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vdooren@csam.ucl.ac.be

Summary. We consider a particular class of structured systems that can be modelled as a

set of input/output subsystems that interconnect to each other, in the sense that outputs of

some subsystems are inputs of other subsystems. Sometimes, it is important to preserve this

structure in the reduced order system. Instead of reducing the entire system, it makes sense to

reduce each subsystem (or a few of them) by taking into account its interconnection with the

other subsystems in order to approximate the entire system in a so-called structured manner.

The purpose of this paper is to present both Krylov-based and Gramian-based model reduction

techniques that preserve the structure of the interconnections. Several structured model reduc-

tion techniques existing in the literature appear as special cases of our approach, permitting to

unify and generalize the theory to some extent.

1 Introduction

Specialized model reduction techniques have been developed for various types of

structured problems such as weighted model reduction, controller reduction and sec-

ond order model reduction. Interconnected systems, also called aggregated systems,

have been studied in the eighties [FB87] in the model reduction framework, but

they have not received a lot of attention lately. This is in contrast with controller

and weighted SVD-based model reduction techniques, which have been extensively

studied [AL89, Enn84]. Controller reduction Krylov techniques have also been con-

sidered recently in [GBAG04]. It turns out that many structured systems can be mod-

elled as particular cases of more general interconnected systems defined below (the

behavioral approach [PW98] for interconnected systems is not considered here).

In this paper, we define an interconnected system as a linear system com-

posed of an interconnection of sub-systems . Each subsystem is assumed to

be a linear MIMO transfer function. Subsystem has inputs denoted by the

vector and outputs denoted by the vector :

(1)

Note that these inputs and outputs can also be viewed as internal variables of the

interconnected system. The input of each subsystem is a linear combination of
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the outputs of all subsystems and of the external input :

(2)

where . The output of is a linear function of the

outputs of the subsystems:

(3)

with . Figure 1 gives an example of an interconnected system

composed of three subsystems.

Fig. 1. Example of interconnected system

We now introduce some notation in order to rewrite this in a block form. The ma-

trix denotes the identity matrix of size and the matrix the zero matrix.

If is a set of matrices, then the matrix denotes the

block diagonal matrix

. . .

We also define and . If the transfer functions

are rational matrix function with real coefficients, then (1) can

be rewritten as , where

...
... (4)
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are respectively in , and . If we also define ,

and , as follows :

...
. . .

...
... (5)

then (2),(3) can then be rewritten as follows :

(6)

from which it easily follows that

(7)

We assume that the Mc Millan degree of is and that

is a minimal state space realization of . If we define , then a

realization for is given by with

(8)

In others words, and a state space realization of

is given by (see for instance [ZDG96]), where

(9)

If all the transfer functions are strictly proper, i.e. , the state space realization

(9) of reduces to :

Let us finally remark that if all systems are connected in parallel, i.e. , then

.

The problem of interconnected systems model reduction proposed here consists

in reducing some (e.g. one) of the subsystems in order to approximate the

global mapping from to and not the internal mappings from to .

This paper is organized as follows. After some preliminary results, a Balanced

Truncation framework for interconnected systems is derived in Section 2. Krylov

model reduction techniques for interconnected systems are presented in Section 3.

In Section 4, several connections with existing model reduction techniques for struc-

tured systems are given, and Section 5 contains some concluding remarks.
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2 Interconnected Systems Balanced Truncation

We first recall the well-known Balanced Truncation method and emphasize their

energetic interpretation. We then show how to extend Balanced Truncation to the

so-called Interconnected System Balanced Truncation.

We consider a general transfer function which

corresponds to the linear system

(10)

If the matrix is Hurwitz, the controllability and observability Gramians, denoted

respectively by and are the unique solutions of the following equations

If we apply an input to the system (10) for , the position

of the state at time (by assuming the zero initial condition ) is a

linear function of given by the convolution

By assuming that a zero input is applied to the system for , then for all ,

the output of the system (10) is a linear function of , given by

The so-called controllability operator (mapping past inputs

to the present state) and observability operator (mapping

the present state to future outputs ) have dual operators, respectively denoted by

and (see [Ant05]).

