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Abstract —In subspace methods for system
identification, the system matrices are usu-
ally estimated by least squares, based on esti-
mated Kalman filter state sequences and the
observed inputs and outputs. For an infinite
number of data points and a correct choice of
the system order, this least squares estimate
of the system matrices is unbiased. However,
when using subspace identification on a finite
number of data points, the estimated model
can become unstable, for a given determinis-
tic system which is known to be stable. In
this paper, stability of the estimated model is
imposed by adding a regularization term to
the least squares cost function. The regular-
ization term used here is the trace of a matrix
which involves the dynamical system matrix
and a positive (semi-)definite weighting ma-
trix. The amount of regularization needed can
be determined by solving a generalized eigen-
value problem. It is shown that the so-called
data augmentation method proposed by Chui
and Maciejowski corresponds to adding regu-
larization terms with specific choices for the
weighting matrix.
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1 Introduction

The linear combined deterministic-stochastic
identification problem is concerned with sys-
tems and models of the form!:

{ Tpy1= Az + Bug + wy (1la)
yr = Cxp + Duy + v (1b)

with .
|| =& 5 ]mzo @

Up Up

The vectors ur, € R™ and y;, € R' with dis-
crete time index k denote the m inputs and
l outputs of the system respectively. The
n states at the time index k of the system
with order n are denoted by the state vector
zr € R™. The process noise w, € R™ and
the measurement noise v € R are assumed
to be zero mean, white Gaussian with covari-
ance matrices as given by (2). The model ma-
trices A, B,C, D and the covariance matrices
@, S, R have appropriate dimensions. Both
the deterministic and stochastic identification
problem are special cases of the combined
identification problem, without noise inputs
wr = 0 and vy, = 0 in (1)-(2) and no deter-
ministic inputs uy = 0, respectively.

The system identification problem is stated
as follows: given a large number of obser-
vations of the input u; and the correspond-
ing output y; generated by the unknown sys-
tem (1)-(2), determine the system order 7 of
the unknown system (1)-(2) and the estimates
/Al, B, C , D up to within a similarity transfor-
mation together with the estimated noise co-
variances matrices Q, 5’, R so that the second
order statistics of the output of the model and
of the given output are equal (or equivalent in
the sense of Faurre [3]).

In the last decade, so-called subspace iden-
tification methods [7] have been developed.

IE denotes the expected value operator and
0pq the Kronecker delta. It is assumed that
the process is stationary and ergodic: Elapbl] =
limj—wO[]l- 1= aib] |-



Typically, in a first step, Kalman filter state
sequences X; € R and X;;; € R"@J of
the system are estimated directly from input-
output data using geometric operations of
subspaces spanned by the column or row vec-
tors of block Hankel matrices formed by input-
output data. The output data block Hankel
matrix Yp;_; is constructed from the obser-
vations yo,¥1,- - ,Yit+j—2 as follows:

Yo vy Yj—1
e IS
Yi—1  Yi - Yitj-2

where i is a user defined dimension with i < j
and the subscript 0]i — 1 denotes the time
indices of the outputs in the first column of
Yoji—1- The input data block Hankel ma-
trix Upjj—1 is constructed in a similar way.
The calculations are performed in a numeri-
cally reliable way, based on the singular value
decomposition (SVD) and QR-decomposition
(see [7] for details).

After the estimation of the Kalman filter
states sequences X; and )A(H_l in the first
step, the system matrices (A,B, C, ﬁ) of the
combined stochastic-deterministic identifica-
tion problem are identified in the second step:

w-lE )]
3)

Motivated by consistency results [7] for j —
oo, this optimization problem is solved in a
least squares sense. However, when identify-
ing on a finite number of observations (finite
j), the least squares estimate does not always
yield a stable system [2], while often the real
system is known to be stable. For a finite
number of data points, this may e.g. occur
in the presence of high noise levels or when
overparameterizing the system by choosing a
too high system order. A discrete time lin-
ear system is called stable when it has all its
poles inside the unit disk or when there ex-
ists a positive definite matrix P=PT>0o0f
appropriate dimension such that

2

min
A,B.C,D

APAT — P <. (4)

In this paper, stability of the system is im-
posed by adding a regularization term to (3).
Usually, regularization is done by adding the

F

norm ||6||> of the parameter vector 6 to the
cost function J() of the optimization prob-
lem [1, 4, 6]. The resulting 6 is then obtained
as the solution of the minimization problem
ming J(6) + ¢||f]|2. In this paper, a new and
specific type of regularization term is used:
stability is obtained by adding the trace of
product of the system matrix, a positive semi-
definite matrix W > 0, and the transpose of
the system matrix, Tr(AWAT), to the cost
function (3). Upper bounds for the spec-
tral radius are obtained and it is shown that
the calculation of the amount of regulariza-
tion needed to obtain a specific spectral radius
boils down to solving a Generalized Eigen-
value problem.

