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In this paper a reducer order observer is analyzed ror secollcd gcncrnhrcd state space (or descriptor) systems. Based on the staircase 
form for gcncrallzed stafc space models. a rccursivc algorithm is presented to conswuct a reduced order obscwcr ror a given 
observable descriptor system. In the algorithm only the cigcnfrcqucncics or the observer have to be specilicd. 
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1. Introduction 

The linear state space model, 

~x=Ax+Bu, y = cx 0) 

where x E R”, u E R” and y E RP and X denotes the differential operator in the continuous-time case and 
the shift operator in the discrete time case, has proven to be a powerful starting point for the analysis, 
synthesis and simulation of linear multivariable systems. The state space model (1) results in many 
practical applications from the linearization of a set of non-linear differential or difference equations 
around some working point (or reference condition). However, as pointed out by Rosenbrock [S], such a 
linearization more often gives rise to the following dynamic system representation: 

A Ex - Ax + Bu, y = cx (2) 

by merely writing down the physical relationships. This is e.g. the case in the analysis of systems with 
switched capacitors [12]. This generalization of the state space model is often called a descriptor system or 
generalized stufe space system [ 11 ,131. 

In order to derive from (2) the state space model (1) is is necessary to invert E, which of course can 
only be done if E is non-singular. Since it may also occur that E is singulur, one has to adapt theories 
and/or algorithms to cope with this more general case as well. In this paper we try to extend results on 
reduced order observers obtained earlier for standard state space models [2,9] to the case of generalized 
state space models where E is singular. Nevertheless, the algorithm developed here is also recommended 
for generalized state space models with non-singular (but poorly conditioned) E, this for numerical reasons 
that will be explained. 

2. The reduced order observer probIein for dedptor sy!ants 

A prerequisite for the design of a reduced order observer is the observability of the system at hand. 
While for standard state space models this is a well established concept, for descriptor systems there still 
exists some confusion about this concept when E is singular, i.e. in the presence of so-called infinite 
frequencies [13]. Here, we will use the following definition derived from [8,16]. 
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Definidon 1. A descriptor system of the form (2) is called obsetoable iff the following two conditions hold: 
(i) the pencil 

rE;“) (3) 

has full column rank for al.l finite values of h, 
(ii) the matrix 

(4) 

has full column rank. 

Remark 1. Condition (i) of Lemma 1 boils down to observability of the jinife frequencies of the system (2). 
It can be retrieved in all current definitions of observability of descriptor systems. 

Condition (ii) on the other hand, is where differences occur from author to author, and is related to the 
observability of the infinite frequency. 

The above two conditions can also be shown to be equivalent to the geometrical condition used in (81 
which is that the supremal deflating subspace of hE - A in the kernel of C has dimension zero [8]. 

When the descriptor system (2) is observable, as defined above, we now show how to construct a 
reduced order observer of the form 

XSz - Fz + Dy + Pu (5) 

using the input u and output y of the original descriptor system (2). The state reconstruction i is then 
derived from 

(6) 

where T is chosen such that (r) has full column rank. 

Remrult 2. Without loss of generality we assume in this paper that the matrix C has linearly independent 
rows and hence rank p. If this would not be the case, an output transformation could display its linearly 
independent rows and one would then continue to work with those only. 

Remark 3. The word ‘state’ in the context of descriptor systems is sometimes reserved for that part of 
vector x in the range of E [13]. This subtlety is not relevant here though, and we therefore reserve the 
word ‘state’ for x in (2). 

It will be shown that an observer (5) of state dimension r A (n - p) always exists provided the system (2) 
is observable. The proof is constructive and implicitly provides an algorithm for solving the problem. The 
development in this section is very similar to that of [2] and [9] used for state space systems. 

In order for the state reconstruction 2 to converge exponentially to the state x of (2), 

lim(Tx-r)=O, (7) 00 

one obviously needs to choose the unknown matrices S, F, D, P and T appropriately. A solution for this 
is now proposed in terms of an intermediate matrix X. 

Tbeonm 1. Let Xbe an (n -p) x n matrix, such that 

( 1 F is invertible (8) 
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and satisfying the jollowing ‘generalized ’ Sylvester equation: 

SXA - FXE - DC. (9) 

Then putting 

P- SXB, T= XE, (10) 

we have that 

hS(Tx-z)=F(Tx-z). (11) 

Moreover, when rhe generalized eigenvalues of the observer (5) are asymptotically stable (in the continuous or 
discrete sense), then exponential convergence of f to x occurs. 

