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1.0.1 Description of the problem

We consider two m × p strictly proper transfer functions

T (s) = C(sIn − A)−1B, T̂ (s) = Ĉ(sIk − Â)−1B̂, (1.1)

of respective Mc Millan degrees n and k < n. We are interested in finding
the necessary and sufficient conditions for the existence of projecting matrices
Z, V ∈ C

n×k such that

Ĉ = CV, Â = ZT AV, B̂ = ZT B, ZT V = Ik (1.2)

and in characterizing the set of all transfer functions T̂ (s) that can be obtained
via the projection equations (1.1,1.2). Only the image of the projecting matrices
Z and V are important since choosing other bases satisfying the bi-orthogonality
condition (1.2) amounts to a state-space transformation of the realization of
T̂ (s).

1.0.2 Motivation and history of the problem

Equation (1.2) arises naturally in the general framework of model reduction of
large scale linear systems [1]. In this context we are given a transfer function
T (s) of Mc Millan degree n which we want to approximate by a transfer function
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T̂ (s) of smaller Mc Millan degree k, in order to solve a simpler analysis or design
problem.

Classical model reduction techniques include modal approximation (where
the dominant poles of the original transfer function are copied in the reduced
order transfer function), balanced truncation and optimal Hankel norm approxi-
mation (related to the controllability and observability Grammians of the trans-
fer function [10]). These methods either provide a global error bound between
the original and reduced-order system and/or guarantee stability of the reduced
order system. Unfortunately, their exact calculation involves O(n3) floating
point operations even for systems with sparse model matrices {A,B,C}, which
becomes untractable for a very large state dimension n.

A more recent approach involves generalized Krylov spaces ([3]) which are
defined as the images of the generalized Krylov matrices

[

(σIn − A)−1B · · · (σIn − A)−kB
]

X, X =







x0

...
. . .

xk−1 . . . x0






(1.3)

and

[

(γIn − AT )−1CT · · · (γIn − AT )−`CT
]

Y, Y =







y0

...
. . .

y`−1 . . . y0






. (1.4)

These are related to the respective right and left tangential interpolation condi-
tions

[

T (s) − T̂ (s)
]

x(s) = O(s − σ)k, x(s)
.
=

k−1
∑

i=0

xi(s − σ)i (1.5)

and
[

T (s) − T̂ (s)
]T

y(s) = O(s − γ)`, y(s)
.
=

`−1
∑

i=0

yi(s − γ)i. (1.6)

In the most general form, one imposes such conditions in several points σi

and γj as well as bi-tangential conditions (see [2],[5] for more details). The
calculation of Krylov spaces and the solution of the corresponding tangential
interpolation problem typically exploits the sparsity or the structure of the
model matrices {A,B,C} of the original system and are therefore efficient for
large scale dynamical systems with such structure. Their drawbacks are that
the resulting reduced order systems have no guaranteed error bound and that
stability is not necessarily preserved.

The conjecture – and open problem – is that these methods are in fact
quite universal (i.e. contain the classical methods as special cases) and can
be formulated in terms of Sylvester equations and generalized eigenvalue prob-
lems. Tangential interpolation would then be a unifying procedure to construct
reduced-order transfer functions in which only the interpolation points and tan-
gential conditions need to be specified.
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1.0.3 Our conjecture

The error transfer function E(s)
.
= T (s) − T̂ (s) is realized by the following

pencil :

M − Ns
.
=





A 0 B

0 Â B̂

C −Ĉ 0



 − s





In

Ik

0



 . (1.7)

The transmission zeros of the system matrix (i.e. the system zeros of its minimal
part) can be chosen as interpolation points between T (s) and T̂ (s) since the
normal rank of E(s) drops below its normal rank. Therefore one can impose
interpolation conditions of the type (1.5,1.6) for appropriate choices of x(s) and
y(s) and generalized eigenvalues σ and γ of (1.7).

Our conjecture tries to give necessary and sufficient conditions for this in
terms of the system zero matrix.

Conjecture 1.0.1 A minimal state space realization of the strictly proper trans-
fer function T̂ (s) of Mc Millan degree k can be obtained by projection from a
minimal state space realization of the strictly proper transfer function T (s) of Mc
Millan degree n > k if and only if there exist two regular pencils, Mr − sNr and
Ml−sNl such that the matrices L, L̂, R, R̂,Ql and Qr of the following equations





A − sIn 0 B

0 Â − sIk B̂

C −Ĉ 0









RNr

R̂Nr

Qr



 =





R

R̂

0



 (Mr − sNr), (1.8)





AT − sIn 0 CT

0 ÂT − sIk −ĈT

BT B̂T 0









LNl

−L̂Nl

Ql



 =





L

−L̂

0



 (Ml − sNl), (1.9)

satisfy the following conditions :

1.
[

NT
l LT −NT

l L̂T QT
l

]

(M − Ns)





RNr

R̂Nr

Qr



 = 0,

2. dim (Im(RNr)) = dim (Im(LNl)) = k.

Moreover, such matrices always exist provided 2k ≤ 2n − m − p.

