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Abstract—We describe an extended bidiagonalization scheme
designed to compute low-rank approximations of very large data
matrices. Its goal is identical to that of the truncated singular
value decomposition, but it is significantly cheaper. It consists
in an extension of the standard Lanczos bidiagonalization that
improves its approximation capabilities, while keeping the com-
putational cost reasonable. This low-rank approximation yields
much cheaper computations of the matrix-vector products that
are central in many information retrieval tasks. We demonstrate
effectiveness of this approach on applications in face recognition
and latent semantic indexing.

Index Terms—: Dimension Reduction, Latent Semantic In-
dexing, Eigenfaces, Singular Value Decomposition, Principal
Components Analysis, Lanczos Bidiagonalization

I. INTRODUCTION

The problem of dimension reduction has received a lot of
attention in areas such as databases, data mining, machine
learning, and information retrieval [8], [10], [12]. Latent
semantic indexing (LSI) and principal component analysis
(PCA) are for instance two well-known applications that make
use of some form of dimension reduction.

Solving the dimension reduction problem consists in finding
a good r−dimensional approximation of a given subspace.
When that subspace is the span of a given matrix, this is
equivalent to finding a good low-rank approximation of that
matrix. It is well-known that the truncated singular value
decomposition provides the best possible low-rank approxima-
tion in the Frobenius norm sense, but is expensive to compute
because its complexity is cubic in the matrix dimensions.

When r is large, the Lanczos bidiagonalization method [3]
can often provide a good rank-r approximation at a much
lower cost, even though it is not optimal. When r is small,
though, the quality of the approximation can be very bad
compared to that of the optimal low-rank approximation. To
remedy this problem, we propose in this paper a novel method,
which we call extended Lanczos bidiagonalization, which is
almost as cheap as Lanczos bidiagonalization, but provides a
much better r−dimensional approximation, even if r is small.

The rest of this paper is organized as follows. In section 2,
we review briefly the applications of latent semantic indexing
and of classification based on eigenfaces. In section 3, we then
recall the Lanczos bidiagonalization algorithm and give some
of its properties. In section 4, we give a detailed description
of the extended Lanczos bidiagonalization algorithm and in

section 5, we describe numerical experiments to show its
effectiveness. We end with a brief section of concluding
remarks.

II. LATENT SEMANTIC INDEXING AND PRINCIPAL
COMPONENT ANALYSIS

In this section, we briefly recall the techniques of latent
semantic indexing in information retrieval and of principal
component analysis in face recognition.

A. Latent Semantic Indexing (LSI)

Latent semantic indexing (LSI) [12] has become a standard
technique to retrieve from a very large database of documents,
those documents that correspond to a particular set of words
(called a query). The method is based on the assumption that
there is some underlying latent semantic structure in the data
. . . that is corrupted by the wide variety of words used [6] and
that this semantic structure can be discovered and enhanced by
projecting the data (the term-document matrix) onto a lower-
dimensional space.

The term-document matrix A is a very large matrix where
A(i, j) indicates how many times word i occurs in document
j, so that each of its columns aj corresponds to a document.
The method of choice for the projection of A on the set of low-
rank matrices, is the Singular Value Decomposition (SVD):

A = UΣV T , (1)

yielding a low-rank approximation

Ar = UrΣrV
T
r , (2)

where Ur (respectively, Vr) consists of the first r columns of
U (respectively, V ) and Σr is the rth principal submatrix of
diagonal Σ. This matrix Ar is a best rank-r approximation of
A in the 2-norm and in the Frobenius norm sense [3]. In latent
semantic indexing, the columns of Ur live in the document
space and form an orthogonal basis that we use to approximate
the documents. If we write Hr = ΣrV

T
r in terms of its column

vectors : Hr = [h1, h2, · · · , hn] and if we assume A ≈ UrHr,
then we have ai = Urhi, which means that column i of Hr

gives the coordinates of document i in terms of the orthogonal
basis Ur. The term-document matrix is thus represented by
its rank-r approximation Ar = UrHr. Therefore, in query
matching, where we need to compute the inner product of



a given vector q with each document, we compute qTAr =
qTUrHr = (UTr q)

THr rather than computing qTA. Thus, we
compute the coordinates of the query in terms of the new
document basis and compute the cosines from

cos θi =
qTr hi

||qr||2||hi||2
, qr = UTr q. (3)

This means that the query matching is performed in an r-
dimensional space. We refer the reader to [12] for more details.

