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Abstract—We show that the projection of generalized state If we assumem > p, we can instead realize this same
space models of SISO systems allows to construct arbitrary transfer function using
lower order models and that they can be obtained via the

solution of particular generalized Sylvester equations. This sE—-A | B
generalizes the results already obtained for state space systems, C |0
where both the original models and low order models were
constrained to be strictly proper. We also conjecture that for Sh, —A11 —A12 0 | By
MIMO systems, this approach is as general as one can hope L —Aoq Sh,—A» 0 | B 1)
for. T —C ) b | D |’
0 0 —lp \ 0

I. INTRODUCTION ) ] ) o ]
which will typically be a minimal generalized state-space

It has been shown in the literature [3], [2] that mostealization. For such a system, it suffices to choose the
reduced order models(s) of a givenp x mtransfer function projection matrices
T(s) :=C(sl\—A)~B+D of Mc Millan degreeN can be
obtained via projection of the state vector of the system, i.e. ST [ ly, ZI 0 } v Iy, O

T(s) := C(slh—A)~1B+D where 0o ZI 1, 8 IO . @
p

sl—A=ZT(sl-A)V, B=Z'B, C=CV, D=D.  nere
This has been rigorously proven for SISO systems and shown 7T :— Ay (Yl —Agp) ™2, Z3 :=Co(yl — Az) 2,
to be true for almost all MIMO systems as well [4], [5]. It
should be pointed out, however, that this is actually restrictiv® obtain the realizatiofZ" (SE— A)V,Z"B,CV,0} in the
since bothT(s) and T(s) have to be equal a=c. An form
equivalent statement is that it only holds for strictly proper Shy—A 0 | B
systems, since theb = D = 0. —G lp |Dr |,

That this is indeed restrictive follows from the following 0 —lp ‘ 0
example, known asingular perturbation approximatiof6].  of the desired low order model. In this paper, we give a
Such a reduced order model fd(s) :=C(sly —A)"'B+D  more general treatment of this problem. We give sufficient
is constructed as follows. Perform first a similarity transforconditions for the existence of a projection of a generalized

mationT such that state space realization to yield a particular generalized state
shy— T-1AT ‘ T-1B ] space realization of a given reduced order model.
—CT ‘ D Il. GENERALIZED STATE SPACE REALIZATIONS
. SI”l;\A“ I_Al,i gl Definition 2.1: Let T(s) be an arbitrary rational matrix
= —ho1  Shy — A2 | B2 function. A quintuple(A,B,C,D,E) such that
—-C -G \ D

. . T(s)=C(sE—A)"B+D
then the reduced order model is defined{as, B,,C;,D; },

with is called ageneralizedstate space realization af(s). If
D =0, the quadrupléA,B,C,E) is also called a generalized
A =Ar1+Ana(Yl —Ag2) A1, Br =Bi+A1a(Yl —A22) "Bz, state space realization 3f(s). The dimension of the square
matricesA andE is called the order of the realization.

Cr =C1+Ca(yl —Agz) 'Ao1, Dy =D+Co(Yl —Az2) "Bz, In this paper, we only consider generalized state space
realizations withD = 0. As we will see, any (not necessarily
strictly proper) rational function admits a generalized state
space realization with = 0. Since the inverse afE— A must
exist, the penciSE— A must be nonsingular. This implies that
the Kronecker form of sE—A) is [10]

and wherey = 0 for a continuous-time system anyd= 1 for
a discrete-time system.
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whereJih¢ is a block diagonal matrix where each diagonallhe state space realizatioA, B,C,E) is minimal if and only
block is a Jordan block, but with zero as only possibléf

eigenvalue. 1) The realization(Atin, Bfin,Crin) Of the strictly proper

By rewriting transfer functionTfin(s) := Cfin(Shy;, — Afin) *Brin IS
Cri minimal.