A physical interpretation of the Gramians is the following. The controllability

matrix arises from the following optimization problem. Let

be the energy of the vector function in the interval . Then [Glo84]

(11)

and, by duality, we have that

(12)

Essential properties of the Gramians and are as follows. First, under a coordinate

transformation , the new Gramians and corresponding to the
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state-space realization undergo the following

(so-called contragradient) transformation :

(13)

This implies that there exists a state-space realization of such

that the corresponding Gramians are equal and diagonal [ZDG96]. Sec-

ondly, because these Gramians appear in the solutions of the optimization problems

(11) and (12), they tell something about the energy that goes through the system,

and more specifically, about the distribution of this energy among the state variables.

The idea of the Balanced Truncation model reduction framework is to perform a state

space transformation that yields equal and diagonal Gramians and to keep only the

most controllable and observable states. If the original transfer function is stable, the

reduced order transfer function is guaranteed to be stable and an a priori global error

bound between both systems is available [Ant05].

If the standard balanced truncation technique is applied to the state space real-

ization (8) of an interconnected system, the structure of the subsystems is

lost in the resulting reduced order transfer function. We show then how to preserve

the structure in the balancing process. We first recall a basic lemma that will be used

in the sequel.

Lemma 1. Let and for and define

...
...

. . .
...

Assume to be positive definite and consider the product

Then, for any fixed

(14)

and
(15)

Proof. Without loss of generality, let us assume that . For ease of notation,

define and with .

We obtain the following expression

(16)

For and using the Schur complement formula for the inverse of a matrix, we

retrieve (14). In order to prove (15) we note that is positive definite since is
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positive definite. This implies that and are positive definite. is a

quadratic form and the Hessian of with respect to is equal to . The

minimum is then obtained by annihilating the gradient :

which is obtained for and yields

The last equality is again obtained by using the Schur complement formula.

Let us now consider the controllability and observability Gramians of :

(17)

and let us partition them as follows :

...
. . .

...
...

. . .
... (18)

where . If we perform a state space transformation to the state

of each interconnected transfer function , we actually perform

a state space transformation

to the realization of . This, in turn,

implies that and

i.e. they undergo a contragradient transformation. This implies that

, which is a contra-gradient transformation that only de-

pends on the state space transformation on , i.e. on the state space associated to

.

Let us recall that the minimal past energy necessary to reach for each

with the pair is given by the expression

... (19)

The following result is then a consequence of Lemma 1.
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Lemma 2. With the preceding notation, the minimal past input energy

needed to apply to the interconnected transfer function in order that for sub-
system at time , over all initial input condition is
given by

Moreover, the minimal input needed in order that for subsystem at time ,
and that for all the other subsystems, is given by

where is the block of the inverse of , and this block is equal to the
inverse of the Schur complement of .

Finally,
(20)

Proof. The two first results are direct consequences of Lemma 1. Let us prove (20).

For any nonzero vector the minimum energy necessary for subsystem at time

to reach over all initial input conditions cannot be

larger than by imposing . This implies that for any nonzero vector

,

Similar energy interpretations hold for the diagonal blocks of the observability

matrix and of its inverse.

Because of Lemma 2, it makes sense to truncate the part of the state of each

subsystem corresponding to the smallest eigenvalues of the product .

We can thus perform a block diagonal transformation in order to make the Gramians

and both equal and diagonal : Then, we can truncate each

subsystem by deleting the states corresponding to the smallest eigenvalues of

. This is resumed in the following Interconnected Systems Balanced Truncation
(ISBT) Algorithm. Let , where is an interconnec-

tion of subsystems

of order . In order to construct a reduced order system while preserving the

interconnections, proceed as follows.

ISBT Algorithm

1. Compute the Gramians and satisfying (17).

2. For each subsystem requiring an order reduction, perform the contragra-

dient transformation in order to make the Gramians and equal and

diagonal.
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3. For each subsystem , keep only the space of states corresponding

to the largest eigenvalues of , giving the reduced subsystems

.

4. Define

with

Remark 1. A variant of the ISBT Algorithm consists in performing a balance and
truncate procedure for each subsystem with respect to the Schur complements

of and instead of and . From Lemma 2, this corresponds to sorting

the state-space of each system with respect to the optimization problem

such that and for . Mixed strate-

gies are also possible (see for instance [VA03] in the Controller Order Reduction

framework).

It should be mentioned that a related balanced truncation approach for second order

systems can be found in [MS96, CLVV06].