B. Principal Component Analysis (PCA)

Principal component analysis is a technique to reduce the
dimension of problems involving large covariance matrices of
sets of data vectors ai ∈ Rm, i = 1, 2, . . . n. For simplicity,
we will assume these vectors to have zero mean :

n∑
i=1

ai = 0. (4)

If the original dataset does not satisfy this constraint, we can
simply subtract the mean of each dimension from the original
dataset. If we call A the data matrix containing these vectors
as columns :

A = [a1, a2, · · · , an],

then one can view each row of A as a particular variable
observed over the n samples. The covariance matrix C of
these m data is then given by the m×m symmetric positive
definite matrix

C = AAT ,

but for some applications this can be a very large matrix. In
the so-called eigenfaces method [11] this is typically the case
since the dimension m is the number of pixels in the images
of the different faces, and for standard images this number can
be of the order of millions. Since C is a very large matrix,
it is more efficient to replace it by a low-rank approximation
which can be obtained from its eigendecomposition :

C = UΛUT (5)

and then truncating it to its r leading eigenvalues :

Cr = UrΛrU
T
r , (6)

where Ur consists of the first r columns of U and Λr is the rth
principal submatrix of diagonal Λ. It is well known that the
best rank-r approximation given in (2) of the data matrix A
with SVD (1), yields in fact the same basis Ur and that Λr =
Σ2
r . Moreover, this matrix Cr is a best rank-r approximation

of C in the 2-norm and in the Frobenius norm sense [3]. It
is also known (see [7]) that the basis Ur minimizes the mean
square reconstruction error over all choices of r orthonormal
basis vectors [7]. Such a set of eigenvectors that defines a new
uncorrelated coordinate system for the training set matrix A
is known as the set of principal components.

In the context of face recognition, the columns of Ur are
frequently called eigenfaces [9]. This shows that principal
component analysis is equivalent to the singular value de-
composition of the underlying (centered) data matrix. Given

Ur, we can “project” any vector ai onto this r-dimensional
subspace using

yi = UTr ai (7)

and the reconstructed vector ãi can be approximated as

ãi = Uryi. (8)

These approximations can be used for the purpose of clas-
sification, recognition, clustering and so on. We will use
them to perform (approximate) calculation of distances in the
classification application (eigenfaces) described in section 5.

III. LANCZOS BIDIAGONALIZATION AND KRYLOV
SUBSPACES

In [3], Golub and Kahan describe a bidiagonalization
procedure which is a variant of the Lanczos tridiagonalization
algorithm and which is widely used in numerical linear
algebra. Starting from an arbitrary vector b, the Golub-Kahan
algorithm constructs two orthogonal bases U and V that
bidiagonalize the given matrix A, by successively enlarging
the corresponding Krylov subspaces at each step.
LANBI Algorithm
Inputs: A ∈ Rm,n+ , b ∈ Rm+ and 0 < r < min(m,n).
Outputs: orthogonal matrices U, V , diagonal matrix ΣB .
Start with u1 = b/||b||, β1 = 0;
Step 1
for i = 1, · · · , r, do

Compute αi, vi such that αivi = ATui − βivi−1;
Compute βi+1, ui+1 such that βi+1ui+1 = Avi − αiui;

end
Step 2
Perform singular value decomposition on bidiagonal
matrix Br,r = bidiag{α1, β2, α2, · · · , βr, αr}, i.e. compute
UB ,ΣB , VB such that Br,r = UBΣBV

T
B ;

Step 3
Compute U = [u1, · · · , ur]UB , V = [v1, · · · , vr]VB .

