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Abstract-A theoretical analysis is made of the error propagation due 
to numerical roundoff for four different Kalman filter implementations: 
the conventional Kalman filter, the square root covariance filter, the 
square root information filter, and the Chandrasekhar square root filter. 
An experimental analysis is performed to validate the new insights gained 
by the theoretical analysis. 

I .  INTRODUCTION 

S INCE the appearance of Kalman’s 1960 paper [ 11, the 
so-called Kalman filter (KF) has been applied successfully to 

many practical problems. especially in aeronautical and aerospace 
applications. As applications became more numerous, some 
pitfalls of the KF were discovered such as the problem of 
divergence due to the lack of reliability of the  numerical 
algorithm or  to inaccurate modeling of the system under 
consideration [2]. 

Therefore, several modified implementations of the KF were 
presented in  an effort to avoid these numerical problems. Many  of 
these modifications were based on heuristics (as in the stabilized 
KF [3], or the conventional KF with lower bounding [4]) which 
often require much experience in order to implement them 
effectively. Later, more reliable KF implementations were 
described such as the square root filter (SRF) proposed by Potter 
in 1963 1.51. For this filter the reliability of  the filter estimates is 
expected to be better because of the use of numerically stable 
orthogonal transformations for each recursion step. On the other 
hand, the SRF implementation required more computations than 
the conventional KF [6]. This problem of cost efficiency gave rise 
to the development of modified versions of the SRF such as the 
UDU-algorithms [7] and the Chandrasekhar form [9]. These 
implementations can be made as efficient as the conventional KF, 
or for the Chandrasekhar SRF even more efficient for some 
special experimental conditions. 

In this paper we reconsider the numerical robustness of existing 
KF’s and derive some results giving new and/or better insights 
into their numerical performance. Here we investigate four 
“basic”  KF implementations: the conventional Kalman filter 
(CKF), the square root covariance filter (SRCF), the Chandra- 
sekhar square root filter (CSRF), and the square root information 
filter (SRIF). (The implementations chosen come from [12]; these 
differ substantially from the forms described in  [7]  with the same 
names!) This certainly does not cover all possible implementa- 
tions encountered in practice, but insights gained for these general 
cases are very  useful  in judging variants such as the efficient KF 
algorithms based  on the sequential processing technique [7] or the 
“condensed form” versions [ lo] ,   [ l l ] .  After a brief description 
of the above filters in Section 11, we perform in Section III a 
detailed first-order perturbation study of the error propagation due 
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to roundoff for the above four KF implementations. In Section IV 
a realistic simulation study is performed in order to validate the 
results of the theoretical analysis. Section V then outlines a 
comparison between the different filter implementations using the 
results of the theoretical error analysis and the simulation study. 
We end with some concluding remarks in Section VI. 

11. NOTATION AND PRELIMINARIES 

In this section we introduce our notation and list the different 
Kalman filter types that are discussed in the paper. We consider 
the discrete time-varying linear system 

Xk+l=AkXk+BkWk+DkUk (1) 

and the linear observation process 

Y k  = ckxk + uk (2) 

where xk,  uk, and yk  are, respectively, the state vector to be 
estimated (ER“) ,  the deterministic input vector (el?‘),  and the 
measurement vector (ERP), where wk and uk are the process noise 

and the measurement noise (ERP) of the system, and, 
finally, where A k * ,  B k ,  C k ,  and Dk are known matrices of 
appropriate dimensions. The process noise and measurement 
noise sequences are assumed zero mean  and uncorrelated 

E {  wk) =o, E {  u k }  =o, E{ w k v i  } =o  (3) 

with known covariances 

E{W>W;}=Qk6jk, E(VjV;}=Rk6jk (4 

where E{ * } denotes the mathematical expectation and Qk and Rk 
are positive definite matrices. 

The assumption that Qk is nonsingular does not restrict the 
generality of the system description, since for the case of singular 
Qk, the linearly dependent components in wk can always be 
removed first [12]. On the other hand, the regularity of Rk rules 
out the possibility of including perfect measurements not cor- 
rupted  by noise. In the particular case of perfect measurements, 
special adaptations are required for some of the KF implementa- 
tions, such as the  use of the Moore-Penrose inverse for the CKF 
[ 121. Such special implementations are not considered here except 
for a few comments in the concluding remarks. 

The SRF algorithm uses the Choleski factors of  the covariance 
matrices or their inverse in order to solve the optimal filtering 
problem. Since the process noise covariance matrix Qk and the 
measurement noise covariance matrix Rk are assumed to be 
positive definite, the following Choleski factorizations* exist: 

Q k = Q . ‘ 2 [ Q y 2 ] ’ ,  R k = R : ; ‘ 2 [ R p ] ’  ( 5 )  

’ Notice  that  historically Q”’ and Ri’Z have  erroneously  been  called 
I with  nonsingularity  required for the SRIF 

adjective “square root” as far as the  names  of  the  filters are concerned 
“square roots’’ instead of .‘Chofeski factors.” However,  we  will  maintain the 

because of the familiarity  that  they  have  acquired. 
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where the factors QL’2 and RY2 may be chosen upper or lower 
triangular. This freedom of choice is exploited in the development 
of  the  fast KF implementations presented in Section U. The 
problem is  now to compute the minimum variance  estimate of 
the stochastic variable X k ,  provided yl up to y j  have been measured 

” ”  
x k l j = x k l y l , . . . y , .  (6) 

When j = k this estimate is called the filtered estimate and for j 
= k - 1 it is referred to as the one-step predicted or, shortly, the 

predicted  estimate. The above problem is restricted here to these 
two types of estimates except for a few comments in the 
concluding remarks. Kalman filtering is a recursive method to 
solve this problem. This is done by computing the variances P k l k  

andlor P k l k - 1  and the estimates &lk and/or z k l k -  I from their 
previous values, this for k = 1, 2, . Thereby one assumes 
Pol - (i.e., the covariance matrix of the initial state xo) and fool - 
(Le., the mean of the initial state xg) to be given. 

A .  The  Conventional  Kalman  Filter ( C U )  

The above recursive solution can be computed by the CKF 
equations, summarized in the following “covariance form” [12]: 

This set of equations has been implemented in various forms; see 
[12]. An efficient implementation that exploits the symmetry of 
the different matrices in (7)-(10) requires per step 3n3/2 + n2(3p 
+ m/2) + n(3p2/2 + m 2 )  + p3/6 “flops” (where 1 flop = 1 
multiplication + 1 addition). By  not exploiting the symmetry of 
the matrices in (7)-(10) one requires (n3/2 + n2m/2 + np2/2) 
more flops. In the error analysis, it is this “costly” implementa- 
tion that is initially denoted as the CKF for reasons that are 
explained there. In Section II-E we also give some other variants 
that lead to further improvements in the number of operations. 

