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1 Introduction

Large scale linear systems are often composed of subsystems that interconnect to each
other. Instead of reducing the entire system without taking into account its structure, it
might make sense to reduce each subsystem (or a few of them) by taking into account its
interconnection with the others subsystems in order to approximate the entire system. This
is the purpose of this paper. Interconnected systems, also called aggregated systems have
been studied in the eighties [1] in the model reduction framework, but received recently
only little attention [2]. It turns out that many model reduction techniques such as
weighted balanced truncation, controller reduction and second-order balanced truncation
can be seen as particular interconnected model reduction techniques.

First, some words about the notation. Let us assume that we are given a large scale
linear system G(s). This system is composed of an interconnection of k sub-systems Ti(s).
Each subsystem is assumed to be a linear MIMO transfer function. Subsystem Tj(s) has
αj inputs denoted by the vector aj and βj outputs denoted by the vector bj :

bi(s) = Ti(s)ai(s). (1)

Define α
.
=
∑k

i=1 αi and β
.
=
∑k

j=1 βj . The inputs of each subsystem are either outputs
of other subsystems or external input that do not depend on the other subsystems.

First, one can rewrite a transfer function from its subsystems via the use of an “inter-
connection matrix”

ai(s) = ui(s) +
k
∑

j=1

Ki,jbj(s). (2)

Sometimes it is preferable to define the external output ui(s) as a linear combination of a
global external output u(s). This is written as ui(s) = Hiu(s), where Hi ∈ Cαi×m. Define

a(s)
.
=
[

a1(s)
T . . . ak(s)

T
]T

, b(s)
.
=
[

b1(s)
T . . . bk(s)

T
]T

,

T (s)
.
=







T1(s)
. . .

Tk(s)






, H

.
=
[

HT
1 . . . HT

k

]T
.
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and finally the connectivity matrix K as follows

K
.
=







K1,1 . . . K1,k
...

. . .
...

Kk,1 . . . Kk,k






. (3)

The Mc Millan degree of Ti(s) is ni and (Ai, Bi, Ci, Di) is a minimal state space realization
of Ti(s). From these definitions, T (s) = C(sI −A)−1B +D with

C
.
=







C1

. . .

Ck






, A

.
=







A1

. . .

Ak






,

B
.
=







B1

. . .

Bk






, D

.
=







D1

. . .

Dk






.

The preceding equations can be rewritten as follows :

a(s) = Hu(s) +Kb(s) , b(s) = T (s)a(s). (4)

The output of G(s), denoted by y(s) is a linear function of the outputs of the subsystems:
y(s)

.
= Fb(s), with F ∈ Cp×β . The input of G(s) is the vector u(s). From (4),

y(s) = F (I − T (s)K)−1T (s)Hu(s). (5)

In others words, G(s) = F (I − T (s)K)−1T (s)H, with F ∈ Cp×β . Hence, a state space
realization of G(s) is given by (AG, BG, CG, DG) defined by (see for instance [3], pg 66)

CG
.
= F (I −DK)−1C , AG

.
= A+BK(I −DK)−1C,

BG
.
= B(I −KD)−1H , DG

.
= FD(I −KD)−1H. (6)

2 Balanced Truncation

Let us consider a transfer function

T (s)
.
= C(sIn −A)−1B,

which corresponds to the linear system

S

{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

, u(t) ∈ Rm, x(t) ∈ Rn, y(t) ∈ Rp (7)

If the matrix A is Hurwitz, the controllability and observability gramians, denoted respec-
tively by P and Q are the unique solutions of the following equations

AP + PAT +BBT = 0 , ATQ+QA+ CTC = 0.

These have the following energetic interpretation. If we apply an input u(.) ∈ L2[−∞, 0]
to the system (7) for t < 0, the position of the state at time t = 0 (by assuming the zero
initial condition x(−∞) = 0) is equal to

x(0) =

∫ 0

−∞

e−AtBu(t)dt
.
= Cou(t).
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By assuming that a zero input is applied to the system for t > 0, then for all t ≥ 0, the
output y(.) ∈ L2[0,+∞] of the system (7) is equal to

y(t) = CeAtx(0)
.
= Obx(0).

The so-called controllability operator Co : L2[−∞, 0] 7→ Rn (mapping past inputs u(.) to
the present state) and observability operator Ob : Rn 7→ L2[0,+∞] (mapping the present
state to future outputs y(.)) also have dual operators, respectively C∗o and O∗

b . It is easy
to show that the controllability and observability gramians are related to those via the
identities P = C∗oCo and Q = ObO

∗
b ([3]).

Another physical interpretation of the gramians is the following. The controllability
matrix arises from the following optimization problem. Let

J(v(t), a, b)
.
=

∫ b

a

v(t)T v(t)dt

be the energy of the vector function v(t) in the interval [a, b]. Then (see [4])

min
C0u(t)=x0

J(u(t),−∞, 0) = xT0 P
−1x0, (8)

and, symmetrically, we have the dual property

min
O∗

b
y(t)=x0

J(y(t),−∞, 0) = xT0 Q
−1x0. (9)

Two essential algebraic properties of gramians P and Q are as follows. First, under a
coordinate transformation x(t) = Sx̄(t), the new gramians P̄ and Q̄ corresponding to the
state-space realization (Ā, B̄, C̄) = (S−1AS, S−1B, CS) undergo the following (so-called
contragradient) transformation :

P̄ = S−1PS−T Q̄ = STQS. (10)

This implies that there exists a state-space realization (Abal, Bbal, Cbal) of T (s) such that
the corresponding gramians are equal and diagonal P̄ = Q̄ = Σ [3]. Secondly, because
these gramians appear in the solutions of the optimization problems (8) and (9), they tell
something about the energy that goes through the system, and more specifically, about
the distribution of this energy among the state variables. The idea is to perform a state
space transformation that gives equal and diagonal gramians and to keep only the more
controllable and observable states. We show how to apply the preceding idea to a set of
interconnected systems.

