider a relaxed version of it. Our approach
is to use the NNMF problem to produce acceptable results for
the SNNMF problem.

First we will see if the fixed points of NNMF for symmetric
matrices might be symmetric as well. Then we show how to use
the NNMF algorithm for obtaining symmetric approximations.
We treat these separately in the following paragraphs.

6.1. Fixed point of NNMF for symmetric matrices

It appears that there are no efficient methods yet to solve
the (SNNMF) problem. Even if one uses the NNMF algorithm
to look for an UV approximation of a symmetric matrix C,
nothing guarantees that UV is also symmetric. Some interesting
results are to be found in Catral et al. (2004) and are related
to symmetry of the fixed points of NNMF. But these results
deal only with the simple cases where the fixed points of
NNMF have zero gradients. For other cases, there is still
no guarantee for symmetry. We should therefore modify the
NNMF algorithm in order to favor symmetric fixed points.
In the next subsection, we derive one such particular way to
modify the NNMF algorithm.

6.2. Fixed-point symmetrization

Our strategy is to drive the NNMF algorithm to converge
to a fixed point of SNNMF if possible. We start the NNMF
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Fig. 2. Approximation errors of the covariance matrix as a function of the rank.
algorithm with an asymmetric starting point (i.e. U0V0), and
then force the two factors (i.e. Uk and Vk) to be equal by
minimizing their normed difference. One way to do it is to use
the following modified cost function for a symmetric matrix C:

Fs(C, UV) = ‖C− UV‖2K + α‖UT
− V‖2, (58)

where the earlier part (‖C−UV‖2K) is called the approximation
error and the latter part (‖UT

− V‖2) is called the asymmetry
penalty.

Incorporating additional linear or quadratic costs with the
Euclidean Distance does not change significantly the updating
rules. Using the same reasoning as presented in the Theorems 1
and 3, one can obtain the following updating rules for the
modified cost function:

V← max

(
V ◦

[
UT(K ◦ C)+ α(V − UT)

][
UT(K ◦ (UV))+ ε1k×n

] , 0

)
, (59)

U← max

(
U ◦

[
(K ◦ C)VT

+ α(U − VT)
][

(K ◦ (UV))VT + ε1m×k
] , 0

)
, (60)

where the max function is introduced to keep the factors non-
negative. Note that to improve the search, we have to apply a
balancing step after each update of U or V. The step consists
in balancing the norm of each column of U and that of the
corresponding row of V

Di i =

√
‖Vi,:‖√
‖U:,i‖

U = UD V = D−1V. (61)

The parameter α appears as the trade-off between the
approximation error and the symmetry of the fixed point.
The right choices of α can lead the search direction towards
the symmetric fixed points. Overestimating α could lead to
a symmetric factorization without taking into account the
approximation error.

An appropriate value of α is believed to depend on the best
possible approximation error, but this error is not known in
general. Experiments show that the range of possible values of
α is quite large, so that, one can restart the algorithm with a
better value of α determined from the previous results of the
algorithm.

It is also useful to note that, after all, the results might not
be in the desired form in which U = VT. But by having forced
the symmetry, one can expect that the error ‖C−UUT

‖
2 and/or

‖C − VTV‖2 are not too far from the real approximation error
‖C− UV‖2.

7. Numerical results

The proposed CreditRisk+ model has been applied to real
data. First, the cluster correlation matrix C has been computed
from historical asset data. In order to obtain a low-rank non-
negative approximation of the correlation matrix, the SNNMF
algorithm has been used for increasing values of the number
K of systematic risks. This number K is also equal to the
rank of the non-negative factorization of C. The error between
the approximated non-negative factorization and C is compared
with the error obtained without imposing the non-negativity of
the factorization (i.e. by using the SVD decomposition).

As we can see, the SNNMF algorithm performs very well in
practice. With this approach, using 10 systematic risks instead
of using a single factor approach allowed to reduce the error
on the correlations by a factor 3, while still preserving the
numerical tractability of the model. We believe that this is a
substantial improvement.

Note that the SNNMF algorithm can be used in any problem
where the entries of the matrix C or any product of the type vTCv

have to be evaluated frequently, since the complexity for this is
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substantially reduced when using the low-rank approximation,
while the accuracy is still very good (See Fig. 2).

8. Concluding remarks

The CreditRisk+ model is one of the industry standards
to estimate the risk of a portfolio of credit exposures. In
practical situations one often only has the individual credit risk
characteristics and the default correlations available and this
makes the parameterization a difficult exercise. In this paper
a solution has been proposed that enables the parameterization
whilst preserving the characteristics of the portfolio.
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