B. The  Square Root Covariance  Filter (SRCF) 

Square root covariance filters propagate the Choleski factors of 
the error covariance matrix P k l k -  I 

P k 1 k - j  = s k  * s; (1 1 )  

where S k  is chosen to be lower triangular. The computational 
method is summarized by the following scheme [12]: 

where Ul is an orthogonal transformation that triangularizes the 
prearray. Such a triangularization can, e.g., be obtained using 
Householder transformations 1131. This recursion is  now initiated 
with &,I - I and the Choleski factor So of POI - I as defined in (1 1). 
The number of flops needed for (12) and (13) is 7n3/6 + n2(5p/2 
+ m) + n(p2  -t- m2/2). In order to reduce the amount of work, 
we only compute here the diagonal elements of the covariance 

matrix P k + l l k ,  since usually diag(Pk+,lk} carries enough infor- 
mation about the estimate & + l ’ k  (namely the variance of the 
individual components). For this reason our operation counts 
differ, e.g., from those of [6]. In Section 11-E we shortly discuss 
some other variants that lead to further improvements in the 
number  of operations. 

C. The Chandrasekhar  Square Root Filter (CSRF) 

If the system model (l), (2) is time-invarianf, the SRCF 
described in Section II-B may  be simplified to the Chandrasekhar 
square root filter, described in [ 14]$  [9]. Here one formulates 
recursions for the increment of the covariance matrix, defined as 

In general, this matrix can be factored as 

where the rank of  inc P k  is n, + n2 and C is called its signature 
matrix. The  CSRF propagates recursions for L k  and & + l J k  using 
[ 141: 

E,=(: ;) 
Such transformations are easily constructed using “skew House- 
holder” transformations (using an indefinite E,-norm) and require 
as many operations as the classical Householder transformations 
[14]. (Later, it is noted  that numerically they are not always well 
behaved.) For this implementation the operation count is (n,  + 
n2) (n2  + 3np + p 2 )  flops. 

D. The  Square Root Information Filter (SRIF) 

The information fdter accentuates the recursive least-squares 
nature of filtering [7], [12]. The SRIF propagates the Choleski 
factor of Pi : :  using the Choleski factor of the inverse of the 
process- and measurement-noise covariance matrices 

where the right factors are all chosen upper triangular. We now 
present the Dyer and McReynolds formulation of the SRIF 
(except for the fact that the time and measurement updates are 
combined here as in [ 121) which differs from the one presented by 
Bierman (see [7] for details). One recursion of the SRIF algorithm 
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(postarray) 

and the filtered state estimate is computed by 

An operation count of this filter is 7n3/6 + n 2 ( p  + 7m/2) + 
n (p2 /2  + m 2 )  flops. Here we did  not count the operations 
needed for the inversion andlor factorization of Q k ,  Rkr and Ak 
(for the time-invariant case, e.g., these are computed only once) 
and again (as for the SRCF) only the diagonal elements of the 
information matrix Pi!: are computed at each step. 

E. Efficient Implementations 

Variants of the above basic KF implementations have been 
developed which  mainly exploit some particular structure of the 
given problem in order to reduce the amount of computations; 
e.g., when the measurement noise covariance matrix Rk is 
diagonal, it  is possible to perform the measurement update in p 
scalar updates. This is the so-called sequential  processing 
technique, a feature that is exploited by the UDU‘-algorithm to 
operate for the multivariable output case. A similar processing 
technique for the time update can be formulated when the process 
noise covariance matrix Qk is diagonal, which is then exploited in 
the SRIF algorithm. Notice that no such technique can be used for 
the CSRF. The UDU’-algorithm also saves operations by using 
unit triangular factors U and a diagonal matrix D in the updating 
formulas for which then special versions can be obtained [7]. By 
using modified Givens rotations [ 151 one could also obtain similar 
savings for the updating of the usual Choleski factors, but these 
variants are not reported in the sequel. 

For the time-invariant case, the matrix multiplications and 
transformations that characterize the described KF implementa- 
tions can be made more efficient when the system matrices { A ,  B, 
C }  are first transformed by unitary similarity transformations 
to so-called condensed form, whereby these system matrices 
{ A , ,  B,, Cf} contain many zeros. From the point  of  view  of 
reliability, these forms are particularly interesting here because no 
loss of accuracy is incurred by these unitary similarity transforma- 
tions [ 101. The following types of condensed forms can be used to 
obtain considerable savings in computation time in the subsequent 
filter recursions [lo]: the Shur form, where A ,  is in upper or 
lower Schur form, the observer-Hessertberg form, where  the 
compound matrix (A ,’ , C,‘ ) is upper trapezoidal, and the 
controller-Hesenberg form, where the compound matrix (Af, 
B,) is upper trapezoidal. In [lo], an application is considered were 
these efficient implementations are also valid for the time-varying 
case. Note that the use of condensed forms and “sequential 
processing” could very well  be combined to yield even faster 
implementations. 

The operation counts for particular mechanizations of these 
variants are all given in Table I and indicated by, respectively, the 

OPERATION COUNTS FOR THE DIFFERENT KF’s 
TABLE I 

(3/2)n’ + n’(3p+ m/2) + n(3pz/Z + m’) + p3/6 

(3/2)n’+  n2(3p+ 4 2 )  + n(p’ + m’) 

(3/4)ns + nz(5p/2+ m p )  + n(39/2 + m2) + $ / 6  I 
I 

&less. (3/4)n’ + nz(7p/2 + m/2) + “ ( 2 9  + mZ) + p’/6 

SRCF I full (7/6)ns + n’(5p/2 + m) + n(p’ + mz/2) 

(7/6)n3 + n’(5p/2 + m) + n(m’/Z) 

(1/6)n’ + n2(5p/2 + m) + n(2p2) 

(7/6)n’ + n’(p + Tm/Z) + n(d/Z) 

“seq,” “Schur,” ‘ I  o-Hess” and “c-Hess” abbreviations, while 
“full” refers to the implementations described in previous 
sections. 

III. ERROR ANALYSIS 

In this section we analyze the effect of rounding errors on 
Kalman filtering in the four different implementations described 
above. The analysis is split in three parts: 1) what bounds can be 
obtained for the errors performed in step k; 2) how do  errors 
performed in step k propagate in subsequent steps; and 3) how do 
errors performed in different steps interact and accumulate. 
Although this appears to be the logical order in which one should 
treat the problem of error buildup in KF, we first look at the 
second aspect, which  is also the only one that has been studied in 
the literature so far. Therefore, we first need the following lemma 
which is easily proved by inspection. 

Lemma I :  Let A be a square nonsingular matrix with smallest 
singular value u ~ , ,  and let E be a perturbation of the order of 6 = 
llEl12 4 umin(A) with 11 1 1 2  denoting the 2-norm. Then 

( A + E ) - ~ = A - ~ + A ~ = A - ~ - A - ~ E A - ~ + A ~  (24) 

where 

IIAIII~ 5 6/umdamin - 6) = o(6) (25) 

11A2112I6’/~,i,(~,i,-6)=0(6~). 2 (26) 

Notice that  when A and E are symmetric, these first- and second- 
order approximations (25) and (26) are also symmetric. 

