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Identification of Stable Models in Subspace Identification
by Using Regularization

T. Van Gestel, J. A. K. Suykens, P. Van Dooren, and B. De Moor

Abstract—In subspace identification methods, the system matrices are
usually estimated by least squares, based on estimated Kalman filter state
sequences and the observed inputs and outputs. For a finite number of data
points, the estimated system matrix is not guaranteed to be stable, even
when the true linear system is known to be stable. In this note, stability is
imposed by using regularization. The regularization term used here is the
trace of a matrix which involves the dynamical system matrix and a positive
(semi) definite weighting matrix. The amount of regularization can be de-
termined from a generalized eigenvalue problem. The data augmentation
method of Chui and Maciejowski is obtained by using specific choices for
the weighting matrix in the regularization term.

Index Terms—Regularization, stability, subspace identification.

I. INTRODUCTION

The linear combined deterministic–stochastic identification problem
is concerned with systems and models of the form1
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The vectors � ��. / and � ��. 0 with discrete-time index 1 denote
the 2 inputs and 3 outputs of the system respectively. The 4 states at
the time index 1 of the system with order 4 are denoted by the state
vector ��� . 5 . The process noise �
� . 5 and the measurement
noise � �6. 0 are assumed to be zero mean, white Gaussian with
covariance matrices as given by (3). The model matrices 	 , � , � , �
and the covariance matrices

%
,
&

, ' have appropriate dimensions. Both
the deterministic and stochastic identification problem are special cases
of the combined identification problem, without noise inputs � � � +
and � � � + in (1)–(3) and no deterministic inputs � � � + , respectively.

In the last decade, so-called subspace identification methods [13]
have been developed to determine the system order 74 of the unknown
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1 8 denotes the expected value operator and 9 the Kronecker delta. It is
assumed that the process is stationary and ergodic: the equality 8;: < = >
?@ A B CEDGF < = holds with probability 1.

system (1)–(3) and the estimates HI , HJ , HK , HL (up to a similarity trans-
formation) together with the estimated noise covariances matrices HM ,
HN , HO , from a large number of observations of the input P�Q and the cor-

responding output R Q generated by the unknown system (1)–(3). Typ-
ically, in a first step, Kalman filter state sequences HS;T�U VWYX$Z

and
HS;T []\
U VWYX^Z

of the system are estimated using geometric operations
of subspaces spanned by the column or row vectors of block Hankel
matrices formed by input–output data. The system order H_ typically
has to be estimated by the user from a singular value plot, where ` is
related to the number of data points, see [13] for details.

The system matrices ( HI , HJ , HK , HL ) of the combined stochastic–de-
terministic identification problem are identified in the second step by a
least squares problem

acb dVegf Vhif Vj]f Vk HS;T [g\l Tnm T o HI HJ
HK HL p HS;Tq Trm T

s
t (4)

with the input sequence
q Tnm T�uwv P Tyx P T []\ExEz{z{z{x P T [ Z{| \~} U � X$Z

and
the output sequence

l Trm Tgu�v R Trx R T []\ExEz{z{z{x R T [ Z�| \~} U � X^Z
[13]. Moti-

vated by consistency results [13] for `c��� , this optimization problem
is solved in a least squares sense. However, when identifying on a fi-
nite number of data points (finite ` ), the least squares estimate does not
always yield a stable system [2], while often the true linear system is
known to be stable. For a finite number of data points, this may, e.g.,
occur in the presence of high noise levels or when overparameterizing
the system by overestimating the system order. A discrete time linear
system is called stable when it has all its poles inside the unit disk or
when there exists a positive–definite matrix H� u H�
�6���

of appro-
priate dimension such that HI H� HI � o H�����

.
In this note, stability of the system is imposed by adding a regulariza-

tion term to (4). Usually, regularization is obtained by adding the norm����� s of the parameter vector
�

to the cost function ��� ��� of the opti-
mization problem [1], [4], [10], [11]. The resulting

�
is then obtained as

the solution of the minimization problem acb dY� ��� �$�g��������� s . In this
note, a new and specific type of regularization term is used: stability
is obtained by adding the trace of the product of the system matrix, a
positive–semidefinite matrix � u � ��� �

, and the transpose of the
system matrix, �g�E� HI � HI � � , to the cost function (4). Upper bounds for
the spectral radius are obtained and it is shown that the calculation of
the amount of regularization needed to obtain a specific spectral radius
boils down to solving a generalized eigenvalue problem.