B= [ Bfin  Bint ]7 C= { Cm"; ] 2) The realization(Jint,Bint,Cing) of the strictly proper

transfer functiorCint (Sh, — Jinf) "1Bins is minimal.

with appropriate dimensions, one obtains Proof: The minimality of (Ain,Bfin,Crin)
T() = Crin(Shy,, —Afin)*leinJrCinf(lnim —SJnf)’lef- is plegrly necessary. Assume thqt the state space
realization (Jinf,Binf,Cinf) IS non minimal. Then, there

From this, it is clear thaCrin(Shy,, — Afin) *Bin is strictly  exists (A,B,C) of smaller order i < nps such that
proper and that the polynomial part ®{s) is Cint (Shy,; — Jinf) Bint = C(slh — A)~1B. This implies that

Min Cint (In,; — Sdnt) 'Bint = C(ln—sA) 1B, i.e. (A,B,C,E) is

Cinf(lninf —SJnf)ilBinf = Z Cianil?]fBinfSk. non minimal.
K=o

Let us assume that the minimality conditions are satisfied.

The order of the state space realization is equakip+ni,s.  If there exists another state space realizatiarB,C,E) of
This order is in general not equal to the Mc Millan degresmaller order forT (s), this implies that either there exists a

of a rational function, defined as follows [10]. state space realization ®fi, (s) of smaller order, or that there
Definition 2.2: The Mc Millan degree of a rational matrix exists a state space realization@s (Sky,; — Jint) *Binf Of
T(s) is denoted byd([T (s)], and given by smaller order, i.e. one of the two minimality assumptions is

_ 1 not satisfied. u
O[T(s)] = v[T(s)] +vID(s™)l; A proof of the following result can be found in [10].

where T(s), D(s) are the strictly proper and polynomial Corollary 2.1: The Mc Millan degree of a transfer func-

parts of T(s), respectively, and/[ | denotes the regular tion realized by a minimal generalized state space realization

order of an irreducible (regular) state-space realization ¢f\B,C,E) is equal to the rank oE.

the associated strictly proper rational matrix. Another corollary is the following.

The following definition is essential. Corollary 2.2: Every p x m transfer functionT (s) of Mc
Definition 2.3: A quadruple(A,B,C,E) is called amini- Millan degreen can be realized as a generalized state

mal generalized state space realizationTd) when there Space model of the typ&(s) = C(sE— A)~'B, where the

exists no generalized state space realizatiarB,C,E) of dimension of the pencBE— A is N+min(m, p).
T(s) of smaller order. Proof: The normal rank of the polynomial part of
It is essential to keep in mind that we always consider herE(s) cannot be larger thamin(m, p). The proof is done by
D = 0. Note that in general the order of a minimal state spacebserving that the order of a minimal generalized state space
realization is not equal to the Mc Millan degreedfs) (see realization ofT(s) (with D = 0) is equal to the Mc Millan
[10], [8] for a discussion). degree ofT (s) plus the normal rank of the polynomial part

In the strictly proper case, it is well known that a statef T(s). See [10] for a discussion. u
space realizatior{A,B,C,E) is minimal if and only if the
matrix [ SE-A B | is of full row rank for any value of

se C (the pair(SE— A,B) is then called controllable) and In the single input single output case, the following result
has recently been proved [2].

the matrix C is of full column rank of any value 1 .5em 3.1:Let (A,B,C) and (A, B,C) be arbitrary min-

of se C (the pair (SE—A,C) is then called observable). imal state space realizations of SISO transfer functions of
Note that in the strictly proper case, the order of a minimalic Millan degreen andk < n , respectively. TherQA, I§7C)
generalized state space realization is equal to the Mc Millazen be constructed via projection @& B,C).

IlIl. PRELIMINARY RESULTS

degree of the corresponding transfer function. In order to generalize this theorem to non proper transfer
In the non proper case, the minimality (in the sense dtinctions, we need some preliminary results.
2.3) corresponds to the following conditions. Definition 3.1: Let (A,B,C,E) and (A,B,C,E) be two

Theorem 2.1:Let (A,B,C,E) be a state space realizationgeneralized state space realizations of respective ander
of T(s). Decompose this into the strictly proper part and thend k < n. The realization(A,B,C,E) is embeddedinto
polynomial part, i.e. choose invertible matriclg N such (A B,C,E) if there exists a pair ofrojectionmatricesZ,V €

that C™K such that
M(sE— AN | MB ] ZT(SE—AV —s£E—A, Z'B=B, cv=C. (3)
—CN ‘ 0 A straightforward consequence of this definition is the fol-
Sy, — Afin 0 Btin lowing o
= 0 lint —Sdnt | Binf | - Proposition 3.1:1f  (A,B,C,E) is embedded in