We now thus consider the propagation of errors from step k to 
step k + 1 when no additional  errors  are performed during 
that update. We denote the quantities in_ computer with an 

depending on the algorithm. 

in step k ,  then: 

upperbar, i.e., P k l k - ] ,  z k l k - l ,  G k ,   S k ,   T k ,   F k ,   K k ,  Or L k ,  

For the CKF, let 6Pklk- and 6Xklk -  I be the accumulated errors 

~ k ! k - ] = P k ( k - l + 6 ~ k ~ k - l ~ k ~ k - l = ~ ~ ! k - 1 + 6 - f k l k - L .  (27) 

By using Lemma 1 for the inverse of R; = R; + C J P k l k -  ]C;, 
we find 

[ ~ ; I ] - ’ = [ R J ] - ’ - [ R f l ] - ’ C k 6 P k , k - , C ; [ R e , ] - ’ + 0 ( 6 2 ) .  (28) 

where the full implementation of the CKF exploits symmetry 
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From this, one then derives for sufficiently large k .  Notice that pm is smaller than ym or -fm, 

hence, (37), (38) are better bounds than (35),  (36). Using this, it 

and 8&lk-l  are decreasing in time when no additional errors  are 

-AkPklk-ICiRi-~CkSPklk-l c ~ ~ e - 1  +o(62) manner is the main reason why  many  Kalman filters do not 
diverge in presence of rounding errors. 

for symmetric 6 P k l k - l .  However, if symmetry .is removed, 
divergence may occur when A k  (i.e., the original plant) is 
unstable. Indeed, from (31), (33) we see that when A k  is unstable 

K k = A k P k l k - I C ; R i - l  then also follows from (37), (38) that  all three  errors 6 P k l k - l ,  6&, 

6 K k = A k 6 P k ( k - I C i R i - '  performed. The fact that past errors  are weighted in such a 

= F k s P k l k - 1 C ; R ~ - ' + 0 ( 6 ' )  (29) The property (35)-(38) was already observed before [2], but 

where 

F k = A k ( r - P k l k - I C ; R i - ' C k ) = A k - K k C k  (30) the larger part of the  error is skew symmetric: 

where F k  = (1 - Pk+l&C;+lR;.: C k + l ) A k  has the Same 

A k + l F k  [161. 
s p e c e m  as Fk+ I in the time-invanant case, since Fk+ I A k  = 

We thus fmd that when 6 P k l k -  I or 6 P k l k  is symmetric, only the 
first term in (31) or (33) remains and the error propagation 
behaves roughly as 

~ ~ ~ P k + l l k ~ ~ 2 = ~ ~ ~ k ~ ( ~  ' ( I & P k l k - l ) \ 2 = Y i  . ) ) 6 p k l k - 1 ) 1 2  (35) 

( ( 6 p k + l l k + 1 ( ( 2 ~ \ ) F k k J ) t  . l l ~ p k l k 1 ) 2 = ? ~  . \ )@klk))2 (36) 
which are decreasing in time when Fk and F k  are contractions 
(i.e., when y k  and T k  < 1). The latter is  usually  the case when the 

[ 123. For the time-invariant case one can improve on this Jy 
saying that Fk and Fk tend to the constant matrices F, and F,, 
respectively, with (equal) spectral radius pm e 1 and one then has 
for some appropriate matrix norm [17]: 

matrices A k ,   B k ,   c k ,   Q k ,  and R k  do not Vary to0 wildly in time 

IlsPk+l:kll = P L  ' 116Pklk-l 1) (37) 

\ ( @ k + I l k + l \ I = P &  ' \18Pklkl( (38) 

A P k + l ! k = A k   ( ~ p k ~ k - l - 6 p ; \ k - l )  ' A ;  (39) 

G P k + I ( k + l z A k  * ( 6 P k l k - 6 p ; l k )  Ai  (40) 

and the lack of symmetry diverges as k increases. This phenome- 
non is well known in the extensive literature about Kalman 
fitering and experimental experience has lead to a number of 
different "remedies" to overcome it. The above first-order 
perturbation analysis in fact explains why they work. 

1) A first method to avoid divergence due to the loss of 
symmetry when Ak is unstable, is to symmetrize p k l k -  I or P k l k  at 
each recursion of the CKF by averaging it  with its transpose. This 
makes the errors on P symmetric, and hence the largest terms in 
(31), (33) disappear! 

2) A second method to make the errors on P symmetric, simply 
computes only the upper (or lower) triangular part of these 
matrices, such as indicated by the implementation in Table I. 

3) A third technique to avoid the loss of symmetry is the so- 
called (Joseph's) stabilized KF [3]. In this implementation, the set 
of equations for updating P are rearranged as follows: 

P k + I l k = F k P k ( k - I F i   + K k R k K i   + B k Q k B i -  (41) 

A similar first-order perturbation study as for the CKF above, 
learns that no symmetrization is required in order to avoid 
divergence since here the error propagation model becomes: 

6 p k +   I ( k = F k h P k l k -  IF; + O(s2) (42) 

where there are no terms anymore related to the loss of symmetry. 
Since for the moment we assume that no additional  errors are 

performed in the recursions, one inherently computes the same 
equations for the SRCF as for the CKF. Therefore, starting with 

whereby now 
errors A s k  and &tklk-[ (29), (31),  (32),  (35), and (37) Still hold, 

6 P k l k -  1 = s k  ' 6s; + 8 s k  ' si + 6 s k  ' 8s; (43) 

is clearly symmetric by construction. According to (31) this now 
ensures the convergence to zero of 6 P k l k -  and hence oft&, 6& 
and 6.i& if y k  is sufficiently bounded in the time-varying case. 

For the SFW we start with errors 6 T k  and 6&(k and use the 
identity 

6 P i : = T ;  * 6 T k + 6 T ;  . Tk+&T,(  * (44) 

~ X k l k = ( T k + 6 T k ) - ' 6 5 ^ k ( k  (45) 

to relate this problem to the CKF as well. Here one apparently 
does not compute & + i l k L l  from &k and therefore one would 
expect no propagation of errors between them. Yet, such a 
propagation is present via the relation (45) with the errors on 
a&+ I ( k + l  and &$kJk,  which do propagate from  one step to another. 
This in fact is reflected in the recurrence (34) derived earlier. 
Since the SRlF update is inherently equivalent to an update of 
P k l k  and ,tklk as in the CKF, the equations (33), (36) still hold 
where now the symmetry of 6 P k I k  is ensured because of (44). 
From this it follows that 6 P k l k  and 6+&., and therefore also 6Tk 
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and 6&k, converge to zero as k increases, provided T k  is 
sufficiently bounded  in the time-varying case. 