3 Interconnected Systems Balanced Truncation

This section is inspired from [5] and [6]. Let us consider the controllability and observ-
ability gramians of G(s) :

AGPG + PGA
T
G +BGB

T
G = 0 , AT

GQG +QGAG + CT
GCG = 0.

Let us decompose

PG =







P1,1 . . . P1,k
...

. . .
...

Pk,1 . . . Pk,k






, QG =







Q1,1 . . . Q1,k
...

. . .
...

Qk,1 . . . Qk,k






,
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where Pi,j ∈ Cni×nj . If we perform a state space transformation Φi to the state x̄i(t) =
Φixi(t) of each interconnected transfer function Ti(s), or to the linear system

S

{

ẋi(t) = Aixi(t) +Biui(t)
yi(t) = Cixi(t) +Diui(t)

, u(t) ∈ Rm, x(t) ∈ Rni , y(t) ∈ Rp, (11)

we actually perform a state space transformation

Φ
.
=







Φ1

. . .

Φk







to the realization (Ā, B̄, C̄, D̄) = (ΦAΦ−1,ΦB,CΦ−1, D) of T (s). This, in turn implies
that (ĀG, B̄G, C̄G, D̄G) = (ΦAGΦ

−1,ΦBG, CGΦ
−1, DG). From this,

(P̄G, Q̄G) = (ΦPGΦ
T ,Φ−TQGΦ

−1),

i.e. they also perform a contragradient transformation. This implies that (P̄i,i, Q̄ii) =
(ΦiPi,iΦ

T
i ,Φ

−T
i Qi,iΦ

−1
i ), which is a contra-gradient transformation that only depends on

the state space transformation on xi, i.e. on the state space associated to Ti(s).
It can be shown that the minimal past input energy necessary to reach xi(0) = x∗i over

all initial input condition xj(0), j 6= i, is x∗iP
−1
i,i xi. We can thus perform a bloc diagonal

transformation in order to make the gramians Pi,i and Qi,i both equal and diagonal :Pii =
Qii = Σi. This suggests then that we can truncate each subsystem Ti(s) by deleting the
states corresponding to the smallest eigenvalues of Σi.

If one balance and then project via the Schur complement of Pi,i and Qi,i, the state-
space of each system Ci, Ai, Bi is sorted with respect to the optimization problem minu ‖
u(t) ‖2 such that xi(0) = x0 and xj = 0 for j 6= i.

4 Krylov techniques for interconnected systems

Krylov techniques for structured systems have already been considered in the literature.
See for instance [7] in the controller reduction framework, or [8] in the second-order model
reduction framework. This last case has been revisited recently in [9] and [10].

The problem is the following. If one projects the state-space realizations (Ci, Ai, Bi)
of the interconnected transfer functions Ti(s) with projecting matrices Zi, Vi containing
Krylov subspaces, giving rise to reduced-order transfer functions T̂i(s) that satisfy inter-
polation conditions with respect to Ti(s), what are the resulting relations between Ĝ(s)
and G(s)?

If one chooses the same interpolation conditions for each subsystem then T̂ (s) automat-
ically satisfies the same interpolation conditions with respect to T (s). Let us investigate
what this implies for G(s) and Ĝ(s). Let us assume that

(Ĉ, Â, B̂) = (CV,ZTAV,ZTB)

such that ZTV = I and

Kk

(

(λI −A)−1, (λI −A)−1B
)

∈ Im(V ).
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It is well known that T̂ (s)
.
= Ĉ(sI − Â)−1B̂ interpolates T (s) at s = λ up to the k first

derivatives. Concerning G(s), the matrices F,K,D and H are unchanged. One obtains

Ĝ(s) = CGV (sI − ZTAGV )−1ZTBG +DG.

In general there is no reason for V to contain the subspaceKk

(

(λI −AG)
−1, (λI −AG)

−1BG

)

,
except for the case of interpolation at infinity. Indeed, it can easily be proven recursively
that

Kk

(

A+BK(I −DK)−1C,B(I −KD)−1H
)

⊆ Kk (A,B) .

It is possible to perform an interconnected structure preserving Krylov technique for an
arbitrary point λ in the complex plane as follows.

Lemma 4.1 Define

V ∈ Cn×r .
=
[

V T
1 . . . V T

k

]T
,

such that Vi ∈ Cni×r. Assume that

Kk

(

(λI −AG)
−1, (λI −AG)

−1BG

)

⊆ Im(V ).

Construct left projecting matrices Zi ∈ Cni×r such that ZT
i Vi = Ir. Project each subsystem

as follows :

(Ĉi, Âi, B̂i)
.
= (CVi, Z

T
i AiVi, Z

T
i Bi).

Then, Ĝ(s) interpolates G(s) at λ up to the first k derivatives.

Proof :
The preceding operation correspond to projecting CG, AG, BG with

Z
.
=







Z1

. . .

Zk






, V

.
=







V1

. . .

Vk






.

This implies that ZTV = I and Im(V ) ⊆ Im(V). This concludes the proof. ¤
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