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1. INTRODUCTION

The theory of linear discrete-time periodic sys-
tems has received a lot of attention in the last
25 years (Bittanti and Colaneri, 1996). Almost
all results for standard discrete-time systems have
been extended to periodic systems of the form

Tp+1 = Apxr + Brug (1)

Yr = Crxy + Dyuy,
where the matrices A, € R™+1*" B, €
Rresrxm oy € RP*™ Dy € RP*™ are peri-
odic with period K > 1. Most theoretical results
are based on two lifting techniques which reduce
the problem for the periodic system (1) to an
equivalent problem for a time-invariant system of
increased dimensions. The first lifting approach,
proposed by Meyer and Burrus (1975), involves
forming products of up to K matrices, while
the second lifting approach, proposed by Flamm
(1991), leads to a large order standard system
representation with sparse and highly structured
matrices. Although these lifting techniques are

useful for their theoretical insight, their sparsity
and structure may not be suited for numerical
computations. This is why, in parallel to the the-
oretical developments, numerical methods have
been developed that try to exploit this structure.
For most analysis and design problems of standard
state space systems, there are good numerical al-
gorithms available that meet the standard require-
ments of speed and accuracy. The purpose of this
paper is to present a short overview of recently
developed numerical methods for the analysis and
design of periodic systems. We also mention some
open areas where there is still a need for new
algorithmic developments.

Notation. To simplify the presentation we intro-
duce first some notation. For a K-periodic matrix
X}, we use alternatively the script notation

X = dlag (X(),Xl, e ,XKfl),

which associates the block-diagonal matrix X to
the cyclic matrix sequence X, £ = 0,..., K—
1. This notation is consistent with the standard



matrix operations as for instance addition, mul-
tiplication, inversion as well as with several stan-
dard matrix decompositions (Cholesky, SVD). We
denote with o X' the K-cyclic shift

oX = diag(Xl,...,XK,l,Xg)

of the cyclic sequence Xy, k =0,..., K—1.

By using the script notation, the periodic system
(1) will be alternatively denoted by the quadruple
(A, B,C,D). The transition matrix of the system
(1) is defined by the n; x n; matrix ®4(j,i) =
Aj_1Aj_5---A;, where ®4(i,4) := I,;. The state
transition matrix over one period ®4(j + K, j) €
R™ %" ig called the monodromy matrixz of system
(1) at time j and its eigenvalues are called char-
acteristic multipliers at time j.

2. DESCRIPTOR PERIODIC SYSTEMS

Descriptor periodic systems of the form

Eyxp41 = Agzy + Brug
yr = Crxg + Dyuy, @
where the matrices Ay, E € R"*", B, € R"*™,
Cr € RP*™, D, € RP*™ are periodic with period
K > 1, have been considered in (Sreedhar and
Van Dooren, 1997; Sreedhar et al., 1998). These
systems may also arise in the context of ordinary
periodic systems, when for instance forming the
inverse or conjugate periodic system. Provided
the matrices Ej are invertible we can divide the
first equation from the left by Ej which then
reduces to a standard periodic model with system
quadruple (£71A,£71B,C,D). The monodromy
matrix in this case becomes the n x n matrix
Dpa(ji) = B A 1B LA o B AL Tt
should be pointed out that analysis and design
algorithms for such systems should nevertheless
work even when the matrices Ej are singular,
provided these problems are well defined.

3. SATISFACTORY ALGORITHMS

We first briefly discuss three key requirements
for a satisfactory numerical algorithm for peri-
odic system: generality, numerical stability, and
efficiency. A general algorithm is one which has no
limitations for its applicability of any technical na-
ture. For the periodic system (1) it should be able
to handle the most general class of periodic sys-
tems. For example, a pole assignment algorithm
for a periodic system able to assign only distinct
poles should not be considered satisfactory. Since
the minimal realization of a periodic system has in
general a time-varying state dimension, it is highly
desirable to develop algorithms for the analysis

and design of periodic systems which are able to
handle systems with time-varying dimensions.