Finally, for the CSRF we start with errors 6 L k - 1 ,  6Gk-l, 
6RlI/:, and 6L ;k l k - l .  Because of these errors, (16) is perturbed 
exactly as follows: 

ell2 k-l+6R:!: c ( L k - I + 6 L k - l )  

Gk-Ii-6Gk-I A(Lk-If6Lk-I) 

where U 2  is also Cp-unitary. When X = I I c ' L k -  4 IIRl:; I( 
(which is satisfied when k is sufficiently large), Lemma A.3 
yields after some manipulations 

Now the (1 ,  1) and (1, 2) blocks of U' are easily checked to be 
given by Re-1/2-R and Re-1/2.C.Li- l-C, respectively. From 
this, one then deri;z that for k sufficiently large 

k k 

6~ = 6~ e l l2  k - l  . [RE-''' * Rz'!/:]'+C 6 L k - l  

' [RZ-1'2 . C ' L k - 1  * E ] '  f 0 ( 6  * X) 

=&RE'/: * [R:-'12 . R;L_/:lf+O(6 . X) (48) 

6Gk=6Gk-l [R:-'l2 * R;'!S'+A * 6 L k - l  

[R;-'l2 * C * L k - 1  * C]'+O(S ' X) 

Z6Gk-l ' [R;-'12 * RekljS' +0(6 X). (49) 

Here again thus the errors 6R,"/f and 6Gk- are multiplied by the 
matrix [Re-1/2.Rl":] ' at each step. When C is the identity matrix 
(i.e., when inc Pk is nonnegative) this is a contraction since Rf; = 
R i - l  + C'Lk- l 'L ; - , 'C ' .  From this, we then derive simdar 
formulas for the propagation of 6 K k  and 6j&+ I l k .  Using Lemma 1 
for the perturbation of the inverse in Kk = Gk.R;-1/2, we find 

k 

6Kk=6Gk . Rz-1/2-Gk . R;-'12 . 6RZ'/2 . Ri-1/2+ O(62) 

-6Gk - * Rz-1/2-Kk * 6Ri1/2 . RZ-'/2+0(62). (50) 

Using (49), (50) and the fact that for large k ,  Kk = Kk- I + O(X), 
we then obtain 

which suggests that the inherent decaying of errors performed in 
previous steps will be less apparent for this filter. Besides that, 
nothing is claimed about 6 L k  or 6Pk+ I l k ,  but apparently these are 
less important for this implementation of the KF since they do not 
directly affect the precision of the estimate i?k+llk. Moreover, 
when C is  not the identity matrix, the above matrix has norm 
larger than 1 and divergence may be expected. This has also been 
observed experimentally as shown in Section N. 

We now turn our attention to the numerical errors performed in 
one single step k. Bounds for these errors  are derived in the 
following theorem. 

Theorem I :  Denoting the norms of the absolute errors due to 
roundoff during the Construction Of P k + l l k ,  K k ,  j?k+l lk,  s k ,  T k ,  

P , f I l k t l ,  and gklk by Aps  Akr  Am  Ass At, Appinu, and Ax, 
respectively, we obtain the following upper .bounds (where all 
norms are 2-norms): 

1) CKF 

2) SRCF 

3) CSRF 
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and are usually close to  1. 
Proof: 

I )  CKF: Using Lemma A.l the errors performed when 
constructing the matrix R; can be bounded by E ;  llR;ll and those 
for its inverse by K ( R ~ )  * (1 R i  (1. By again applying Lemma A. 1 
several times one finally obtains all bounds for Ap, Ak, and Ax, as 
given above. 

2) SRCF: The bounds for Ak and Ax follow directly from 
Lemma A.2 since Kk and sk + are the least-squares solution and 
the residual, respectively, of the problem [A IB] where A ’ and B’ 
are the top and  bottom  block rows of the prearray (12). The matrix 
A I  of Lemma A.2 is here the matrix Ri1’2. The bound for A, then 
follows directly from the bound for As using (43) and the fact that 
llsk+ 111’ = llPk+ llkl l .  Finally, the  bound from Ax is obtained from 
the one for Ak and from using Lemma A. 1 several times. 

3) CSRF: For the case = I ,  one obtains the bound for Ak as 
for the SRCF, from the observation that Kk is the least-squares 
solution of the problem [A IB] where A ‘ and B’ are the top and 
bottom  block rows of the prearray (16). The matrix A I  of Lemma 
A.2 is here also the matrix R;1’2. When C f I ,  this bound  is 
multiplied by K ( U ~ )  from the following observation. We can use 
Lemma A. l  to bound the errors in constructing the prearray 
(which we call Mk) by ern* llMkll, and those in constructing the 
postarray (which  we call Nk) by 

Ern * 11 u2ll ’ \ l M k \ l  =ern ’ 11 u2ll * \lNk . u; ‘11 
S E r n  . K(u2) * l l N k \ l .  

In terms of Nk we are now again in a problem of classical least- 
squares and errors in Mk and Nk are related by a factor K(U~) ,  
hence the bound for Ak for general E. The bound for Ax is then 
obtained by repeatedly using Lemma A.l as for the SRCF. 

4) SRIF: As above Tk+l is the residual of a least-squares 
problem where A and B are the first and second block columns of 
the prearray (22). The relative backward errors (6, and db in  the 
Appendix) in these matrices A and B are, according to Lemma 

respectively. Using this and Lemma A.2 we then  obtain the bound 
for AI.  The bound for Apinv is then obtained from that for A, using 
(44) and the fact that 11 Tk+ 11 = IIP;: 11. The bound for A, is 
then on its turn obtained from that for Ap using Lemma 1. Finally, 
&+ Ilk+ is the least-squares solution of the bottom 2 X 2 block in 
the postarray, which on itself is a residue (much as Tk+ and is 
therefore only  known  with A[ precision. Using Lemma A.2 we 
thereby obtain the bounds for A,. 

Here again we should point out that all bounds hold for several 
norms when appropriately adapting the constants ei (see the 
Appendix). rn 

These bounds are crude simplifications of the complicated 
process of rounding errors in linear algebra, but are often a good 
indication of what can go wrong in these problems (see, e.g., [IS] 
and [19]). This will be investigated more precisely in the 
experimental analysis of Section IV. It  is interesting to  note here 
that the bounds derived in Theorem 1 disprove in a certain sense a 
result that was often used to claim the numerical supremacy of the 
SRF’s, namely  that the sensitivity of Pk+ Ilk, Kk and &+ [ ! k  (which 
according to Theorem 1 depends mainly on the singular values of 
R i )  as computed by the SRF’s is the square root of that of the 
same quantities computed via  the CKF (see, e.g., [6] ,  end of 
Section III). As far as the error analysis is concerned, this can 
only be claimed for PkA and nor for Kk or A + ,  k ,  as follows 
from a quick comparison of the CKF and the SRF’s in Theorem 1. 

A.1, bounded by K ( R : / ~ )  + K(Ak) and K ( Q ~ )  + K(Ap), 

Therefore, we conclude that for situations that allow the applica- 
tion of the CKF, the SRF’s do not necessarib improve the 
calculations of the Kalman gain or filtered estimates, although 
such a behavior is often observed. Counterexamples are given in 
Section IV. 

Note also that when K(R;) = 1 all quantities are computed with 
roughly the same accuracy in the CKF and the SRCF. This 
particular situation arises, e.g., when appropriately scaling the 
output measurements (this is also a known technique [3] to 
improve the performance of the CKF) or when using the 
“sequential processing” technique [SI, described in the Introduc- 
tion. This is also investigated in Section IV. 

Corollary I :  The above theorem also gives bounds on  the 

assuming that the latter are sufficiently small, as follows. Let ’7 be 
the relative size of these errors,  i.e., (lSn/rl l 5 q((n/rlI for M equal 
to each of the above model matrices, then  the above bounds 
hold when replacing  the E ,  by numbers vi  which are now all of the 
order of 9 .  