Also for the stochastic identification problem,
the least squares estimate

2

min - & |- X; 5
AC Y c (5)

F

does not always yield a stable system. Since
the stochastic identification least squares es-
timate (5) is a special case of the combined
estimate (3) with U;; = 0, in the sequel of
the paper, the more general case of stability
of (3) is discussed.

This paper is organized as follows. In Sec-
tion 2, the use of regularization to impose sta-
bility is explained. In Section 3, the use of
regularization is motivated by simulation re-
sults. This paper is a shortened version of the
manuscript [8], which is submitted for publi-
cation.

The eigenvalues and singular values of a
square matrix A € R"*™ are denoted by A;(A4)
and o;(A) respectively, for i = 1,... ,n. The
spectral radius of A is denoted by p(4) =
max;=1_._ n|Ai(4)|. The minimal and maxi-
mal singular value of A is denoted by o(A)
and 7(A), respectively. The trace of the ma-
trix A is denoted by Tr(A) and the matrix
norm o(MAM™'), with M € R"™"™ a non-
singular matrix of appropriate dimensions, is
denoted by ||A||as. The Kronecker product of
two matrices X and Z is denoted by X ® Z.

2 Stability by using Regularization
The estimation problem that we consider is

the following: given the matrices X1, Yy,
X; and Uj; from the first step, estimate the



model fl, B, C’, D. The least squares esti-
mates (3) and (5) do not guarantee a stable
A matrix for given finite data, while often the
true linear model (1)-(2) is known to be sta-
ble.

The least squares solution of (3) for [A B] is
given by:

ii

[/i B] = Xiy1- [XZT U.T]
XX XU
U X¥ UlUi

i|i

-(6)

For a finite number of data points, the esti-
mates of X, and Xi+1 may result in an unsta-
ble estimate of the system matrix A in (6).
Stability of the model can be imposed by
adding a regularization term to the cost func-
tion from which (6) is determined, i.e.:

min J(A, B) = J, (A, B) + ¢J»(A), (7)

A B
with

h(A.B) = ‘XM—MB]-[XZ‘ Uf,»]T @

F

Jo(d) = HAQHi:Tr(AWAT). 9)

The amount of regularization is characterized
by the positive real scalar ¢ and by the posi-
tive semidefinite matrix W = QQT > 0. The
optimal solution to (7) is then given by?:

[AB] = [AB|Sxu(Exu +cW.)7'(10)
with
SN IS o= A </ I
A A ¢ UiUif;
W 0;
W, = mxme 12
|:0m><ﬁ Omxm] ( )

In [4], regularization is used to obtain a re-
duction in the variance of the estimate, while
allowing for a (small) bias. The regulariza-
tion parameter ¢ is chosen in such a way
that a cross-validation weighted square er-
ror is minimized. In subspace identification,
this approach is less appropriate, since the
state vector sequences are calculated by QR-
decompositions and an SVD. Therefore, the

2In the sequel of this paper, estimates from (6) are
denoted by A and estimates from (7) by A.

assumptions on the noise distribution used
in [4] may not hold. A second motivation
is that stability is not proven. In this pa-
per, the regularization parameter ¢ is chosen
such that a stable system matrix is obtained,
i.e. p(A) < 1 or such that A has a spectral

radius p(A) smaller than 7 or
APAT —4*P <0, (13)

with P = PT > 0 and ~ a positive real con-
stant.