Also for the stochastic identification problem, the solution HI of the
least squares problem

acb dVe�f Vj HS �T [g\ l �Tnm T � o v HI HK
} � p HS T
s
t

is not always stable. Since the stochastic identification least squares
estimate is a special case of the combined estimate (4) with

q Trm T�u �
,

we restrict ourselves to the more general case of stability of (4).
This note is organized as follows. In Section II, the use of regular-

ization to impose stability is explained. In the companion paper [12],
the use of regularization is motivated by simulation results which are
compared with the results of [2]. The following notation is used. The
eigenvalues and singular values of a square matrix

I U WYXYW
are de-

noted by � T � I � and   T � I � respectively, for ¡ u6¢ x�zEz{z{x _ . The spectral
radius of

I
is denoted by £-� I � u a�¤¦¥ T §g\ f ¨ ¨ ¨ f W
© � T � I � © . The minimal

and maximal singular value of
I

is denoted by   � I � and  �� I � , respec-
tively. The trace of the matrix

I
is denoted by �]�E� I � and the matrix

norm  ��yª I ª | \ �
, with ª U W�XYW

a nonsingular matrix of appro-
priate dimensions, is denoted by

� I ��«
. The Kronecker product of two

matrices
S

and ¬ is denoted by
Sw­ ¬ .

0018–9286/01$10.00 © 2001 IEEE
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II. STABILITY BY USING REGULARIZATION

The estimation problem that we consider is the following: given the
matrices ���� ��� , � �	� � , ��
� and � �	� � from the first step, estimate the model
matrices �� , �
 , �� , �� . The least squares estimate (4) does not guarantee
a stable �� matrix for given finite data, while often the true linear model
(1)–(3) is known to be stable.

The least squares problem (4) can be separated into two least squares
problems, with solutions� �� �
���� �� � ����� � ����� � ���� � � � ���� �� �� �� ��!��� � �	� � � � ��"�� � ���� � � � ���� ���� (5)

where

�� ��� � �� � ��"�� �� � � ��	� �� �	� � ��"�� � �	� � � ���� � # (6)

For a finite number of data points, the estimates of �� � and �� � �$� may
result in an unstable estimate of the system matrix �� in (5).

Stability of the model can be imposed by adding a regularization
term to the cost function from which (5) is determined, i.e.,

%'& ()* )+-,�.0/�21 /
43�� , � .�/� /
43�576 ,98:.0/� 3 (7)

with

, � .�/�;1 /
43�� �� � ���=< � /� /
"� � � ��"�� � ��	� � � > 8?
(8)

,@8:.0/� 3=�'A /�;B A 8
? �DC�E /�;F /� � # (9)

The amount of regularization is characterized by the positive real scalar6
and by the positive semidefinite matrix

F � B4BG�IH7J
. The optimal

solution to (7) is then given by2

� /�;K /
 K �L� � �� � ��� �� �� �� � �$� � ���� � � . �� ��� 576 F�M 3N�
�

� � �� �
"� �� ��� . �� � � 5O6 F�M 3N�
�

(10)

where �� ��� is defined in (6) and
FIM

as

F�M � F J�PQSRSTJ TGR PQ J T # (11)

In [3] and [4], regularization is used to obtain a reduction in the
variance of the estimate, while allowing for a (small) bias. The reg-
ularization parameter

6
is chosen in such a way that a cross-validation

weighted square error is minimized. In subspace identification, this ap-
proach is less appropriate, since the state sequences are calculated by
QR-decompositions and an SVD. Therefore, the assumptions on the
noise distribution used in [3], [4] may not hold. A second motivation is
that stability is not proven. In this note, the regularization parameter

6
is chosen such that a stable system matrix is obtained, i.e., U . /�GK 3WVYX
or such that /�;K has a spectral radius U . /�;K 3 smaller than Z or

/�;K /[ /� � K < Z 8 /[\V J
(12)

with /[]� /[^�7_ J and Z a positive-real constant.
The use of regularization to obtain a stable system matrix estimate

/�GK is motivated by the following inequality:

A /�;KNF
�a` 8 A 8? �^C�E /�GKNF /� � K � Q

� b$� c � .�/�GKNF
�a` 8 3 8

H Q
� b��Lc . F 3 c � .�/� K 3 8 H c . F 3

Q
� b$��d e � .�/� K 3 d 8 #

2In the remainder of this note, estimates from (5) are denoted by fg and esti-
mates from (7) by hg . The subscript i is used to denote the dependency of the
solution hg as a function of i .