Proof: The model errors can  indeed  be interpreted as 
backward errors on the matrices Ak, etc., but  then  on a machine 
of precision 9. The same analysis then holds, but  with E replaced 

Note that other modeling errors, such as bias errors on the input 
signals, discretization errors,  etc., do not fall under this category 
and a separate analysis or treatment is required for each of them 
(see, e.g.,  [lo],  PI). 

The above theorem is now used together with the analysis of the 
propagation of errors through the recursion of the KF to yield 
bounds on the total error of the different filters at a given step k, 
which we denote by the prefii 6,,, instead of 6. 

For this we first turn to the (symmetrized) CKF. For the total 
error 6[aPk+llk we then have according to (29), (31), (33), (35) 
and Theorem 1 (for any consistent norm  [21]): 

elTOTs due to  model deviations 6Ak, 6Bk, 6 c k ,  6Dk,  6Qk, and 6Rk, 

by ’7. rn 

Here the upperbar on the A’s indicate that these are not  the exact 
bounds of Theorem 1 (which are derived under the assumption 
that the computations up to step k are exact), but analogous 
bounds derived for the perturbed results stored in computer at step 
k .  Under the assumption that at step k the accumulated errors are 
still  of the order of the local errors performed in one step (i.e., 
those estimated in Theorem I), one easily finds that the A- and 
A-quantities are 0(6’)-close to each other. It is  thus reasonable to 
assume that they are equal to each other. Denoting by Ator the 
norm of the corresponding matrix 6,,,, then  finally yields 

where the inequality is  meant elementwise. From this one then 
easily sees that the total errors will remain of the order of the local 
errors as long as the norms Y k  do not remain too large for a long 
period of time. This is also confirmed by the experimental results 
of  the  next section. For a time-invariant system, Y k  can be 
replaced by  pk-if the norm is chosen appropriately as discussed 
in  (37)-which then becomes eventually smaller than 1. Compara- 
ble results can also be stated about the Y k  if the time variations in 
the  model are sufficiently smooth. 

Using the above inequality recursively from 0 to 03, one finally 
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obtains 

(;g)( c24/((1-42)(1-+)) c14/(1 V ( 1 - 4 2 )  - 42) O 0 1 141  0” -4) )+) 
AX 

(58 )  

if .i, < 1, where + is the largest of the yk’s. When yk tends to a 
fixed value ym it  is easily shown that 9 can be replaced by ym in 
(58),  since the contributing terms to the summation are those with 
growing index k. For a time-invariant system, finally, this can 
then be replaced by p- as was remarked earlier, and the condition 
9 = pm < 1 is then always satisfied. 

For the SRCF, one uses the relation to the CKF (as far  as the 
propagation of errors from one step to another is concerned) to 
derive (58) in an analogous fashion, but  now  with Ap,  Ak, and Ax 
appropriately adapted for the SRCF as in Theorem 1. For the 
SRIF one also obtains analogously the top and  bottom inequalities 
of (57) for Ap and Ax adapted for the SRIF  as in Theorem 1 and 
where now .i, is the largest of the Tk’s .  Upon convergence, the 
same remarks hold as above for replacing 9 by ym and pm. 
Finally, for the CSRF, we can only derive from (52),  (53) a 
recursion of the type 

( AtotKk ) 5 ( P k  0 )  . ( AtotKk-l ) + (2) (59) 
A t o t f k  + 1 I k c2 Y k  Atotgkl k - 1 

where Ok = JIR:-l*R;-1112. Recursive summation of these 
inequalities as was done to obtain (58) ,  only converge here-for 
both A,,& and A,,L,-when the Ok increase sufficiently slow to 
1 as k grows.  We remark here that these are only upper bounds 
(iust as the bounds for the other filters), but the fact that they  may 
diverge does indeed indicate that for the CSRF numerical 
problems are more likely to occur. 

Notice that the first-order analysis of the section collapses when 
0(~3~) and O(6) errors become comparable. According to Lemma 
1, this happens when K(R;) = 1/6, but  in such cases it is highly 
probable that divergence will occur for all filter implementations. 

IV. EXPERIMENTAL EVALUATION OF THE DIFFERENT KF’s 

In this section we show a series of experiments reflecting the 
results of our error analysis. For these examples the upper bounds 
for numerical roundoff developed in the previous section are 
reasonably close to the true error build up. 

A .  Experimental Setup 

The simulations are performed for a realistic flight-path 
reconstruction problem, described in [lo]. The numerical dzlfi- 
culties observed in a preliminary experimental analysis with the 
CKF [ 111 showed that this case study is  ideally suited to validate 
the theoretical analysis of Section III. Reversely, it demonstrates 
how this first-order perturbation study contributes in understand- 
ing  and solving these difficulties. In order to shed more light on 
the trouble spots of some of the filters, we have “artificially” 
modified the realistic conditions of our problem (see Table 10. We 
then show that the behavior of the different filters can be predicted 
by the error analysis of Section IV. This analysis indicated the 
following parameters as being relevant for the error propagation 
in the four different KF implementations we considered. 

1) The initial condition for the error covariance matrix Pol - 
2) The condition number K(R;) of the innovation signal 

covariance matrix. In our example, it turns out that K(Rk) 
approximately determines K(R;) during the whole run. This is 
partly due to the fact that (IPklk- is small compared to IIRkll. 

3) The spectral norm yp and radius Pk of the matrix Fk. This can 
be affected by “weighting” of the system matrix Ak by a factor 
C W .  

4 )  The condition number K(Qk) of the process noise covariance 
matrix. 

5 )  The condition number K(Ak) of the system state transition 
matrix. This is affected by the choice of a state-space coordinate 
system. 

6) The condition number K(&) of the Choleski factor of the 
error covariance matrix. This parameter is hard to estimate a 
priori. 

These are also the parameters we tried to influence in our 
experimental setup as given in Table LI. 

To study roundoff errors in single precision, mixed precision 
computations were carried out and double precision results are 
considered to be exact. The roundoff errors on three different 
quantities that result from a KF were considered in the simula- 
tions, namely: 

1 )  on the state error covariance matrix P, denoted by 

~ t o r ~ k ~ k - l = ~ ~ ~ k ~ k - l - ~ k ~ k - l ~ ~ = ~ ( ~ t o t ~ ~ ~ k - I ( ~ ~  

2) on the Kalman gain K ,  denoted by At&k = llKk - = 

3) on the reconstructed state quantities & l k -  I or &&, denoted by 
ll’&iKkll; 

A r o t X k = 1 1 g k l k - 1 - ~ k l k - I I I  Or ~ ~ ~ k l k - ~ k l k ~ ~ *  

In the experiments, the total roundoff error Atot in (57) and (59) 
is approximated by the Frobenius norm of the difference between 
the single and doubl_e precision quantities, which are, respec- 
tively, denoted by ( - ) and (*). For the state error covariance 
matrix Pk k- this approximation becomes AtotPklk- = IIPk\k- 
- Pk!&ll\ = lI6totPklk- It is noted that the SRIF does not 
require the Kalman gain Kk explicitly to compute the filtered state 
quantities. Therefore, the second parameter will  not be considered 
for this implementation. 

Since the accuracy of the first two quantities determines the 
accuracy of the reconstructed state, a first analysis can be 
restricted to these quantities. If conditions can be formulated 
under which accuracy degradation of these two quantities occurs, 
extensive simulation tests with  input and output time histories of 
the real (or simulated) system become obsolete. 