A main criticism concerning the ISBT Algorithm is that the reduced order system

is not guaranteed to be stable. If all the subsystems are stable, it is possible to

impose all the subsystems to remain stable by following a technique similar to

that described in [WSL99]. Let us consider the block of and , i.e.

and . These Gramians are positive definite because and are assumed

to be positive definite (here, is assumed stable and is a

minimal realization). From (17), and satisfy the Lyapunov equation

where the symmetric matrices and are not necessary positive definite. If one

modifies and to positive semi-definite matrices and , one is guaran-

teed to obtain a stable reduced system . The main criticism about this technique

is that the energetic interpretation of the modified Gramians is lost.

3 Krylov techniques for interconnected systems

Krylov subspaces appear naturally in interpolation-based model reduction tech-

niques. Let us recall that for any matrix , is the space spanned by the

columns of .

Definition 1. Let and . The Krylov matrix
is defined as follows

The subspace spanned by the columns of is denoted by .
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Krylov techniques have already been considered in the literature for particular cases

of structured systems. See for instance [SA86] in the controller reduction framework,

or [SC91] in the second-order model reduction framework. This last case has been

revisited recently in [Fre05] and [VV04]. But, to our knowledge, it is the first time

they are studied in the general framework of Interconnected Systems.

The problem is the following. If one projects the state-space realizations

of the interconnected transfer functions with projecting matrices

derived from Krylov subspaces, this yields reduced-order transfer functions

that satisfy interpolation conditions with respect to ; what are then the

resulting relations between and ?

If one imposes the same interpolation conditions for every pair of subsystems

and , then the same interpolation conditions hold between the block di-

agonal transfer functions and as well. Let us investigate what this implies

for and . Assume that

such that and

In such a case, it is well known that [VS87, Gri97]

interpolates at up to the first derivatives.

Concerning the matrices and are unchanged, from which it easily

follows that

It can easily be proved recursively that

and it turns out that such a result holds for arbitrary interpolation points in the com-

plex plane, as shown in the following lemma.

Lemma 3. Let be a point that is neither an eigenvalue of nor an eigenvalue
of (defined in (9)). Then

(21)

(22)

Proof. Only (21) will be proved. An analog proof can be given for (22). First, let us

prove that the column space of is included in the column space of

. In order to simplify the notation, let us define the following matrices

(23)



264 Antoine Vandendorpe and Paul Van Dooren

From the identity , it then follows that

This clearly implies that the column space of is included in the

column space of . Let us assume that

and prove that this implies that

(24)

Since the image of belongs to

, there exists a matrix such that

One obtains then that equals

Note that

Moreover, for any integer it is clear that

This proves that (24) is satisfied.

Thanks to the preceding lemma, there are at least two ways to project the subsys-

tems in order to satisfy a set of interpolation conditions using Krylov subspaces

as follows.

Lemma 4. Let be neither a pole of nor a pole of . Define

...

such that . Assume that either

(25)

or
(26)

Construct matrices such that . Project each subsystem as
follows :

(27)

Then, interpolates at up to the first derivatives.
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Proof. First note that (26) implies (25) because of Lemma 3, and that (27) amounts

to projecting to with

(28)

and hence also to . The

interpolation property then follows from and

(29)

which concludes the proof.

In some contexts, such as controller reduction or weighted model reduction, one

does not construct a reduced order transfer function by projecting the state

spaces of all the subsystems but one may choose to project only some

or one of the subsystems. Let us consider this last possibility.

Corollary 1. Under the assumptions (26) or (25) of Lemma 4, interpolates
at up to the first derivatives even if only one subsystem is projected

according to (27) and all the other subsystems are kept unchanged.

Proof. This corresponds to with

(30)

Again we have and , which concludes the proof.

Remark 2. Krylov techniques have recently been generalized for MIMO systems

with the tangential interpolation framework [GVV04]. It is also possible to project

the subsystems in such a way that the reduced interconnected transfer function

satisfies a set of tangential interpolation conditions with respect to the origi-

nal interconnected transfer function , but special care must be taken. Indeed,

Lemma 3 is generically not true anymore for generalized Krylov subspaces corre-

sponding to tangential interpolation conditions. In other words, the column space of

the matrix

. . .
...

is in general not contained in the column space of the matrix

. . .
...
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In such a case, interchanging matrices by , as done in

Lemma 4 and Corollary 1 is not always permitted. Nevertheless, Lemma 4 and

Corollary 1 can be extended to the tangential interpolation framework by pro-

jecting the state space realizations with generalized Krylov sub-

spaces of the form and not of the form

.