Proof. Multiplying (2a) by SX from the left and substituting (2b). (9), (10) in it, one obtains 

XS( TX) = F( TX) + Dy + Pu. (12) 

Comparing this with (5) immediately gives (11). The stability requirement of the observer now implies that 
its generalized eigenvalues are finite (they lie inside the unit disk for the discrete time case and in the open 
left half plane for the continuous time case). Hence, S must be invertible and the eigenvalues of S-‘F 
asymptotically stable. One then also finds that the solution TX - z of (11) converges exponentially to zero. 
Indeed, we have for the cases of a system of differential equations and difference equations, respectively, 
that 

i(r)-~(r)-G~e~-'~'+(O)-Tx(0)], 

;(k)-x(k)=G~(S-'F)k+(0)-Tx(O)], 

where G is defined by 

(G,H)+)-‘. 

This is easily derived from (a), (ll), (14). 0 

(13) 

(14) 

In [2] the first complete solution to the reduced observer problem for a state space model was given, 
based on the Luenberger canonical form. The idea used there of transforming the problem to a coordinate 
system where the solution becomes more ‘apparent’ is certainly appealing but also possibly dangerous 
from a numerical point of view. In the next section we introduce the so-called ‘condensed forms’, which in 
fact constitute a class of numerically reliable coordinate systems to work in. The freedom of choice is then 
of course much more restricted but still allows in general to formulate an elegant solution for the problem 
at hand. 

3. Condensed gedizd state space models 

Condensed forms of the system triplet {A, B, C) of an ordinary state space model (1) have already 
been exploited in numerous algorithms because of their appealing property of combining algorithmic 
efficiency with numerical reliability. An overview of existing condensed forms and a number of new 
applications are given in [14]. The wide range of applications of condensed forms suggests that these 
techniques can be considered as a new tool in designing algorithms for system theoretical problems. These 
forms typically contain as many zeros as possible in the three system matrices. The zero entries are 
obtained by performing only unitary transformations on the state, input and output spaces: 

x,- L/x, u, - vu, y, - wy. (15) 
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The corresponding triplet (A,, B,, C,) of the new system has then the following form: 

A,= (/AU+. B,- UBV*, c,- WCU’ (16) 

where the superscript l denotes the (conjugate) transposed. 
For a descriptor system (2), determined by a quadruple of matrices (A, B, C, E), one can use an 

independent transformation Z of the equation (2a) in order to obtain an equivalent system in ‘condensed’ 
form (lo]. The corresponding quadruple (A,, B,, C,, E,} has then the form 

A,= ZAU+, B, - ZBV+, c,= WCU’, E, = ZEU+, (17) 

where again all transformations U, V, W and Z are unitary. Using these transformations, the following 
condensed forms can be obtained (among others [lo]): 

(a) The generalized &hut form, where A, and E, are upper triangular [10,3]. In this form the 
eigenfrquencies of the system are the ratios a,,,/e,*, of the corresponding diagonal elements of the 
triangular matrices A, and E, (i.e. the generulized eigenvolues of the pencil h E, - A, [3]). 

(b) The generulized (observer) stoircate form, where E, is upper block triangular and where ($) is 
upper block-trapezoidal [7,8]. This is illustrated below: 

c,= [ 0 . . . 0 c,] )Jmk., 
(18) 

-- - -- - . 
11 I2 lk II 12 Ik 

Here the off-diagonal blocks A,+ Is,r i - 2,. . . , k - 1, and C, have full column rank I,. and the diagonal 
blocks E ,,,, i - 1,. . . , k - 1, have full row rank r,, by construction [7,8]. The first off-diagonal block AZ., is 
either zero or has full column rank I,, depending on the termination of the ‘staircase’ algorithm [7], 
constructing this form [8]. 

Under the conditions of observability given in Definition 1, we now have that: 
(i) because of condition (i) the block A,., has full column rank as well, precluding the existence of 

unobservable finife frequencies, 
(ii) because of condition (ii) the Ei,i are square invertible (hence r, = I,), precluding the existence of 

unobservable injinire frquencies. 
In (41 a further variant is suggested whereby the r, x r, matrices E,., are chosen upper rriongulur and the 

riXri+l matrices Ai+ i , . are chosen upper triangular in the top corner, i.e.: 

A l+l.I - 

X x x 

ii x ::: x x 
. . . . 
. . . . . 

. . . 

x x 

0 . . . . . . 0 x 
0 0 0 

. . . . 