Because of the inclusion of the CSRF, only the time-invariant 
case will be considered here.  The  SRCF and the SRIF algorithms 
are closely related from a numerical point of view. They are, 
therefore, first compared to the CKF and second to the CSRF. 

B. Comparing the SRCFISRIF with the CKF 

The experimental conditions of the different tests are listed in 
Table II. From the theoretical analysis of Section ILI it follows that 
the relevant parameters that influence the reliability of the CKF 
are K(R;) and p(Fk), the spectral radius of Fk. Two tests were 
performed to analyze their effect. The magnitudes of the variables 
K ( R ~ )  and p(F)  are very close to the values of K(R)  and p ( A )  
given in Table II. Two tests were performed to analyze their 
effect. The results of these tests are plotted  in Fig. 1. From this 
figure the following observations are made. 

I )  Test I-Fig. I(a): (p(A) = 1.0 and K(R) = IO2) .  
Since symmetry of the error state covariance matrix P is not 

preserved by the CKF, the roundoff error propagation model for 
the local error 6Pklk- given by (3 I) ,  learns that divergence of 
roundoff errors on P,  and hence on K will occur if the original 
system is unstable. This experiment confirms this divergence 
phenomenon also when p ( A )  = 1.0, as is the case for the 
considered flight-path reconstruction problem [lo]. Furthermore, 
it is observed from Fig.. l(a) that the error on P with the CKF is 
almost completely determined by the loss of symmetry, com- 

As md~cated In  the prevlous sectlon, different methods have 
been proposed to solve this problem. One particular class of 
methods consists of forcing the error on the state covariance 

puted  by !IPklk-!  - p L l k - l \ j  = A s y T k l k - 1 .  
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obtained in Section III the following recurrences: 

A t o t P k + l l k ~ ? ' ~  ' Atotpklk-l+Ap (60) 

AtotKks c * y k  . AtotPklk- I + Ak (61) 

where the upperbounds for the local errors Ap and Ak are given in 
Theorem 1, parts 1 and 2, for the CKF and the  SRCF. 

A comparison of the (a) and (b) bounds indicates that when the 
accuracy of the Kalman gain is considered no preference should 
exist for the SRF's to the CKF when Ak is stable and time- 
invariant. (For situations where Ak has eigenvalues on or 
outside the unit circle, the CKF has to be changed, e.g., to the 
CKF(S) implementation.) However, the experimental results 
demonstrate that for the latter conditions the loss of accuracy with 
a CKF(S) is still higher than the SRF's. This is also generally 
observed for other SRF variants such as the UDU' filters [7]. 
Here we only want to draw attention to the clear difference to 
be expected (and also reflected by the experiments) between the 
accuracy of P k l k - 1  and K k  in the CKF(S) implementation with 
respect to those of SRF filters. 

TABLE II 
TEST CONDITIONS TO EVALUATE THE DIFFERENT KF 

IMPLEMENTATIONS 

Test1 

1.46.10' 

1.0 

9.90.10' 

7.53 

1.0 

9.80.10-' 

9.90.10'  1.0 

1.0 1 1.0 : 

1.21 I 1.81.10-* 

COMPRRISON SRCF/SRIF - CKF 

Fig. 1 .  Comparison of the SRCF/SRIF and the CFK (a)-@). 

matrix to become symmetric, which is done here by averaging the 
offdiagonal elements of P after each recursion. The behavior of 
AIogklk-l for this implementation, denoted by cKF(s)  in Fig. 
l(a), clearly indicates that this implementation becomes again 
competitive, even when the original system is unstable. A similar 
effect has also been observed when computing only  the upper 
triangular part of P. On the other hand, the behavior of AttotPklk-  

for Joseph's stabilized CKF, denoted by (J)CKF in Fig. l(a), 
confirms that the roundoff errors  do not diverge even when the 
symmetry of P is not retained. We also observe from Fig. l(a) 
that the roundoff error on P with these modified CKF remains 
higher (a factor 10) than the SRCF/SRIF 

2) Test 2-Fig. I(b): (p(A) = 0.9 and K(R) = I O 2 ) .  
If we make the original system stable, the CKF is numerically 

stable. Moreover, the accuracy with which the Kalman gain is 
computed is of the same order as that of the SRCF. This is in 
contrast with a  general  opinion that SRF's improve  the  calculations 
of the Kalman gain or filtered estimates [6 ] ,  [3]. We can state that 
they do not make accuracy poorer. From Fig. I@) it  is observed 
that only the error covariance matrix P is computed more 
accurately, which confirms the upperbounds for the roundoff 
errors as given in Section III. Summarizing these bounds, we 

C. Comparison SRCF/SRIF with CSRF 

The upperbound for the roundoff errors of the Kalman gain and 
the state estimate & + I l k  computed by the  CSRF (for large k) can 
be summarized as follows: 

AtotKk 5 Bk * Ato&k - 1 + A k  (62) 

Atot-fkEkiIIkSC ' AttotKk-1  +YkAtot-fkJk-I +AX (63) 

With the upperbounds for the local errors Ak and Ax given in 
Theorem 1, part 3. This model indicates that the  error propagation 
is convergent when p k  = ~ ~ R ; - , * ( R ~ ) - l ~ ~  -= 1, which is the case 
only if the signature matrix C 1s the identity matrix I .  Note that the 
error variation AtotKk is now weighted by P k  (instead of Yk for the 
other filters), which even for C = I becomes very close to 1 for 
large k.  This is also the main reason of the poor numerical 
behavior of this filter. When C # I (which depends on the choice 
of Pol - # 0) B k  is larger than 1 and K ( & )  may also become 
large. Both these phenomena have a negative influence on the 
above bounds and may eventually cause divergence. In addition to 
the numerical sensitivity introduced by the choice of Po: - I ,  it also 
influences the efficiency of the CSRF implementation. This is 
indicated by the parameter (nl + nz) in Table I, which lies in the 
interval [n, min (m, p ) ] .  

The influence of the choice of Pol- I is analyzed by the 
following two tests. 

I )  Test 3-Fig. 2(a) (Pol - I  # 0, p(A) = 1.0 and K(R) = 
1.0). 

The choice of Po! - I # 0 influences the CSRF implementation 
negatively. First, in this experiment the computational efficiency 
decreases in comparison to the case Pol - = 0, discussed in the 
following test. This is because (n l  + n 2 )  in Table I becomes 
greater than p or m .  This was the case for all the tests performed 
with Pol- # 0. Second, the transformations used in each 
recursion to triangularize the prearray become C-unitary, Le., 
having a condition number > 1. This is due to the fact that inc 
Po is  not definite. From  Fig. 2(a) this negative effect is clearly 
observed. Both the error levels on P and K are a factor lo2 larger 
than for the SRCF or SRIF.  For the covariance type algorithms 
considered here, it is observed that the error on the Kalman gain is 
always higher than the error on the state error covariance matrix. 
This is partly due to the extra calculation Gk(R:)-1/2 needed for 
the Kalman gain, where the condition number of (R;)lI2 
determines the loss of accuracy. 