Let /� K � �� �� ��� . �� � � 5!6 F M 3 �
�

denote the solution /� K of (7) for a
given

6
, it follows from the optimality of the least squares estimate (10)

that ,98j. /�GK 3lk ,98j. /�GK 3 for
6 � kD6 8 , i.e., the regularization term eval-

uated at the corresponding solutions for
6

is a nonincreasing function
of
6
. However, the spectral radius U . /� Km3 is not always a monotonically

decreasing function for increasing
6
.

In what follows, this behavior is characterized in more detail by de-
riving an upper bound for U . /�GK 3 and by calculating the amount of reg-
ularization needed to obtain U .0/�GK 3W� Z V\X

. The relation between ��
and /�GK is given by (10). By defining the (extended) square matrices

/� M � /�GK /
 KJ TGR PQ J T �� M � �� �
J TGR PQ J T (13)

we obtain that the eigenvalues e .0/�GK 3 and e . �� 3 of /�GK and �� are equal
to the �n eigenvalues with largest modulus of /�GM and ��;M , respectively.
Given (10), the influence of regularization on the eigenvalues of /� K is
given by the relation /� Mo� �� M �� � � . �� � � 5-6 F Mp3 �

�
. However, the

increase in dimensionality from �n to �n 5Oq can be avoided.
Lemma 1: Let ��Wr be defined as

�� r � �� � �� �� < �� � � ��	� � � �	� � � ���� � �
�
� �	� � �� �� (14)

then the eigenvalues of /�GK are equal to

e . /�GK 3=� e �� �� r . �� r�576 F 3N�
� # (15)

Proof: The �n largest eigenvalues of /�GM are the eigenvalues of

/�GK . The eigenvalues e . /�GM 3 are also the eigenvalues of the generalized
eigenvalue problem e . �� M �� � � 1 �� � � 5s6 F Mt3 . By applying a transfor-
mation

uv r � w PQ < v$rJ w T
with

v r � ��
� � ��	� � . � ��� � � ��	� � 3 �
�

we obtain

e . ��GM �� � � 1 �� � � 5O6 F�M 3� e uv$r ��GM �� ��� uv �r uv$r . �� ��� 5O6 F�M 3 uv �r
� e �� �
JxJ �� r �� � � ���� �J � �	� � � ��	� � �� r0576 F JJ � �	� � � ��	� � #

At least
q

eigenvalues are zero and the �n eigenvalues of largest mod-
ulus are the eigenvalues of e �� �� r . �� r0576 F 3 �

�
.

By using the QR-decomposition

� ��	� � �� �� � � B4� B 8 � y �m� y � 8J y 8a8
it is easily shown that �� rz� y �8a8 y 8m8 or �� r
� ��
r ��"�r , with ��
rz��� �{< �� � � ��	� � . � �	� � � ��	� � 3 �

� � �	� � and where we assume that y �m� is non-
singular. This assumption is related to a form of persistent excitation
in subspace methods, see [7] for a discussion. An upper bound for the
spectral radius U . /� KN3 can be formulated as follows.