In the standard Lanczos bidiagonalization process, αi and
βi are usually chosen such that ||ui||2 = ||vi||2 = 1, but here
we prefer to choose αi and βi positive. If we define

Ur+1 = [u1, · · · , ur+1], Vr = [v1, · · · , vr], (9)

Br+1,r =


α1

β2 α2

. . . αr
βr+1

 (10)

then after r steps (without breakdowns) we obtain the identities

ATUr = VrB
T
r,r, AVr = Ur+1Br+1,r.

It follows from this that the columns of Ur form an orthonor-
mal basis of the Krylov subspace

Span[Ur] = Kr(AA
T , b) ⊆ Im([A b]). (11)



Similarly, the columns of Vr then form an orthonormal basis
of the Krylov subspace

Span[Vr] = Kr(A
TA,AT b) ⊆ Im([AT ]). (12)

We can see that Lanczos bidiagonalization process builds
up two orthogonal bases of the Krylov sequence of vectors
produced by repeated application of the matrices A and
AT to a starting vector b. However, in practice, a potential
complication arises: even if mathematically the recurrences
guarantee orthogonal bases, rounding errors will destroy their
orthogonality. Thus, one has to apply some kind of reorthogo-
nalization strategy, which we will describe in the next section.

IV. EXTENDED LANCZOS BIDIAGONALIZATION
ALGORITHM

In this section, we propose a new method, which we call
the extended Lanczos bidiagonalization algorithm. Compared
with the Lanczos bidiagonalization algorithm, we add a small
number of iterations in order to obtain an improved low-rank
approximation. Similar to section 3, we give a pseudocode of
our algorithm.
E-LANBI Algorithm:
Inputs: A ∈ Rm,n+ , b ∈ Rm+ , 0 < r < s < min(m,n).
Outputs: orthogonal matrices U, V , diagonal matrix ΣB .
Start with u1 = b/||b||, β1 = 0;
Step 1
for i = 1, · · · , r+s, do

Compute αi, vi such that αivi = ATui − βivi−1;
Compute βi+1, ui+1 such that βi+1ui+1 = Avi − αiui;

end
Step 2
Perform singular value decomposition on bidiagonal matrix
Br+s,r+s = bidiag{α1, β2, α2, · · · , βr+s, αr+s}, i.e. compute
UB ,ΣB , VB such that Br+s,r+s = UBΣBV

T
B ;

Step 3
Compute U = [u1, · · · , ur+s]UB(:, 1 : r)
and V = [v1, · · · , vr+s]VB(:, 1 : r)
(where M(:, 1 : r) denotes the first r columns of matrix M ).

Here again, αi and βi are chosen to be positive. Let

Ur+s+1 = [u1, · · · , ur+s+1], Vr+s = [v1, · · · , vr+s], (13)

Br+s+1,r+s =


α1

β2 α2

. . . αr+s
βr+s+1

 (14)

then after r + s steps we have the identities

ATUr+s = Vr+sB
T
r+s,r+s, AVr+s = Ur+s+1Br+s+1,r+s.

The columns of Ur+s then form an orthonormal basis of the
Krylov subspace

Span[Ur+s] = Kr+s(AA
T , b) ⊆ Im([A b]). (15)

Similarly, the columns of Vr+s form an orthonormal basis of
the Krylov subspace

Span[Vr+s] = Kr+s(A
TA,AT b) ⊆ Im([AT ]). (16)

From the above, we know that

Span[U ] ⊆ Span[Ur+s] = Kr+s(AA
T , b) ⊆ Im([A b]),

and

Span[V ] ⊆ Span[Vr+s] = Kr+s(A
TA,AT b) ⊆ Im([AT ]),

If s = 0, Span[U ] = Span[Ur+s] and Span[V ] =
Span[Vr+s]; otherwise, the inclusions Span[U ] ⊂ Span[Ur+s]
and Span[V ] ⊂ Span[Vr+s] are strict.