Numerical stability (more precisely, backward sta-
bility) of an algorithm means that the results
computed by that algorithm are exact for slightly
perturbed original data. As a consequence, a nu-
merically stable algorithm applied to a well con-
ditioned problem will produce guaranteed accu-
rate results. This is why numerical stability is a
key feature for a satisfactory algorithm. A ba-
sic ingredient to achieve numerical stability is
the use of orthogonal transformations wherever
possible. The use of these transformations often
leads to bounds for perturbations of the initial
data which are equivalent to the cumulative effect
of round-off errors occurring during the compu-
tations. This is a way to prove the numerical
stability of such an algorithm. This immediately
suggests that one should avoid forming matrix
products as those appearing in the lifted formu-
lation of Meyer and Burrus (1975), since these
amount to non-orthogonal transformations of the
data matrices. The main idea when developing
numerically stable algorithms for periodic systems
is to exploit the problem structure by applying
only orthogonal transformations on the original
problem data, and thereby trying to reduce the
original problem to an equivalent one which is
easier to solve.

Because of the intrinsic complexity of several com-
putational problems in systems theory, it is not
always possible to develop numerically stable al-
gorithms for them. Therefore one often imposes
this requirement only on the substeps of the algo-
rithm. Although this is not enough to guarantee
numerical stability of the global algorithm, one
can still expect that it will perform accurately on
well-conditioned problems.

The efficiency of an algorithm involves two main
aspects: avoiding extensive storage use and keep-
ing the computational complexity as low as pos-
sible. For periodic systems the first requirement
implies that the storage should be proportional
to the amount of data defining the system, i.e. it
should be O(Kn?) + O(Knm) + O(Knp), where
7 = max{n;}. Explicitly forming the lifted repre-
sentation of Flamm (1991) should thus be avoided.
Concerning the second requirement applied to a
periodic system of period K, one would hope for a
complexity of at most O(Kn?) since the complex-
ity for standard state-space algorithms is typically
O(n?). This implies again that one should not use
large dimensional lifted representations.

4. BASIC NUMERICAL INGREDIENTS

The use of condensed forms of the system matri-
ces, obtained under orthogonal transformations, is



a basic ingredient for solving many computational
problems (Van Dooren and Verhaegen, 1985). The
system matrices are transformed to a particular
coordinate system in which they are condensed,
such that the solution of the computational prob-
lem is straightforward. For periodic systems with
constant dimensions, the periodic real Schur form
(PRSF) plays an important role in solving many
computational problems. According to Bojanczyk
et al. (1992), given the matrices Ay € R"™*™,
k=0,1,..., K—1, there exist orthogonal matrices
Zp, k=0,1,..., K—1, Zg := Zy, such that

Ay =27 AvZy, (3)

where A is in real Schur form (RSF) and
the matrices f~1k for £k = 0,..., K—2 are upper
triangular. Numerically stable algorithms to com-
pute the PRSF have been proposed in (Bojanczyk
et al., 1992; Hench and Laub, 1994). By using
these algorithms, we can determine the orthogonal
matrices Zy, k = 0,..., K—1 to reduce the cyclic
product Ag 1 -+ Ay Ag to the RSF without form-
ing explicitly this product. An intermediate con-
densed form with potential applications in com-
putational algorithms is the periodic Hessenberg
form (PHF), where A _; is in a Hessenberg form,
while ka for k = 0,..., K—2 are upper triangular.

For systems with time-varying dimensions, the
extended periodic real Schur form (EPRSF) repre-
sents a generalization of the PRSF which allows to
address many problems with varying dimensions.
According to Varga (1999), given the matrices
Ap € Rme+rxme k=0, 1,..., K—1, with ng = ng
there exist orthogonal matrices Z; € R™ *™

k=01....,.K-1, Zg := Zy, such that the
matrices
~ A A
Ak — Zg+1Aka — k,11 Nk,l? , (4)
0 Ao

are block upper triangular, where Z,“H € Raxn
Apgo € Rlwri—mx(me—n) for k= 0,1,..., K—1
and n = ming{ny}. Moreover, EK_LH is in RSF,
ka,n for k = 0,..., K—2 are upper triangular and
Avk722 for k=0,..., K—1 are upper trapezoidal.