Theorem 1: Let
F � B4B � _ J

, then the following upper bound
holds for U . /�GK 3 :

U .�/�GK 3Wk c y � �8m8 �� y �8a8Xl5O6 c y � �8a8 F y �
�
8a8 # (16)

From this upper bound, it follows that:

U . /� KN3lk Z for
6 H 6t|4�

} .�~ P* ~ 3� < X
c y � �8m8 F y �

�
8a8 # (17)
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Proof: By use of Lemma 1, we have that

��������	��
 ����
� 
��� ��
��������� �	�����

 � 
����� ! �  ! ��� ! "�#$ ��� ���%� ! � ���&� ! �  ! �&� '

Since ���(�� � �)
 � � �*� ! �� � � � ! and ���,+ ��- . �/+ � for any square
matrix + , we also have that

���(��)�	�0
 � ���*� ! 
�)�1� ! " #$ ��� ���%� ! � ���&� ! �&�

- . ���*� ! 
����� 2 . " #$ �3� ���*� ! � ���&� 2 �&�


 . � �*� ! 
�)� � ! 
. " #$ ��� � �%� ! � � �&� ! 


 . � �*� ! 
�)� � ! 
4 ��� . � �%� 2 � � ��� 2 

'

The proof of (17) follows directly by putting this upper bound equal to5 .
In Theorem 2, conditions are derived to obtain ������ � �6- 5 , with587:9 a positive-real scalar.
Theorem 2: Given 
;=< > � , 
;?< , @ <BA < , C <DA < and

�
. Let the matrix 
��� be

defined by (14). Let 5FE39 be a positive real scalar and let 
� and ���� be
estimated as in (4) and (10). Let the matrices G  , G � and G�H�I #$ J #$
be defined as follows:

G  
LK 5  �NM��PO G � 
:K 5  �NM 
� � K 5  
� � M��
G H 
 
� 
� � M 
� 
� �(K 5  
� � M 
� � ' (18)

Define the set of eigenvalues Q of the generalized eigenvalue problem

Q 
SR 9 #$ K " #$
G H G �

O K " #$ 9 #$9 #$ G  
'

(19)

Then ���(��)�	��- 5 O for
� E ��T 
LUWVYX <DA Z [ Q </O with ���(��)� �(
 5 .

Proof: First we will show that ��� ��)� � 
 5 , for��T 
\UWV]X <BA Z [ Q < . We start from Lemma 1: ��������	�^

� 
� 
��� �_
��������� �	` � . All solutions of

�
for which the mapping�Gba ��)� �G �� � � K 5  �G is singular, correspond to solutions with a

pole on the circle with radius 5 or a pole pair that is symmetric
with respect to the circle with radius 5 (a symplectic pole pair if5 
 4

) [8]. By applying the vec-operation and using the propertyced�f]� ; CWg � ��
 � g M8; � ced�fY� C � [8], we obtain

ced�f ���� �G ����� K 5  �G 
 ���� M ��)�0K 5  "�#$ M "�#$ chd�fY���G � '

Therefore the mapping is �G a ��)� �G �� � � K 5  �G singular
iff i d�j ��)� M ��)�0K 5  "�#$ M "�#$ 
 9 ' By using (15) and� ;kM C � � g Mml ��
 ; g M C l , this is equivalent to

i d�j 
� 
��� �_
�����3��� � ` � M 
� 
��� ��
���(�3��� � ` �
K 5  " #$ 
 9

n i d	j �0
� 
����M 
� 
��� � �_
�����3��� � ` � M ��
�����3��� � ` �
K 5  " #$ 
 9 '

Since � ;8M�; �	` � 
 ; ` � M�; ` � (when
;

is invertible) and i d�jo� 
���Y���� �qp
 9 , we obtain

i d�j 
� 
� � M 
� 
� � K 5  ��
� � ����� � M �_
� � ����� � 
 9
n i d�j K �  �D5 �rM 5 � �&K � �D5  �rM 
� � � 5  
� � M3� �

� �s
� 
� � M 
� 
� � K 5�
� � M 5�
� � � 
 9 ' (20)

We now use the following equivalence relations
G  O G � O G H I #$ J #$

:

i d	jt� �  G  ��� G � � G H �(
 9n i d	jt� � � � G  � G � � � G H �(
 9
n i d	j � " #$ 9 #$9 #$ G  

� 9 #$ K " #$
G H G �


 9 '

Then by identifying G  , G � and G%H from (20), we obtain (18). Hence,
the solutions Q of the generalized eigenvalue problem (19) correspond
to values for

�
for which ��)� has a pole on the circle with radius 5 or

have symmetric pole pair with respect to this circle. This is true for all
real and positive Q < . Hence, by a continuity argument it follows that��� �� � �=
 5 , with