0 . . . . . . 6 iI 
'r. I 

r, (19) 

where the x’s are non-zero. 
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The matrix E, is thus upper triangular but singular, while its possible singularity always occurs in its 
last p rows. This is illustrated below for n - 10 and I, - 2, fz = 2, r, - 3, r, =p - 3: 

A,= 

-x x x x x x x x x x 
xxxxxxxxxx 
xxxxxxxxxx 
oxxxxxxxxx 
ooxxxxxxxx 
oooxxxxxxx 
ooooxxxxxx 
ooooxxxxxx 
oooooxxxxx 

-0 0 0 0 0 0 x x x x 
x x x x x x x x x x’ 
oxxxxxxxxx 
ooxxxxxxxx 
oooxxxxxxx 
ooooxxxxxx 

E~=OOOOO xxxxx 
ooooooxxxx 
oooooooxxx 
ooooooooxx 
000000000x 

[ 
oooooooxxx 

c, = ooooooooxxp II (20) 
000000000x 

where again the x’s are known to be non-zero. This particular form of the system (A,, B,, C,, E,} is fully 
exploited later. 

These forms are identical to the corresponding condensed forms of the standard state space model (l), 
as e.g. defined in [lo], except for E, which is upper triangular in each case. Algorithms have been proposed 
in the literature [4] to obtain these ‘generalized condensed forms. Unfortunately, these algorithms have a 
complexity qn’), while comparable algorithms for the ordinary state space model (1) have complexity 
O(n3). Fast O(n3) implementations to obtain the above staircase forms have now been derived by using 
techniques used e.g. in [3] and [14], and variants are still under investigation [l]. These fast algorithms will 
not be discussed here although they make the ideas presented in this paper more appealing. 

Remark 4. If the system model {A, B, C, E) is real, it will have a complex generalized Schur form when 
the generalized eigenvalues of X E - A are complex. In this case one may prefer to construct the real 
generalized Schurform (31 where A, has 2 X 2 bumps on its diagonal, each block corresponding to a pair of 
complex conjugate eigenvalues. The E, matrix is still triangular and real as well. The advantage of this 
form is that one maintains all transformations and subsequent computations in real arithmetic, which e.g. 
may result in a significant speed-up. 

Remark 5. For any of the above condensed forms there exist duo/ forms where ‘upper’ is replaced by 
‘lower’. One can thus define a lower generalized Schur form and a lower generalized staircase form, which 
will then be a controller staircase form [lo]. The lower variant of the Schur form will be used in the sequel 
together with the (upper) observer staircase form. 

Following the lines of [9], we choose here a coordinate system for both (A, B, C, E) defining the 
system (2), and for {S, F, D, P) defining the observer (5), such that (2) is in observer staircase form as 
described in (18)-(20) and (5) is in lower Schur form. For the system (2) this thus implies a preliminary 
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transformation of the type (17) where V can be chosen the identity 181. A similar transformation could be 
performed for the observer (5). However, since these system matrices still have to be determined, their 
structure can be chosen and therefore no explicit transformation is required. 

The equations (8)-(10) are now reduced to the equioalenr equations 

SX,A, - FX,E, = D,C, with 

P, = SX,B,, T, = X,E, 

invertible, (21) 

(22) 

where the relations between the transformed solutions (indexed by I) and those of Theorem 1 are 

r,=TU’, x, = x2+, P,=P, D,= DW+. (23) 

It is important to note here that by this specific choice of unirary transformations, we obtain an equivalent 
numerical problem as well. By this we mean that the sensifiurries of the solution for T. X, P and D are the 
same as for T,, X,, P, and D,, the reason for this being the unitarity of U, Z and W (see also [8,10]). 

4. A reamive algorithm 

In this section we derive a recursive solution for the equation (21). We only assume E,. A,, C, and the 
generalized eigenvalues of the reducer order observer (2) to be given, while S, F, D, and X, are to be 
constructed. We propose a solution for X, in the form 

(1 4 \ 

0 1 4 

x,= 0 0 1 4 , (24) 
. . 

0 0 0 1’ ;; 

where only the rows x;, i- l,..., r, of length n - i have to be determined. The reason for choosing this 
form is that because of this and (20), the matrix (2” ) is then upper triangular and invertible. One then 
only has to solve the Sylvester equation (21a) to derive a solution (21), (22) for the problem. This is done as 
follows. Let us write the matrices S, F and D, similarly to X,: 

I Pl 0 0 0 o\ /‘loo “1 

4 P2 0 0 0 f; Y2 0 0 0 

s- s; c13 0 0, F- f; y3 0 0, D-i. 

s: lb, f,’ . “r I.1 &: 
\ \ 

(25) 

Here the diagonal elements of S and F, denoted by ( p,) and {Y, } respectively, are given since their ratio’s 
p,/yi are the generalized eigenvalues of the observer (5). 