For descriptor systems with fixed dimensions, the
generalized periodic real Schur form (GPRSF)
extends the PRSF to so-called regular periodic
systems (see e.g. Bojanczyk et al. (1992)). Given
the matrices Ay, Er, € R™*", k =0,1,..., K—1,
there exist orthogonal matrices Zy,Qr € R™*™,
k=01....K—-1, Zg := Zjy, such that the
matrices

gk = QZAka, Ek = QzEkaJrl: (5)

are all upper triangular, except for A K1, which is
in RSF.

5. PERIODIC MATRIX EQUATIONS

The reduction of a periodic matrix Ay to PRSF
and EPRSF is the principal ingredient in solving
important linear equations for periodic systems as
the periodic Lyapunov and Sylvester equations.
Periodic Lyapunov equations appear in solving
periodic state-feedback stabilization problems or
in computing gradients for optimal periodic out-
put feedback problems (Varga and Pieters, 1998).
Consider for example the discrete-time periodic
Lyapunov equations (DPLE)

X=AToXA+V (6)
oX = AXAT + oW (7)

where Vj,, W}, are symmetric K-periodic matrices
of appropriate dimensions. To ensure the existence
of a unique solution of these equations we assume
that the monodromy matrix ®4(K,0) has no
reciprocal eigenvalues.

The orthogonal Lyapunov transformation in (3)
or (4) can be expressed as A = 0ZTAZ. By
multiplying equation (6) with Z7 from left and
with Z from right, and multiplying equation (7)
with ¢ Z7 from left and with ¢ Z from right, one
obtains

X=AToXA+V, (8)
oX = AXAT + oW, 9)

where X = zZTxz, V = 2TVZ and W =
ZTWZ. By this transformation the resulted
transformed equations (8) and (9) have exactly
the same form as the original ones in (6) and (7),
but this time the periodic matrix ﬁk is in PRSF
or EPRSF. After solving these equations for X,
the solution results as X = ZXZT. The reduced
DPLEs (8) and (9) can be solved by using special
substitution algorithms (Varga, 1997). Important
computational subproblems are in this context the
efficient and numerically stable solution of low
order DPLEs and periodic Sylvester equations.
Computational approaches for these subproblems
are also described in detail in (Varga, 1997).

The computation of periodic reachability and ob-
servability grammians for periodic systems in-
volves the solution of periodic Lyapunov equa-
tions having nonnegative solutions. For example,
assuming that ®4(K,0) has only eigenvalues in
the interior of the unit circle, the DPLE

X=AToXA+RTR (10)

can be solved directly for the Cholesky factor ¢ of
the nonnegative definite solution X = #7U. When
solving minimal realization or model reduction
problems, the periodic matrices Ay and Ry, in (10)



have often time-varying dimensions. Efficient al-
gorithms to solve nonnegative DPLE are based on
transformation techniques involving the PRSF for
constant dimensions (Varga, 1997) or the EPRSF
for time-varying dimensions (Varga, 1999). Simi-
lar comments hold for the dual equation

oX = AXAT + oRoR”. (11)

A class of periodic robust state-feedback pole as-
signment problems can be reduced to the solution
of a periodic Sylvester equation (PSE) of the form
(Varga, 2000b)

AX +0XB=C (12)

where Ay, By and Cj are K-periodic matrices
with constant dimensions. By reducing Ay and By,
to the PRSF, the periodic solution X can be com-
puted using a transformation method which gen-
eralizes the well-known Bartels-Stewart method
(Byers and Rhee, 1995; Varga, 20000).