2) Test 4-Fig. 2(b) (Pol ~, = 0, p(A) = I . 0  and K(R) = 
1.0). 

For this case inc Po = B.Q.B' is positive definite, causing the 
transformations used  in each recursion to be unitary. On the other 
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I C C M P f i R I S C N  SRCC/SR:c - CSRF 

Test 3 
-? ]I 

i! 

Test 4 I 
I 

Fig. 2. Comparison of the SRCF/SlUF and the CSRF (a)-@). 

hand (nl + n 3  in Table I is equal to m, what  makes the CSRF 
“slightly” more efficient compared to the new SRCFISRIF 
implementation based on the “condensed” system representa- 
tions. 

From the experimental results in Fig. 2(b) we observe that the 
error on P is very small, while the error on K is much higher than 
for the SRCF calculations. Furthermore, the errors on K with the 
CSRF increase very slowly because the coefficient & becomes 
very close to 1. This is due to the fact that for the CSRF roundoff 
errors  are carried along on three matrices, namely Gk) (R;)1’2) 
and L k ,  while for the SRCFlSRIF  errors are carried along only on 
the square roots of P or P- I .  For the error on Lk (supposing inc 
P k  factored as LkL;) this effect does not cause the errors on Pk 

k -  I 

P k =  LjL; +PO (64) 
i = O  

to accumulate because L k  converges rapidly enough to zero such 
that the accumulated errors on P k :  

k 

Alo$k = Li ‘ dtotL/ + AmLi . L ;  (65) 
i = O  

also convergences if the A,Li are not too large.  The absolute 
value of the total error on (RE) and Gk remain much higher. 
This is clearly reflected in the loss of accuracy in the calculation of 

Generally, the CSRF is less reliable than the SRCF/SRIF 
combination. For  zero initial conditions of the state error 
covariance matrix maximal reliability can be achieved with the 
CSRF. Therefore,  for situations where n >> m, the CSRF may be 
preferred because of its increased computational efficiency 
despite its loss of accuracy. We stress the fact that this property is 
only valid for the time-invariant case. Modifications of the CSRF 
exist taking into account certain time-varying effects [ 151, e.g., 
for the process noise covariance matrix Q. This, however, 
induces again an increased computational complexity. 

D. Comparison of the SRCF  and  the SRIF 

K k  by G k  (R i )  - 

In the previous experiments the SRCF/SRIF combination 
performed equally well. In this section a further analysis is made 
to compare both implementations. Using the error model that 
indicates the upperbound for the roundoff errors made during one 
SRIF recursion: 

A t o t P k + l l k + l s f :  ’ Atotpklk+Ap (66) 

A t o t g k + l l k + l l ? k  . A t o t f k I k + ~ f ? k  ‘ A t o t P k l k + A x  (67) 

with the upperbounds of the local errors Ap and Ax given in 
Theorem 1, part 4, learns that besides K(&)  and P ( F k ) ,  other 
system parameters influence the roundoff error accumulation in 
the SRIF.  The effect of these parameters. is analyzed in the 
following tests. 

I )  Test  5-Fig. 3(a). 
In this test very large condition numbers for A,  Q, and R (see 

Table E), are considered. As expected, this indeed causes the 
error on P to be much higher (a factor lo3) for the SRIF than for 
the SRCF. As in test 2, the large value of K(R) again causes a 
great loss in the accuracy of the Kalman gain calculation in the 
SRCF.  The level of roundoff errors on K indeed becomes a factor 
lo2 larger than the roundoff level of P. 

In this test we analyzed the deterioration of the error covariance 
matrix by the SRIF implementation by (fairly unrealistic) large 
condition numbers. In many practical situations,.the effect of high 
K(Q;) and K ( R ~ ; )  can be relaxed by scaling,  rearranging the 
system matrices or using  scalar  measurement and/or input 
updates [ 121. Furthermore, we observed in the experiments that a 
high K(Qk)  did not result in a  high K ( Q ~ ) ,  which is in contrast with 
what  was observed for K ( R ~ ) .  However, the effect of  a  high K(&) 

is  much harder to control and as we have seen may influence the 
accuracy of the SRIF negatively. We repeat here that this is due to 
a careful choice of the problem coefficients mere K ( A k )  and 
K ( Q ~ ) ]  in order to put forward the dependency on these 
parameters. 

2) Test 6-Fig. 3(b). 
For this test, the measurement error statistics were taken from 

real flight-test measurement calibrations [16]. This results in the 
following forms for the process noise covariance matrix Q, 
respectively, the measurement noise covariance matrix R :  

Q=diag {8.10-6, 5.10-’, 5.10-8j, R=diag {5.10-2, 2.10-Ij. 

(68) 

The relevant parameters for the roundoff error propagation are 
listed in Table II. In Fig. 3(b) the simulated error Atmx on the state 
calculations is plotted for both filter implementations. Here, the 
error level with the SlUF is significantly higher than that for the 
SRCF, while P is computed with roughly equal accuracy. This is 
due to the high condition number of Tk (obtained by the test 
conditions given in Table II) in the calculation of the filtered state 
with the SRIF by (23). 

V. COMPARISON OF THE DIFFERENT FILTEFS 

In this section we compare the different filter implementations 
based on the error analysis of Section JII strengthened by the 
simulation study of Section IV and the complexity analysis of 
Section 11-E. 

We first look at the time-varying case (hence excluding the 
CSRF). According to the error bounds of Theorem 1, it appears 
that the SRCF has the lowest estimate for the local errors 
generated in a single step k. The accumulated errors during 
subsequent steps is governed by the norms Y k  for dl three fiters in 
a similar fashion (at least for the error  on the estimate)-this of 
course under the assumption that a “symmetrized” version of the 
CKF or the stabilized CKF is considered. From these modifica- 
tions, the implementation computing only the upper (or lower) 
triangular part of the state error covariance matrix is the most 
efficient. The experiments of Section IV with the realistic flight 
path reconstruction problem indeed demonstrate that the CKF, 
the SRCF, and the SlUF seem to yield a comparable accuracy for 
the estimates gk+ I l k  or &+ 1, unless some of the “influential” 
parameters in the error bounds of Theorem 1 become critical. 
This is, e.g., true for the SRIF which  is likely to give worse 
results when choosing matrices Ak, Rk,  or Qk that are hard to 
invert. As far  as Rk or Qk is concerned, this is in a sense an 
artificial disadvantage since in some situations the inverses R; I 
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Fig. 3. Comparison of the SRCF and the SRIF (a)-@), 

and Q; are the given data and the matrices Rk and Qk have then 
to be computed. This then would  of course disadvantage the 
SRCF. In [23] it  is shown that the problems of inverting 
covariances can always be bypassed as well for the SRIF as for the 
SRCF. The problem of inverting Ak, on the other hand, is always 
present in the SRIF. 

For the computational cost, the SRCFISRIF have a marginal 
advantage over the CKF when n is significantly larger than m and 
p (which is a reasonable assumption in general), even when 
computing the upper (or lower) triangular part of P with the CKF. 
Moreover, preference should go to the SRCF (respectively, SRIF) 
whenp < m (respectively, p > m), with a slight preference for 
the SRCF when p = m. As is shown in [lo], 1141, condensed 
forms or even the CSRF can sometimes be used  in the time- 
varying case as well, when, e.g., only some of the matrices are 
time-varying or when the variations are structured. In that case the 
latter two may yield significant savings in computing time. 
Similarly, considerable savings can be obtained by using sequen- 
tial processing [7] when diagonal covariances are being treated 
(which is often the case in practice). 