� Tu
vUWV]X <BA Z [ Q < and that ��� �� � �xw 5 for� 7 ��T .
Indeed, we already know from Theorem 1 that for

� E ��y , with
��y

defined by (17), we have that ��� �)�	��- 5 . For
� 
 �� T

, there are two
possibilities: 1) �� � has a pole pair symmetric to the circle with radius5 , and 2) �� � has at least one pole on the circle with radius 5 . We will
now show that 1) is impossible. Observe that assuming 1) implies that��� ���� � 7z5 . A continuity argument and the definition of

��T
being

the largest real eigenvalue Q < of (19), tell us that that for
� 7 ��T , there

is no crossing of the poles
R � �� � � of �� � with the circle with radius 5 .

This implies that for
� 7 ��y , ���(����!� 735 , which is in contradiction with

Theorem 1. Hence, ���� has at least one pole on the circle with radius5 . Also ������)�	�Pw 5 for
� 7 ��T

, because the contradiction implies
another crossing of the circle with radius 5 , which is again impossible
by the definition of

��T
.

Observe that ���(����!�0
 � 
� 
��� �_
�����3��� �	` � is a nonlinear func-
tion of

�
. Theorem 2 says that the value

��T
is determined by the gen-

eralized eigenvalue problem (19) such that ������ � �{- 5 for
� E � T ,

with equality for
� 
 ��T

. However, the Theorem gives no further in-
formation on the evolution of ������)�	� , which may be a nonmonotonous
function of

�
. Theorem 2 only tells us that the eigenvalues

R � ��)�	� re-
main inside the disk with radius 5 for

� 7 � T .
For high-order systems, a large generalized eigenvalue problem (19)

of dimension | 
}  has to be solved, hence requiring ~ � 
}%� � operations.
When 
} is large, we propose instead an iterative algorithm to determine
the value of

� T
. From (17) of Theorem 1, a starting value

� H 
 � y is
obtained such that ���(�� � ��- 5 for

� E � H . From this starting value
� H ,

we will now decrease
�

in each iteration step until ���(����!�s
 5 . This is
done by using the following three relations between the spectral radius
and matrix norms [6]: 1) ��� ����-����W�	� , for any regular matrix + ;
2) for a diagonalizable matrix

�
with eigenvalue decomposition

��

���=��` �

, we have ��� ����
z�����t� ; for a nondiagonalizable matrix
�

,
there exists a nonsingular matrix

�
such that ��� �)�=
������t� ��� �

,
with

� �
arbitrarily small; 3) let

�������r- 4
, then

� � " K3���!` � ���r-
� 4 K��	�W���?�	` � .

Let �� � be defined by �� � 
 
� 
� � � 
� � �:��� � ` � , then, by use of
Lemma 1, we have that ��������	��
 ��� ��)�	� . To avoid the calculation of
the inverse � 
��������� �!` � for a new value

�
in each iteration step, 
���

and
�

can be simultaneously diagonalized


��������� 
S��� � � #� �3� " #$ �!�)�� (21)

where
� �

can be calculated as

����
 @0�F� �2�  � @ #� (22)

with the SVD of
� 
 @ � � � @ �� and the SVD of

� ` �,�  � @ �� 
��� @ � � ` �2�  � 
 @ #� � #� @ � #� . This yields ��� ���� �3

� � ` �� �� � ��� 
 � � ` �� �� � ��� � � #� �W� < " #$ � � � #� �W� < > � " #$ � ` � .
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Let ��� be the value of � after
�

iteration steps such that �����	�
 ��
��
,

with �	 
����	 ���� � ������ � ��� �����
, and let the eigenvalue decomposition

of  ���! �	 
  ! be given by  ���! �	 
  ! �#" ��$�� " ���� , then we can
calculate %�� � � � �'& � � ( ��)+* such that ��� �	 � ( � �,
+� or

��� �	 
 �-
  ���! �	 
  ! $/.0 � � � 12.3 $/.0 � � � ( � 12.3 ��� 4
  ���! �	 
  ! 4
5 $/.0 � � � 12.3 $/.0 � � � ( � 12.3 ��� 4