Similar to the Lanczos bidiagonalization process, the ex-
tended Lanczos bidiagonalization constructs two orthogonal
bases of the Krylov sequence of vectors produced by repeated
application of the matrices A and AT to a starting vector
b. To get a rank-r approximation of the original A, we
need to apply r+ s Lanczos bidiagonalization steps followed
by the SVD of a small matrix Br+s. Hence, the extended
Lanczos bidiagonalization algorithm constructs the best rank-
r subspace in an extended subspace Span[Ur+s]. It is therefore
no surprise that we obtain a better rank-r approximation
than the one obtained after r steps of the standard Lanczos
bidiagonalization algorithm.

Notice that for LSI, the input matrix is typically sparse,
while for PCA applied to image databases, the input matrix is
typically dense. The complexity of our E-LANBI method will
depend on sparsity. If we denote by α the average number of
nonzero elements per column in A, then we have the following
complexity table

dense A sparse A
Step 1 O(mn(r + s)) O(αn(r + s))
Step 2 O(r + s)3 O(r + s)3

Step 3 O(r(r + s)(m+ n)) O(r(r + s)(m+ n))

which shows that E-LANBI gives a better complexity than the
typical cost of O(mn ·min{m,n}) for the truncated SVD.

A. Reorthogonalization

It is well known that the theoretical orthogonality of the
computed Lanczos vectors ui and vi is quickly lost in practice.
This is triggered by the convergence of one or more singular
vectors [1], and many papers discuss this problem [1], [4], [5].
In this paper, since m > n, we combine full reorthogonaliza-
tion for vi and partial reorthogonalization for ui. Concretely,
we add the following line of pseudocode after the second line
of step 1 of the algorithms in sections 3 and 4:

vi = vi −
i−1∑
j=1

〈vi, vj〉vj ,

and the following line of pseudocode after the third line of
step 1 of the algorithms in sections 3 and 4:

ui = ui −
i−1∑
j=i−l

〈ui, uj〉uj .



Here, l is a small integer (such as l = 5) and we start
our reorthogonalization as soon as i > l. So, these two
reorthogonalization steps increase the computational cost with
O(in) +O(lm) at every Lanczos step.

B. Convergence

In [2], [13], it was shown that the Lanczos algorithm is
convergent as r increases. In the notation of this paper and
using C := AAT , Saad gives in [13] a bound on the angle
between the jth eigenvector φj of C and the span of Ur:

||(I − UrUTr )φj ||
||UrUTr φj ||

≤ Kj

Tr−j(γj)

||(I − U1U
T
1 )φj ||

||U1UT1 φj ||
, j ≤ r,

(17)
where

γj = 1 + 2
λj − λj+1

λj+1 − λn
, K1 = 1, Kj =

j−1∏
i=1

λi − λn
λi − λj

j 6= 1,

λj is the jth eigenvalue of C and Tk(·) is the Chebyshev
polynomial of the first kind of degree k. Assuming φj has
norm 1 and letting cj = Kj ||QrQTr φj ||

||(I−Q1Q
T
1 )φj ||

||Q1QT
1 φj ||

, one
then obtains a simple inequality of the form:

||(I − UrUTr )φj || ≤ cjTr−j(γj)−1. (18)

This inequality shows that the angle between any unit eigen-
vector φj and the subspace Span(Ur) decays at least as
Tr−j(γj)

−1, which decreases exponentially as r− j increases
[13]. So, if we can get a better subspace Span(Ur), a smaller
bound will result from it. Let us consider the subspace
span(Ûr) obtained by Algorithm E- LANBI. If s = 0, we know
that span(Ûi)=span(Ui) and hence the convergence is the same
as for Algorithm LANBI. If s = min{m−r, n−r}, we know
that Ûr spans the leading r eigenvectors φj , j = 1, · · · , r of
C, and hence ||(I−ÛrÛTr )φj || = 0. Finally, if 0 < s < m−r,
then it follows that 0 < ||(I−ÛrÛTr )φj || < ||(I−UrUTr )φj ||.