The use of regularization to obtain a stable
system matrix estimate A is motivated by the
following inequality:

<
I
-

Xi(A)

‘ 2

Let A, = AS xp(Sxu+cW.) ™! denote the so-
lution A of (7) for a given ¢, it follows from the
optimality of the least squares estimate (10)
that Jy(A.,) < Jo(Ae,) for ¢ < e, ice., the
regularization term evaluated at the corre-
sponding solutions for ¢ is a non-increasing
function of ¢. However, the spectral radius
p(A,) is not always a monotonically decreas-
ing function for increasing c.

In the sequel of this Section, this behaviour
is characterized in more detail by deriving
an upper bound for p(A) and by calculating
the amount of regularization needed to obtain
p(A) = vy < 1. The relation between A and A
is given by (10). The eigenvalues A\(A) of A
are equal to the n eigenvalues of largest mod-

ulus of the (extended) square matrix

T A B

Ae B [ 0m><'h Om><m :| ' (14)
In a similar way

4 A B

Ae [ Omxﬁ Omxm ]
is defined. Given (10), the influence of reg-
ularization on the eigenvalues of A is given
by the relation A, = Aef]XU(fJXU +cWe) L.
However, the increase in dimensionality from
n to . + m can be avoided:

Lemma 1 Let 3, be defined as
EA]S = XZXlT - XZUT (UmUT)ile\zXzTa (15)

i)i i|i



then the eigenvalues of A are equal to
AA) = MAZ, (35 + ) ™). (16)

We refer to [8] for the proof. By using the
QR-decomposition

] = ladel| R

7%
it is easily shown that XAJAS = RL Ry or f]s =
X, XTI with X, = X; —XiUfl;(UﬂiUfl;)—lUM.
An upper bound for the spectral radius p(A)
can be formulated as follows:

Theorem 1 Let W > 0, then the following
upper bound holds for p(A.):

p(A ) < E(REQTARg;) )
“ T 14 ca(Ryy WRy)

(17)

From this upper bound, it follows that

(F(RQJARQTQ) _ 1)
c> ’

Q(REQTWREQI)

p(A;) <y for

We refer to [8] for a the proof. In the next
Theorem, conditions are derived to obtain

p(A.) <7, with v > 0 a positive real scalar.

Theorem 2 Given X,;H, Xi, Uiji, Yiji and
W. Let the matriz £, be defined by (15). Let
v > 0 be a positive real scalar and let flc and
A, be estimated as in (3) and (10). Let the
matrices P>, Pi and Py € R**™ pe defined as
follows:

P o= AW oW, (18)
P = —AW®S, -5, W, (19)
Py, = AN, @AY, — 3, @ v3,. (20)

Define the set of eigenvalues ¥ of the Gener-
alized Eigenvalue problem

o= H] L e

Then p(AC) S 77 fOT & 2 Cm = maXi"ﬂiGRJr ,19i7

with p(A., ) = .

The reader is referred to [8] for the proof.
For high order systems, a large Generalized
Eigenvalue Problem (21) of dimension 272 has
to be solved, hence requiring O(n°) opera-
tions. When 7 is large, an iterative algorithm

to determine the value of ¢, is proposed in [8].
The algorithm requires O(7?) operations per
iteration step and the simulation results in-
dicate linear convergence. The problem can
also be formulated as a real stability radius
problem with one repeated block for which a
fast algorithm exists [5], but this algorithm re-
quires more complex computations (a Linear
Matrix Inequality Problem) per iteration step
and faster convergence has not been proven.
Now, we show that the so-called data augmen-
tation method of Chui and Maciejowski [2]
corresponds to adding regularization terms to
the least squares cost function with specific
choices for the weighting matrix W. In the
method of [2], the non-steady Kalman fil-
ter state sequences Xi,Xi+1 are iteratively
augmented by appending ,/¢,V), and Opnx1
(/€q[Vy V] and 07 x2) respectively, for each
unstable pole A, (pole pair (Ay, A})) with cor-
responding normalized right eigenvector V,,
(right eigenvector V; and its conjugate V*).
The inputs Uy); and outputs Yj); are extended
by appending null vectors of appropriate di-
mensions. The constant ¢, ( ¢, for a complex
pole pair) is determined such that the magni-
tude of the stabilized pole is M, where M > 0
is chosen by the user. The other eigenvalues
are not changed.