—Ctin —Cint | O (A,B,C,E), then for any invertible matrices,N,M,N of



appropriate dimensiorgMAN, MB,CN,MEN) is embedded the polynomial matrix| (SE —A)T BT |" has full column
in (MAN,MB,CN,MEN). rank for anyse C. This concludes the proof. ]

Proof: BecausdA,B,C,E) is embedded iffA B,C,E),
there existZ,V such that (3) is satisfied. Straightforward IV. MAIN RESULTS
computations show tha¥~TZMT,N-VN satisfies (3) for ~ Here is the main result of this paper.
the transformed realizations. [ ] Theorem 4.1:Let (A,B,C,E) be an arbitrary minimal

Proposition 3.2:Let (A,B,C,E) and (A7 é,é,é) be two state space realization of orderof an arbitrary, not nec-
minimal state space realizations of the SISO strictly propegssarily proper, SISO transfer functidifs). Let (A, B,C,E)
transfer functionsT (s) and 'f(s) of respective Mc Millan be an arbitrary minimal state space realization of okdem
degreen and k < n. Then (A,B,C,E) is embedded in of an arbitrary, not necessarily proper, SISO transfer function
(A,B,C,E). T(s), then(A,B,C,E) is embedded irfA,B,C,E).

Proof: BecauseT (s) and T (s) are strictly proper, the Proof: Assume thafl (s) and/orT (s) has a polynomial
matricesE and E of the minimal state space realizationspart. This implies that eitheE or E or both are singular.
(A,B,C,E) and (A,B,C,E) are invertible. From Proposition Because the pencilsE— A and sE — A are regular, it is
3.1, it is equivalent to prove thatE*A E~'B,C,ly) is always possible to fingi € C such that the matriceS+ uA
embedded intdE~*A E~!B,C,1,). The proof follows from and E + uA are invertible. From Proposition 3.3, the state

Theorem 3.1. m  space realizationA, B,C,E + uA) and(A,B,C E + uA) are
It remains to consider the singular case. In order to handt®inimal state space realizations of strictly proper transfer
this case, we will use the following result. functions. From Proposition 3.2, there exisV such that

P'ropc.)smon 3.3: Lefc (A,B,C,E) be a minimal state space Z’B—B ZTAV—A cv-0C )
realization of a possibly non proper SISO transfer function
T(s). For any valueu € C such thate + pA is nonsingular, and
the generalized state space realization zT(E + AV = E + uA. (6)

(A.B,C,E) := (A B,C,E+UA) Injecting (5) into (6) givesZTEV = E. This concludes the
[ |

is a minimal state space realization of the transfer functiorﬁ)rOOf‘ . . .
In [2], [9], it is shown that in the SISO strictly proper case,

T(s):=C(sE —A)1B, with standard state space realizati¢AsB,C), the projecting
matrices can always be obtained from Sylvester equations of

and T (s) is strictly proper. the form

Proof: First note that idet(sE— A) £ 0 for somese C,
thendet(s(E + puA) — A) is not identically equal to zero, i.e. AVML+VM; +BX =0, ATZNi4+ZN,+CTY =0.

the inverse ot — A is well defined for everyu € C. As .
is chosen such that is nonsingular, there is no Jordan block”S & consequence of the preceding results developed for

at infinity in the Kronecker form off — A This implies that generalized state space realizations of SISO rational matri-
the transfer functiorf (s) is strictly proper. Let us prove that €% the projection matrices can always been obtain from
(A,B,C.E) is a minimal generalized state space realizatioroY!Vester equations of the form:

As T(s) is strictly proper, we only have to prove that the a/M, + EVM,+BX =0, ATZNy+ETZN,+CTY =0.
polynomial matrix| sE—A B | has full row rank for any _ _

se C and that the polynomial matrix (s€E —A)T BT ]" The proof is omitted.

has full column rank for ang ¢ C. Let us consider the f_|rst V. SPECIAL CASE: SINGULAR PERTURBATION

matrix. Assume that there existse C such that there exists

a nonzero vectoy such that Proposition 5.1:Let (A,B,C,D) be a minimal standard

o state space realization of theex m transfer functionT (s) :=
y'[ AE-A B]=0. (4) C(slh—A)"B+D. Assume tham> p. If the rank ofD is

Several cases are possibleAlt= 0, (4) implies thaty” A — equal top, then the generalized state space realization