The conditions given by our conjecture are at least sufficient. Indeed, from
equations (1.9), (1.8) and the regularity assumption of Mr − sNr and Ml − sNl,
it follows that

CRNr = ĈR̂Nr , NT
l LT B = NT

l L̂T B̂. (1.10)

Then, from condition 1,

NT
l LT RNr = NT

l L̂T R̂Nr , NT
l LT ARNr = NT

l L̂T ÂR̂Nr. (1.11)
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Finally, conditions 1 and 2 imply that the matrices R̂Nr and L̂Nl are right
invertible. Defining Z, V ∈ C

n×k by

Z = LNl(L̂Nl)
−r, V = RNr(R̂Nr)

−r, (1.12)

we can easily verify equations (1.1) and (1.2).
We now present the link with the Krylov techniques. Equations (1.8) and

(1.9) give us the following Sylvester equations :

ARNr − RMr + BQr = 0 , AT LNl − LMl + CT Ql = 0. (1.13)

These Sylvester equations correspond to generalized left and right eigenspaces
of the system zero matrix (1.7). More precisely, Im(RNr) and Im(LNl) can
be expressed as generalized Krylov spaces of the form (1.3), (1.4). The choice
of matrices Ml, Nl,Mr, Nr, Ql and Qr correspond to respectively left and right
tangential interpolation conditions at the eigenvalues σi of (Mr−sNr) and γj of

(Ml−sNl), that are satisfied between T (s) and T̂ (s) (see [5]). These eigenspaces
correspond to disjoint parts of the spectrum of M − Ns such that the product
NT

l LT RNr = NT
l L̂T R̂Nr is invertible (see [5] for more details).

In other words, our conjecture is that any projected reduced-order transfer
function can be obtained by imposing some interpolation conditions or some
modal approximation conditions with respect to the original transfer function.
Moreover, a solution always exists provided 2k ≤ 2n−m−p (i.e. for all T̂ (s) of
sufficiently small degree k). If this turns out to be true, we could hope to find
the interpolation conditions that yield e.g. the optimal Hankel norm or optimal
H∞ norm reduced order models using cheap interpolation techniques.

1.0.4 Available results

In the single input single output case, the following result was proved in [4] :

Theorem 1.0.1 Let T (s) = C(sIn − A)−1B and T̂ (s) = Ĉ(sIk − Â)−1B be
arbitrary strictly proper SISO transfer functions of Mc Millan degrees n and
k < n, respectively. Then T̂ (s) can be constructed via projection of T (s) using
equations (2).

Moreover, by looking carefully at the proof, Conjecture 1.0.1 is satisfied for this
particular case!

Independently, Halevi recently proved in [6] new results concerning the gen-
eral framework of model order reduction via projection. The unknowns Z and V

have 2nk parameters (or degrees of freedom), while (1.2) imposes (2k +m+p)k
constraints. He shows that the case k = n − m+p

2
corresponds to a finite num-

ber of solutions. Moreover, for the particular case m = p and k = n − m, he
shows that any pair of projecting matrices Z, V satisfying (1.2) can be seen as
generalized eigenspaces of a certain matrix pencil. The matrix pencil used by
Halevi can be linked to the system zero matrix of the error transfer function
defined in equation (1.7).
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Matrices Z and V satisfying (1.2) are also the k trailing rows of S−1, respec-
tively columns of S which transform the system {A,B,C} to {S−1AS, S−1B,CS} :

[

S−1AS − sIn S−1B

CS 0

]

=





∗ ∗ ∗

∗ Â − sIk B̂

∗ Ĉ 0



 . (1.14)

The existence of projecting matrices Z, V satisfying (1.1,1.2) is therefore related
to the above sub-matrix problem. A square matrix Â is said to be embedded in
a square matrix A when there exists a change of coordinates S such that Â−sIk

is a sub-matrix of S−1(A − sIn)S. Necessary and sufficient conditions for the
embedding of such monic pencils are given in [9],[8].

As for monic pencils, we say that the pencil M̂ − N̂s is embedded in the
pencil M −Ns when there exist invertible matrices Le,Ri such that M̂ − N̂s is
a sub-matrix of Le(M −Ns)Ri. Finding necessary and sufficient conditions for
the embedding of such general pencils is still an open problem [7]. Nevertheless,
one obtains from [9],[8],[7] necessary conditions on (Ĉ, Â, B̂) and (C,A,B) for
[

Â − sIk B̂

Ĉ 0

]

to be embedded in

[

A − sIn B

C 0

]

. These obviously give neces-

sary conditions for the existence of projecting matrices Z, V satisfying (1.1,1.2).
We hope to be able to shed new light on the necessary and sufficient conditions
for the embedding problem via the connections developed in this paper.
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[7] J.J. Loiseau, S. Mondié, I. Zaballa and P. Zagalak, “Assigning the Kronecker
invariants of a matrix pencil by row or column completions”, Linear Algebra
Appl., 278, pp 327-336, 1998.

[8] E. Marques de Sá, “Imbedding conditions for λ-matrices”, Linear Algebra
Appl., 24, pp 33-50, 1979.

[9] R.C. Thompson, “Interlacing Inequalities for Invariant Factors”, Linear Al-
gebra Appl., 24, pp 1-31, 1979.

[10] K. Zhou, J.C. Doyle, and K. Glover, “Robust and optimal control”, Prentice
Hall, Inc, Upper Saddle River, New Jersey, 1996.

7