For the case of one real unstable pole, this
method corresponds to minimizing the follow-
ing cost function in least squares sense:

minACMﬁCM ||Xi+1 - ACMXi - BC’MUili”%

+opllAem VI,

with the regularization term c,||Aca V|5 =
comTr(AopVVT AL, ). More regularization
terms are iteratively added for each other pole
or pole pair with amplitude larger than ~.
Hence, the data augmentation method of Chui
and Maciejowski [2] corresponds to the fol-
lowing weighting matrix in the regularization
term (7):

cr(AWAT) = > ¢ Tr(AV,V,FAT)
unstable poles p
+ Z chr(A[Vq Vq*][vq Vq*]TAT)v

unstable pole pairs ¢

or cW = Zp chprT+Zq caVy ViIIVy Vq*]T,
which can be considered as a special case of

cJ2(A), with J2(A) from (9).



3 Simulation results

In this Section, the use of regularization in
order to impose stability of the estimated
system is illustrated by means of a simula-
tion example. The original system has order
n = 3 and the effects of high noise levels for
both process and measurement noise, over-
estimating the system order and a small num-
ber of given data points are illustrated. In [§],
results on a second example using a model of
an industrial dryer [2] with order n = 10 are
reported.

The original system is given by:

_{—0.5 0 0] _{10]
Lo smoos] ]
C=[11 1] D=

The known input uj has a standard normal
distribution. The influence of the noise level
of covariance matrices ), R, S (2) is illus-
trated. For the weighting matrix W, the iden-
tity matrix W = I, is chosen. The evolution
of the spectral radius p(A.) and the different
parts of the cost function (7) as a function of
¢ is depicted in Figure 1 for an estimated un-
stable system with system order 7 = 3. The
influence of the regularization on the distribu-
tion of the poles is illustrated in Fig. 2, 3, 4
and 5. The effect of a finite number of data
points, overparameterization and high noise
levels is illustrated by comparison of Fig. 3
with Fig. 2, 4 and 5, respectively.

4 Conclusions

Subspace methods for the identification of lin-
ear time-invariant systems are known to be
asymptotically efficient. The system matrices
are usually estimated in least squares sense,
based on estimated Kalman filter state se-
quences and the observed inputs and outputs.
However, for a finite number of data points,
it is not guaranteed that the least square es-
timate yields a stable system, even when it is
known that the true linear system is stable.
Such situations may also occur when the es-
timated system is overparameterized due to a
too high system order estimate. In this pa-
per, we have shown that stability of the es-
timated system can be imposed by adding a

regularization term to the least squares cost
function. The regularization term used here
it the trace of a matrix which involves the dy-
namical system matrix and a positive (semi-
)definite weighting matrix. The amount of
regularization is calculated by solving a gener-
alized eigenvalue problem. The so-called data
augmentation method proposed by Chui and
Maciejowski can be interpreted as iteratively
applying regularization with specific choices
for the weighting matrix.
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Figure 1: Top: evolution of p(A.) as a func-
tion of the regularization parameter
c. Bottom: evolution of the two
parts of the cost function (7) (for
the optimal solution) as a function
of ¢: Ji(Ae, B) (dashed-dotted line),

Jo(A:) (dotted line) and the total

cost function J(A., B) (full line).

Figure 2: Monte Carlo simulation of the dis-
tribution of the poles p; = x; + jyi
(i = 1,...,7n) of the estimated sys-
tem with 7 = 3: a) no regularization,
b) with regularization. The origi-
nal system is simulated with Q =
diag([111]), S =0, R =1. The num-
ber of data points is 40, v = 0.96.
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Figure 3: Monte Carlo simulation of the distri-
bution of the poles of the estimated
system with order 7 = 3: a) no reg-
ularization, b) with regularization.
The original system is simulated with
Q =diag([111]), S=0, R=1. The
number of data points is 80, v = 0.96.

Figure 4: Monte Carlo simulation of the distri-
bution of the poles of the estimated
system with order 7 = 4: a) no reg-
ularization, b) with regularization.
The original system is simulated with
Q =diag([111]), S=0, R=1. The
number of data points is 80, v = 0.96.

Figure 5: Monte Carlo simulation of the distri-
bution of the poles of the estimated
system with order n = 3: a) no reg-
ularization, b) with regularization.
The original system is simulated with
Q@ = diag([101010]), S =0, R = 10.
The number of data points is 80, v =
0.96.