Periodic Riccati equations appear when solv-
ing periodic LQ-design problems (Sreedhar and
Van Dooren, 1994b). Using our notation it can be
written as follows

P =AT[oP — oPB(R + BYoPB) 1BTP|A+ S.

The solution of this periodic Riccati equation can
be obtained from the generalized periodic Schur
decomposition of (Ej, Ay), where

- [I,BkR:'BY]l . [ A, 0O
Ek:[ k kT k:|7Ak:|:_Slv€k In:| (13)

Upon partitioning the 2n x 2n matrices Zy of the
GPRSF of (13) as

5 | X Vi
Zk_[Yk Wk:|’ (14)

one obtains the matrices P, that constitute P as
P, = Y X, !, provided the GPRSF has ordered
eigenvalues, i.e. the stable eigenvalues appear first
in the Schur form. Algorithms for this have been
proposed in (Bojanczyk et al., 1992; Hench and
Laub, 1994; Sreedhar and Van Dooren, 1994b).
Similar results hold for the dual periodic Riccati
equation occurring in the filtering problem :

oP = A[P — PCT(R + CPCT)1CPIAT + oS.

6. ALGORITHMS FOR THE ANALYSIS OF
PERIODIC SYSTEMS

Structural properties of stable periodic systems
such as reachability, observability, minimality can
be analyzed by computing the reachability and
observability grammians. With a straightforward
scaling, the same techniques can be used to study

unstable systems as well. The computation of min-
imal (i.e., completely reachable and completely
observable) realizations can be done using ef-
ficient and numerically reliable algorithms pro-
posed by Varga (1999). Order reduction of peri-
odic systems using balancing techniques can be
performed by using accuracy enhancing square-
root and balancing-free algorithms developed in
(Varga, 2000a). The main computation in these
algorithms is the solution of two nonnegative def-
inite periodic Lyapunov equations to determine
directly the Cholesky factors of the controlla-
bility and observability grammians. The square-
root term signifies that all subsequent compu-
tations for determining the projection matrices
are based exclusively on square-root information
(i.e., Cholesky factors of the grammians). The
accuracy can be further enhanced by avoiding the
computation of the possibly ill-conditioned bal-
ancing transformation. Instead, well-conditioned
projection matrices are constructed which leads
to so-called balancing-free order reduction.

The computation of poles is important in many
applications. To compute the poles of a periodic
system, the eigenvalues of the monodromy matrix
product ® 4(K,0) must be determined. The com-
putation can be done without forming this matrix
product explicitly, but by reducing the K-periodic
matrices A to the PRSF in the case of constant
dimensions, or to the EPRSF in the case of time-
varying dimensions. If only poles are requested
one can also use the more economical approach
suggested by Van Dooren (1999).

The evaluation of system norms can be done using
reliable algorithms. The Hankel-norm of a peri-
odic system can be computed as the maximal
singular value of the products of periodic gram-
mians. This computation is part of the algorithm
to determine minimal realizations of periodic sys-
tems using balancing techniques (Varga, 1999).
The computation of the Hs-norm involves the
solution of a periodic Lyapunov equation to de-
termine the controllability or observability gram-
mians (Bittanti and Colaneri, 1996). This can be
done using algorithms proposed in (Varga, 1997;
Varga, 1999). For the computation of the H..-
norm an algorithm with quadratic convergence is
given in (Sreedhar et al., 1997). The main step
there is the computation of generalized eigenval-
ues of a periodic symplectic pencil using the peri-
odic QZ-decomposition (Bojanczyk et al., 1992).

7. ALGORITHMS FOR THE DESIGN OF
PERIODIC SYSTEMS

Basic design algorithms for periodic systems with
constant state dimension have been proposed by
several authors. A Schur method for pole as-



signment has been proposed by Sreedhar and
Van Dooren (1993) and a stabilization algorithm
has been proposed by Sreedhar and Van Dooren
(19944a). A robust pole assignment method rely-
ing on Sylvester equations has been proposed in
(Varga, 20000).