Remark 6. Any solution S, F, D, to (21a) can be arbitrarily scaled to yield another solution. A 
normalization is automatically introduced by fixing the diagonal elements (pi) and (v, ). Since only their 
ratio’s are imposed we could choose them such that e.g. ~3 + u,’ - 1. This automatically fixes the freedom 
of chaise in these diagonal elements. 
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Using the particular structure (24) and (25) the first row of (21) can be rewritten as 

where A,,, and aP,, denote respectively the bottom n - 1 rows and the first row of the matrix piA, - vi&. 
Similarly we rewrite the i-th row of (21) as 

(.cJL (2 p) 2 - -upp, 
1-l i-1 n-r P 

_ -c, _ 

where Ap, and a,, denote respectively the bottom n - i rows and the i-th row of the matrix p,A, - Y,E, 
and X, denotes the’top i - 1 rows of X,. Equations (26) and (27) can be denoted as a system of equations 
of the type 

X,‘M,(X, ,... * x,-,)=0,,, 

in the unknown X,‘ = (s,’ I/,’ 1 x: 1 d,‘), whereby M, depends on the preoious vectors X,‘. One can thus solve 
recursioely for the rows of S, F, X, and D, using (26) and (27) for i = 1,. . . , n - p provided all of the M, 
matrices have a left inverse. This now easily follows from the particular structure (20) of the condensed 
form we chose to start with. Indeed, a typical configuration of an M, matrix for a system with stairs ri = 2, 
r1=2, r, = 3, p - r, = 3 (the same situation as in (20)) would be, say at step i = 3, 

4 = 

X,A, 

- x,4 - E: 
A 

P’, 

-c, _ 

xxxxxxxxxx 
xxxxxxxxxx 
x x x x x x x x x x 
oxxxxxxxxx 
oxxxxxxxxx 
ooxxxxxxxx 
oooxxxxxxx 
ooooxxxxxx 
ooooxxxxxx 
oooooxxxxx 
ooooooxxxx 
oooooooxxx 
ooooooooxx 
000000000x 

) i-l 
1 

i-l 

I 

n-r 

1 
P 

(29) 

Because of the leading non-zero x’s in each column, these M, matrices will always have full column 
rank, independently of the choice of generalized eigenvalues for the observer. These systems are in fact 
underdetermined and can be solved for X, under the constraint that the norm of X, should be minimal. 
This choice is a logical one since it minimizes the norm of the matrix D, and the off diagonal part of F, S 
and X,. These minimal norms have a positive effect on the condition number for the generalized 
eigenvalue problem of AS - F and of the inversion of the compound matrix (Zlb), two numerical 
properties that are welcome in this problem, see also (91. In order to construct the ‘minimum norm’ 
solution of (26) and (27), one performs a QR decomposition of the matrices M, 16,151: 

M, = Q,R,. (30) 
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Using Householder transformations, this requires approximately ( p + i)n2 ‘flops’ (1 flop = 1 multiplica- 
tion + 1 addition) per M, matrix. Indeed, because of the use we made of the observer staircase form, these 
matrices M, (as illustrated in (24)) have at most p + i - 3 non-zero subdiagonals and can then be 
decomposed with relatively few operations. The computation of the solution of the triangular system R, 
and the back transformation with Q, are neglectable with respect to the decomposition. The total cost is 
(roughly) given by 

f(n-IJ)(n +I+’ fl o s P f or solving for S, F, D, and X,. 

For the construction of P and (r)-’ we use 

(31) 

P - SX,B, and (;)-‘=u#‘(; ;), (32) 

which requires (using the special structure of S, X,. T, and C,) approximately 

(rr -p)nm + f(n -~)~n and fn’ (33) 

flops, respectively. The major part of the computations thus goes in the decomposition of the M, matrices 
which may require O(n’) operations. Yet, if one is happy to drop the minimum norm condition. one can 
easily obtain a solution for (26), (27) by e.g. merely selecting from each M, those rows that have a non-zero 
leading element x and solving this subsystem. This would then become an O(n’) algorithm for the 
complete solution of the problem (see also the remarks in Section 3 on the construction of the condensed 
forms). 

Remark 7. When the observer has complex eigenvalues and we restrict to real computations, a complete 
analogous procedure can be developed as the one given above. This is very similar to the technique 
described for ordinary state space models in [9] and therefore we refer to this paper. 

5. Ccmdusion 

In this paper we showed that the use of generalized condensed forms can lead to efficient algorithms for 
descriptor systems in much the same way as algorithms based on condensed forms do for ordinary state 
space models (it is interesting to notice that for E - I and S = I the equivalent method developed in [9] is 
indeed retrieved). Although the method is developed specifically for singulur E, we also recommend its use 
for non-sing&u E. The possibility to reduce the descriptor system (2) to a standard state space model (1) 
should indeed be avoided if possible due to the possible loss of accuracy that is often incurred by this step 
(when E is badly conditioned with respect to inversion). The present technique in fact implicitly solves the 
sumc problem, but without passing via a standard state space model and the possible loss of accuracy 
connected to this. 
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