0 andy'B = 0. This is impossible becausg B,C,E is a sh—A O |B
minimal realization. -C lb |D |,
Let us assume that # 0. 0 —lIp|O
The equation (4) implies that is minimal.
Yy (AE—(1—Ap)A) =0. Proof: See [10], [8], [7]. ]

o T - .. The objective of the singular perturbation approximation is to
If Ap =1, (4) implies thaty'E =0 andy B=0. This is  mnaintain the DC gain between the original and the reduced-
again impossible becaugé,B,C,E) is minimal. order transfer function. This corresponds to impdg6) =
Finally, if A # 0 and Au # 1, (4) implies that () in the continuous time case afdel®) = T (el®) in
y' (JWE—A) =0 and y'B = 0, which is impossible the discrete time case. Thanks to (2), an alternative way
becaus€A, B,C,E) is minimal. Similar arguments prove thatto verify that this interpolation condition is indeed satisfied



consists in_verifying that the generalized Krylov subspace VIl. CONCLUDING REMARKS

(VE—A)"'B is contained in one of the projecting matrices The fact that we impose th® matrix to be zero in the

ZorV of (2) (see [1] for a discussion). This can be verifiedyeneralized state space realization permits to define correctly

by straightforward computation. a concept of minimality that is preserved under allowed
VI. ABOUT NON MINIMAL REALIZATIONS perturbations of th& matrix, i.eE = E + LA In turns, this

If the state space realizations are allowed to be noRermit us to extent our results proven in the strictly proper

minimal, everything is possible, as shown in the followingf@Se to the non proper case. By imposbig= 0, we have
proposition. thus been able to prove in the SISO case that any minimal

Proposition 6.1:Let (Ty(s),To(s)) be an arbitrary pair state space realization can been obtained by any minimal
of px m rational functions (not necessarily proper). | efState space realization of larger order. Thanks to the results
(A1,B1,C1,E1) be an arbitrary state space realization oPf thls_ paper, we have shown that all the existing model
Ti(s). There always exists a (possibly non minimal) gen[eductlon techniques developed so far are particular cases of
eralized state space realizatioh B,C, E) of To(s) such that & projection-based model reduction framework. This permits
(A1,B1,C1,Er) is embedded in it. to unify the theory. Moreover, this sheds new lights on the

Proof: Let (A, By,Cy, Ez) be a generalized state Spacesingular perturbation model reduction technique.

realization ofT,(s). Define the state space realization ~ As shown in the preceding section, the minimality assump-
tion of the state space realizations is also essential.

[ SE-A|B ] The problem of embedding of non minimal and MIMO
—C |0 state space realizations is certainly not a closed topic.
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where the matrice®l, E¢,E, and M, are arbitrary matrices
of appropriate dimension. It is clear th&,B,C,E) is a (non
minimal) realization ofT,(s). Moreover, one can obtain the
realization(Aq,B1,Cy,E1) by projecting(A,B,C,E) with
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|
It should be pointed that the Mc Millan degree Tf(s) and
T,(s) are also arbitrary. Moreover, this result is valid for any
value of the natural numbersandp. This is in contrast with

(3]

minimal state space realizations. Let us be more precise. 4l
Proposition 6.2: Let (A1,B1,Cy,E1) be a minimal realiza-
tion of ordern; of the SISO rational functio(s). Let [5]
(A2,B2,Cy,E2) be a minimal realization of ordem, of the (6]
SISO rational functiony(s).
1) If ng < ny, then (A1,B1,C1,E;) is embedded into [7]
(Az7 Bz, Cz, Ez). 8]
2) If m = np, (A1,B1,Ci,E;) is embedded into
(A2,B,Cy, Ep) if and only if T1(s) = Ta(9). [l
3) If ni > ny, (A1,B1,C1,E1) is not embedded into
(A2,B2,C, B»). [10]

Proof: The first case is proven in Theorem 4.1. To prove
the second case, assume tfiag,B;,Cq,E;) is embedded
into (A2,B2,Cy, Ez). This implies that there exist two square
matricesZ,V such thaZ' (s —A,)V = (SE; —A;). Because
the pencilsE; — A; is regular, the matriceZ andV must be
invertible. This clearly implies thali(s) = T»(s). The last
case is clear sincET(sEz—Az)V cannot have a normal rank
larger tham; < n1, contradicting the fact thaE; — A; must
be a regular pencil. [ ]