A computational approach for the periodic LQG
methods involves the solution of periodic Ric-
cati equations. Efficient methods have been pro-
posed using the ordered PRSF or generalized pe-
riodic real Schur form (GPRSF) (Bojanczyk et
al., 1992; Hench and Laub, 1994). A computa-
tional approach for the solution of the optimal
periodic output feedback problem has been devel-
oped by Varga and Pieters (1998).

8. ALGORITHMS FOR DESCRIPTOR
PERIODIC SYSTEMS

All of the equations for standard periodic systems
(A, B,C, D) can be extended to descriptor periodic
systems (£, .A4,B,C,D) provided £ is invertible.
When £ is singular, one has to show that the
underlying control problem makes sense and is
solved by the corresponding equations. For regular
periodic systems this is typically the case (see e.g.,
Sreedhar and Van Dooren (1999)).

The generalized Lyapunov and Riccati equations
are

EoXET = AXAT + oW, (15)

and
EoPET = A[P —PCT(R+CPCT)-1CPIAT + 08,

respectively. Using the GPRSF (5), which can be
written as follows :

E=0%¢czZ, A=QTAZ, (16)

these can easily be transformed to the same equa-
tions where now £ and A are in GPRSF form.
From this, the required solution then easily fol-
lows in much the same way as for the standard
periodic equations. It is shown by Sreedhar and
Van Dooren (19945) how these equations can been
used to solve stabilization and optimal control
problems of periodic descriptor systems.

The generalized Sylvester equation has the form

EoXB+ AXF =C, (17)

where the matrix pairs £, 4 and B, F can again
be put in GPRSF. Using the latter, a lifting tech-
nique for periodic descriptor systems has been
introduced by Sreedhar et al. (1998) which, in

conjunction with the backward/forward decom-
position technique of Sreedhar and Van Dooren
(1997), allows to determine minimal order repre-
sentations of descriptor periodic systems.

Further, poles of descriptor periodic systems can
be computed using the periodic QZ decomposi-
tion proposed by Bojanczyk et al. (1992) or the
more economical variant described by Van Dooren
(1999).

9. SOME EXTENSIONS AND OPEN
PROBLEMS

There are several computational problems for pe-
riodic systems for which it is in principle straight-
forward to develop reliable computational meth-
ods by extending algorithms for standard systems.
Frequency-domain methods for the analysis of
periodic systems rely on the Kp x Km transfer-
function matriz (TFM) of the associated lifted
systems (Meyer and Burrus, 1975; Flamm, 1991).
The computation of frequency responses can be
done by computing first the corresponding TFM
and then evaluating the frequency response using
the resulting rational matrix. A method to com-
pute the TFM can be devised along the lines of
the poles/zeros approach proposed by Varga and
Sima (1981) for standard systems and in by Varga
(1989) for descriptor systems. Alternatively, the
frequency response can be computed by exploiting
the sparse structure of the lifted representation of
the periodic system. Here the periodic Hessenberg
form can play potentially the same role as the
Hessenberg form in the case of standard systems
(Laub, 1981).

Recursive Schur techniques to compute coprime
factorizations (Varga, 1998) can be extended to
the periodic case along the line of the periodic
Schur form method for pole assignment proposed
by Sreedhar and Van Dooren (1993). This has
been done for the coprime factorization with inner
denominator by Varga (2001) in the context of
balancing and model reduction of unstable peri-
odic systems. A computational approach to deter-
mine normalized coprime factorizations can prob-
ably be developed based on results for standard
systems of Bongers and Heuberger (1990).

There are several open problems for which still
efficient algorithms are to be developed, as for
example, the computation of controllability and
observability canonical forms, zeros of the associ-
ated TFM, Kronecker-structure of associated sys-
tem pencil, inner-outer and spectral factorization,
and so on. Recent developments also look at the
solution of periodic Linear Matrix Inequalities
for solving various design problems (Bittanti and
Cuzzola, 2000). The use of periodic matrix decom-
positions could be useful here as well.
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