For the time-invariant case, the same comments as above hold 
for the accuracy of the CKF, SRCF, and SRIF. The fourth 
candidate, the CSRF, has in general a much poorer accuracy than 
the other three. This is now  not due to pathologically chosen 
parameters, but to the simple fact that the accumulation of 
rounding errors from one step to another is usually  much more 
significant than for the three other filters, as was  pointed  out  in 
Section III. This is particularly the case when the signature matrix 
X is  not the identity matrix, which  may then lead to divergence as 
shown experimentally in Section IV. 

As for the complexity, the Hessenberg forms of the SRCF and 
the SRIF seem to be the most appealing candidate, except when 
the coefficient nl + nz in Table I for the CSRF is much smaller 
than n. This is, e.g., the case when the initial covariance Pol- I is 
zero, in which case the  CSRF becomes the fastest of all four 
filters. Although the Schur implementations of the SRCF and 
SRIF are almost as fast as the Hessenberg implementations, they 
also have the small additional disadvantage that the original state- 
space transformation U for condensing the model to Schur form is 
more expensive than that for the other condensed forms and that 
the (real) Schur form is not always exactly triangular but  may 
contain some 2 X 2 “bumps” on the diagonal (corresponding to 
complex eigenvalues of the real matrix A ) .  Finally, the c-Hess. 
form of the SRIF (given in Table r) requires a more complex 
initial transformation U, since it is constructed from the pair 
(A - I ,  A - IB) which also may be numerically more delicate due to 
the inversion of A .  

As a general conclusion, we recommend the SRCF, and its 
observer-Hessenberg implementation in the time-invariant case, 
as the optimal choice of KF implementation because of its good 

balance of reliability and efficiency. Other choices may of course 
be preferable in some specific cases because of special conditions 
that  would then be satisfied. 

VI. CONCLUDING REMARKS 

In this paper we have analyzed four different KF algorithms and 
some new variants for their reliability and computational effi- 
ciency. We note here that our implementations may differ 
substantially from similarly named algorithms described in [7]. 
The comparison is  based  on an error analysis and an operation 
count where we have made full use  of possible savings in the time- 
invariant case. 

From the error models a better insight  is also obtained about 
which parameters influence the error propagation in the different 
KF algorithms that have been investigated. For the CKF and the 
SRCF these are the condition number of the innovation signal 
covariance matrix R;and the spectral norm (radius) of the filter 
state transition matnx F k .  while for the SRIF the relevant 
parameters are the condition numbers of Rk, Q k ,  Q;, Ak and of 
the Choleski factor Tk a;nd the spectral norm (radius) of the filter 
state transition matrix Fk. For the CSRF the choice of the initial 
error covariance matrix Pol - matrix and of the condition number 
of the innovation signal covariance matrix R i  become critical. 
This influence is also verified by a simulation study on the flight- 
path reconstruction problem [lo] given in Section IV. 

Further extensions of these techniques to the problem of 
computing other estimates & I j  (e.g.,  for smoothing) or using 
mixed representations of covariances (see, e.g., [23]) can also be 
considered. These mixed representations have the advantage that 
they allow for singular covariance matrices Q k ,  Rk, or p k ! p -  and 
even for singular information matrices Ik!k = P i , ; ,  thereby 
avoiding any use of generalized inverses. 

A. APPENDIX 

Here we briefly recall the propagation of rounding errors in 
some basic problems in linear algebra. The norm used is the 2- 
norm. 

Let the matrix-vector pair ( A ,  6) be  known  with relative 
precision 6, and l i b ,  respectively, 

6 ~ = ~ ~ 6 A ~ ~ ~ ~ ~ A ~ ~ ~  8 b = l l d b I I / I I b I l  

then we have the following lemma (assuming A to be invertible). 
Lemma A.I  1201: The errors on the A -6 and A - l . 6  can be 

bounded by 

JI(A b ) - ( A  * b ) l I s ( b + b ) .  ))All * I lb) l+0(62)  

When the errors 6, and tib are the backward errors of the above 
problem solved on a computer with machine precision E ,  then the 
above bounds are reasonably well approximated by 

where all E ,  are of the order of E .  
The above approximation implies that no serious cancellations 

occur in the product A 6, which in general is a reasonable 
assumption. 

Let A now be a m X n matrix of rank m < n and transform the 
compound matrix [ A (  63 by a unitary transformation Q as 
follows: 
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where A ,  is now invertible. Then we have the following lemma 
(where - + denotes the generalized inverse of a matrix). 

Lemma A.2 fl9]: The  errors on the least-squares solution 
A + . b and the residual b2 can be bounded  by 

ll(A’ * b ) - ( A +  b)lIS6,. {K(A)  . llAi . bll 

+K(A) ‘ IIA+II ‘ IIb2Il)+b. IIA+II . IIbII+0(62) 

l lm - (bd l lS&  . 4 - 4 1  . I lb l l+b * IIblI+0(6z). 

When  the errors 6, and are the backward errors of the above 
problems solved on a computer with machine precision E ,  then 
they are both  of the order of E and the above bounds are 
reasonably well approximated by 

ll(At . b ) - ( A -  ‘ b)llSEd. { K ( A )  1 1 - 4 ’  * bll 

+ K ( A ) .  IIA+II IIb?.II+IIA+(I * (Ib2Il/cos d )  

IJ(bz)-(bz)ll(~s { ~ + K ( A ) )  IIb2ll/cos d 
where all E ;  are of the order of E and cos 4 = 1) bz 11 /I1 b 11. 

We terminate with perturbation bounds on the QR-factorization 
of a matrix A .  

Lemma A.3 [22]: Let A = Q.  R ,  where A has full column 
rank n,  Q’ -Q = I,, and R is upper triangular. Then for a small 
perturbation A of A there exist perturbations Q and R of  the 
factors, such that 

A = Q .  R 

and 

( A - A ) = Q  ( R - R ) + A  

llAll . K(A)l2 . IIA 1 1 -  

When the error 6, is the backward error of the above decomposi- 
tion solved on a computer with machine precision E ,  then it is of 
the order of E and the above bound becomes 

l l A l l S E 2  . K(A12 IIA 1 1 -  
A similar result can also be found for a “skew decomposition,” 
i.e., where Q ‘ . C - Q  = C, for some signature matrix E. 

Although all these bounds are written for the 2-norm, they also 
hold for several other norms, up to a constant which is close to 1 
and can therefore be absorbed in the E ; .  This is,  e.g., important 
when deriving the above bounds for a matrix B instead of a vector 
b .  This is done by using the bounds for each column bi of the 
matrix B and combining these bounds into a bound involving the 
norm of B,  for which in this case the Frobenius norm is a natural 
choice [21]. These mixed  bounds  (as far  as norms are concerned) 
can then again be formulated in terms of one norm only, by again 
adapting the E ;  appropriately. 

with 
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