� ���2� �	 
 � �76
4 � 1�.3 & %�� � $/.0 � � � 12.3 ��� ��� 4


 ��� �	 
 � �76
4

8 & %�� � $/.0 � � � 12.3 ��� 4 9 (23)

Putting this upper bound (23) for ��� �	 
 �
equal to

�
yields

%�� � �
���':<;=:�>? @ (�A @B
$C.0 � � � 12.3 ��� 4 9 (24)

Since ��� �	 
 ��DE�
and

6 4
can be made arbitrarily small, it is easily

verified that for this value of %F� � )7* the last step in (23) is valid. Also
notice that �����	 
 �G
H�

. This yields the following iterative algorithm:

Input: , , , and tolerance .
Output: .
Initialization: , determine
from (17) in Theorem 1, calculate

and as described in (21)

and (22), compute and

; and

compute the eigenvalue decomposition
(or a such that

)
while
determine from (24) and put

and

compute
and compute the eigenvalue decomposition

(or a such that
)

endwhile

The initialization results in ��I 
 ��J . Since %�� �,K * by construc-
tion, the algorithm decreases the amount of regularization in each it-
eration step, i.e., � � ( � 
 � � , with equality iff �2�ML	 
 � �N6

4 � �
and

where
6 4

can be made arbitrarily small. Hence, � � converges to the
largest � such that �2� L	 
 � � �

. This value is equal to ��J as follows
from Theorem 2. The algorithm requires OP� �Q'R � operations per itera-
tion step and the simulation results in [12] indicate linear convergence.
More advanced algorithms like bisection algorithms may speed up the
convergence, but one looses the guaranteed convergence to �SJ , as it is
not guaranteed that ��� L	T
=� is a monotonous function of � . The problem
can also be formulated as a real stability radius problem with one re-
peated block for which a fast algorithm exists [9], but this algorithm

requires more complex computations (an LMI problem) per iteration
step and faster convergence has not been proven.

Now, we show that the so-called data augmentation method of Chui
and Maciejowski [2] corresponds to adding regularization terms to the
least squares cost function with specific choices for the weighting ma-
trix � . In [2], the nonsteady Kalman filter state sequences

�U ��V �U � ( �
are iteratively augmented by appending W �YX " X and * .3�Z[� ( W �S\^] " \ "P_\�`
and * .3�Zba ) respectively, for each unstable pole c X (pole pair c \dV c _ \ )
with corresponding normalized right eigenvector

" X (right eigenvector" \ and its conjugate
"P_\ ). The inputs e ��f � and outputs g �hf � are extended

by appending null vectors of appropriate dimensions. The constant �YX
( ��\ for a complex pole pair) is determined such that the magnitude of
the stabilized pole is i , with i K * chosen by the user. The other
eigenvalues are not changed.

For the case of one real unstable pole, this method corresponds
to minimizing the following cost function in least squares sense:jlk mMn? o np �U � ( � & L	�qsr �U �s& Lt q'r e �hf � au � �YX L	�qsr " au V
with the regularization term �YX[v,L	Tqsr " v au �
� q'rxw�y ��L	�qsr "P"�z L	 z qsr � . More regularization terms are iteratively
added for each other pole or pole pair with amplitude larger than

�
.

Hence, the data augmentation method of Chui and Maciejowski [2]
corresponds to the following weighting matrix in the regularization
term (7):

� w�y L	 
 � L	 z 
�
{�|S}<~<����� �G�d��� ��} X ��X

w�y L	 
=" X " zX L	 z 

�
{S|�}h~ ����� �G�d��� �-�d�Y� � } \ �S\

w�y L	 
 ] " \ " _\ ` ] " \ " _\ ` � L	 z 


or � � � X ��X " X "�zX � \ �S\ " \ "l_\ " \ "�_\ � , which is a special
case of ��� a � L	T� .