4 Examples of Structured Model Reduction Problems

As we will see in this section, many structured systems can be modelled as in-
terconnected systems. Three well known structured systems are presented, namely

weighted systems, second-order systems and controlled systems. For each of these

specific cases one recovers well-known formulas. It turns out that several existing

model reduction techniques for structured systems are particular cases of our ISBT

Algorithm.

The preceding list is by no means exhaustive. For instance, because linear frac-

tional transforms correspond to making a constant feedback to a part of the state,

this can also be described by an interconnected system. Periodic systems are also a

typical example of interconnected system that is not considered below.

Weighted Model Reduction

As a first example, let us consider the following weighted transfer function :

Let , and be the state space realiza-

tions of respectively , and , of respective order , and . A

state space realization of is given by

(31)

The transfer function corresponds to the interconnected system with

and
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A frequency weighted balanced reduction method was first introduced by Enns

[Enn84, ZDG96]. Its strategy is the following. Note that Enns assumes that

(otherwise can be added to ).

ENNS Algorithm
1. Compute the Gramians and satisfying (17) with

defined in (31).

2. Perform a state space transformation on in order to obtain

diagonal, where and are the diagonal blocs of and corresponding to

the :

(32)

3. Truncate by keeping only the part of the state space corresponding

to the largest eigenvalues of .

It is clear the ENNS Algorithm is exactly the same as the ISBT Algorithm applied

to weighted systems. As for the ISBT Algorithm, there is generally no known a

priori error bound for the approximation error and the reduced order model is not

guaranteed to be stable either.

There exists other weighted model reduction techniques. See for instance

[WSL99] where an elegant error bound is derived.

A generalization of weighted systems are cascaded systems. If we assume that

the interconnected systems are such that the input of is the output of ,

we obtain a structure similar than for the weighted case. The matrix has then the

form

. . .
. . .

. . .

Second-Order systems

Second order systems arise naturally in many areas of engineering (see, for example,

[Pre97, Rub70, WJ87]) with the following form :

(33)

We assume that , , , , , and

with invertible. For mechanical systems the matrices , and

represent, respectively, the mass (or inertia), damping and stiffness matrices,

corresponds to the vector of external forces, is the input distribution matrix,
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is the output measurement vector, is the output measurement matrix, and

to the vector of internal generalized coordinates.

Second-Order systems can be seen as an interconnection of two subsystems as

follows. For simplicity, the mass matrix is assumed equal to the identity matrix.

Define and corresponding to the following system :

(34)

From this, with

(with the convention ) and with

. Matrices are given by

From the preceding definitions, one obtains

The matrices are clearly a state space realization of

. It turns out that the Second-Order Balanced Truncation technique

proposed in [CLVV06] is exactly the same as the Interconnected Balanced Trunca-

tion technique applied to and . In general, systems of order can be

rewritten as an interconnection of subsystems by generalizing the preceding ideas.

Controller Order Reduction

The Controller Reduction problem introduced by Anderson and Liu [AL89] is the

following. Most high-order linear plants are controlled with a high order linear

system . In order to model such structured systems by satisfying the compu-

tational constraints, it is sometimes needed to approximate either the plant, or the

controller, or both systems by reduced order systems, denoted respectively by

and .

The objective of Controller Order Reduction is to find and/or that

minimize the structured error with

(35)
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Fig. 2. Controller Order Reduction

Balanced Truncation model reduction techniques have also been developed for this

problem. Again, most of these techniques are very similar to the ISBT Algorithm.

See for instance [VA03] for recent results. Depending on the choice of the pair of

Gramians, it is possible to develop balancing strategies that ensure the stability of

the reduced system, under certain assumptions [LC92].

5 Concluding Remarks

In this paper, general structure preserving model reduction techniques have been de-

veloped for interconnected systems, and this for both SVD-based and Krylov-based

techniques. Of particular interest, the ISBT Algorithm is a generic tool for perform-

ing structured preserving balanced truncation. The advantage of studying model re-

duction techniques for general interconnected systems is twofold. Firstly, this per-

mits to unify several model reduction techniques developed for weighted systems,

controlled systems and second order systems in the same framework. Secondly, our

approach permits to extend existing model reduction techniques for a large class of

structured systems, namely those that can fit our definition of interconnected sys-

tems.
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