In the companion paper [12], Monte Carlo simulations were con-
ducted to compare the performances of a stable reduced order model
(obtained without regularization) with two full order models, forced to
be stable by applying regularization 1) with � � 1 .3 , corresponding to
ridge regression [3], [4], and 2) with the data augmentation method [2].
The simulation results, conducted on a finite number of data points in
the presence of noise, illustrate that the use of regularization allows to
identify stable high order models with better performance than the re-
duced order model. The main conclusions of the comparison between
the two choices for the weighting matrix are that ridge regression gen-
erally yields (slightly) better results than data augmentation [2], while
ridge regression achieves a much lower variance on the elements of L	 
 .
These results can also be understood from regularization theory [1],
[3]–[5], where the choice of the identity matrix for the weighting ma-
trix is motivated by the maximum entropy principle, equally penalizing
all directions of the solution. We refer to [12] for a detailed discussion
of the simulation results.

III. CONCLUSION

Subspace methods for the identification of linear time-invariant sys-
tems are known to be asymptotically unbiased. The system matrices are
usually estimated from least squares, based on estimated Kalman filter
state sequences and the observed inputs and outputs. However, for a
finite number of data points, it is not guaranteed that the least squares
estimate yields a stable system, even when it is known that the true
linear system is stable. In this note, stability of the estimated system is
imposed by adding a regularization term to the least squares cost func-
tion. The regularization term used here is the trace of a matrix which
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involves the system matrix and a positive (semi) definite weighting ma-
trix. The amount of regularization is calculated by solving a generalized
eigenvalue problem. The data augmentation method proposed by Chui
and Maciejowski can be interpreted as iteratively applying regulariza-
tion with specific choices for the weighting matrix. Different choices
for the weighting matrix can result into different solutions. In ridge re-
gression the identity matrix is used for the weigthing matrix, which
has been motivated by the maximum entropy principle in regulariza-
tion theory.
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A New Bounded Real Lemma Representation for the
Continuous-Time Case

U. Shaked and V. Suplin

Abstract— A differential linear matrix inequality (DLMI) approach is
introduced for the solution of various linear continuous-time control prob-
lems. The proposed method permits the application of linear matrix in-
equalities (LMIs) to the solution of control design problems under uncer-
tainty. These problems are solved for finite horizon linear systems while
considerably reducing the overdesign inherent in previous methods. The
new approach also allows for the solution of the output-feedback control
problem for systems belonging to a finite set of uncertain plants with hardly
any overdesign. Four examples are given to demonstrate the applicability
of the new method.

Index Terms— Differential linear matrix inequality (DLMI), recursive
linear matrix inequalities (LMIs), robust control.

I. INTRODUCTION

Linear matrix inequalities (LMIs) are now widely used to solve var-
ious linear control and filtering problems. The main advantage of the
LMIs lie in their ability to tackle multiple objectives and to deal with
polytopic type uncertainties [1]. In the past they were used mainly to
solve stationary problems. The algebraic nature of the Riccati equa-
tions to which these problems correspond, enables the construction of
equivalent LMIs by applying the Schur complements formula [2].

Unfortunately, in cases where the systems involved are time-varying
or when the time-horizon is finite, differential or difference LMIs ap-
pear. The degree of freedom that is entailed in solving these inequalities
at each instant of time should be exploited to derive the best solution
that will enable the optimal solution at future instances of time. In the
discrete-time case, recursive sets of LMIs are obtained, and the ques-
tion which was raised in [5] was how to find a solution for a given set
of difference LMIs at, say, the � -th instant which enables the best solu-
tion to these LMIs at instances ����� . The method developed in [5] was
used to solve robust control and filtering problems and the relationship
between the proposed solutions and the corresponding ’central’ solu-
tions was discussed.

In this note we adopt a similar approach for continuous-time systems
by discretizing the time scale and developing LMIs that resemble the
ones obtained in [5] for the discrete-time case. The results we obtain
here enable the solution of the state and output-feedback control prob-
lems for time-varying systems over a finite horizon. They also provide
an efficient means for solving the control problem for multiple oper-
ating points and, by an appropriate gridding of the uncertainty intervals,
for the robust control of systems with polytopic uncertainties.

II. SOLUTION OF THE BRL VIA DISCRETIZATION

Given the following system ���
	���
������ :
���� 	 ��� 
���� � � ��� �
��� � � (1)

where�! #"%$ system state vector;
�  '&)(*,+ �-�-.0/ exogenous disturbance signal;
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