Similarly to [2], we can also prove the convergence of the
approximation vectors of E-LANBI. Assume that b is a starting
vector, si = ÛiÛ

T
i Ab is the approximation vector to the vector

Ab along the direction φj , then applying (18) yields

|〈Ab− si, φj〉| = |〈(I − ÛiÛTi )Ab, φj〉|
= |〈(I − ÛiÛTi )φj , Ab〉|
≤ ||(I − ÛiÛTi )φj || · ||Ab||
< cj ||Ab|| Ti−j(γj)−1 .

This completes our proof, and the above inequality gives the
convergence rate of the approximation vector si to the vector
Ab along the direction φj . A similar convergence proof is
easily derived for the right singular vector, whose details we
skip here.

V. EXPERIMENTS

In this section, we evaluate the effectiveness of Algorithm
E-LANBI. All computations are done using Matlab version 7
on an Intel CPU @1.86 GHz, 1.5 Gb memory computer.

A. Latent Semantic Indexing for Information Retrieval

To determine which documents to retrieve, we compare the
cosine of the angles between the query vector q ∈ Rm and
the document vectors to a fixed threshold Θ. Those cosines
cos θi are computed as in (3).

Performance in information retrieval depends on Θ and is
assessed according to the following two measures:

Precision =
Dr

Dt
and Recall =

Dr

Nr

where Dr is the number of relevant documents retrieved, Dt

is the number of documents retrieved, and Nr is the number of
relevant documents in database. Large (resp. small) values of
threshold Θ are expected to lead to high (resp. low) precision
and low (resp. high) recall.

We compare three methods : the first method is the truncated
singular value decomposition (tsvd); the second method is
Algorithm LANBI of section 3 (skipping Steps 2 and 3
since they are not needed for LSI); and the third method is
Algorithm E-LANBI, proposed in section 4.

Three data sets were used in our experiments [14]: MED,
containing 1033 documents and 30 queries; CRAN, containing
1398 documents and 255 queries; and CISI, containing 1460
documents and 35 queries. All three data sets are typical in
the sense that the number of distinct terms is larger than the
number of documents, i.e., m > n.

Example 1
In this example, we consider the MED data set, which contains
5735 terms, 1033 documents and 30 queries. We choose to
consider Q2 as a query vector, for which there are 16 relevant
documents.
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Fig 1. Left: running time vs. rank; Right: precision vs. recall
(rank=20).



Dr 1 2 3 4 5 6 7 8
truncated svd 1 2 3 4 6 7 9 12

LANBI 1 12 16 18 20 36 40 42
E-LANBI s=5 1 4 5 7 9 14 28 31
E-LANBI s=10 1 3 5 6 8 10 12 13

Dr 9 10 11 12 13 14 15 16
truncated svd 13 14 15 18 21 47 62 77

LANBI 43 60 64 81 82 95 110 606
E-LANBI s=5 34 43 50 55 73 77 92 655
E-LANBI s=10 16 24 29 33 49 64 108 122

Table 1. First and sixth row: number of relevant document
retrieved (Dr); From second row to fifth row and from

seventh row to tenth row: total number of document retrieved
(Dt) by different methods (tsvd, LANBI, E-LANBI)

The left graph in Fig. 1 shows that E-LANBI requires only
a little extra work over LANBI (since it computes only a
few more Lanczos steps) and that the truncated singular
value decomposition needs a lot more time than the other
two methods. The right graph in Fig. 1 shows that while
the truncated singular value decomposition performs best in
terms of precision vs. recall, E-LANBI behaves significantly
better than LANBI. Numbers of documents retrieved reported
in Table 1 confirm the relative ranking between the three
methods.

Example 2
The second experiment shows the results on the CISI data set,
containing 5544 terms, 1460 documents and 35 queries. Here
Q1 is selected as a query vector, and there are 46 relevant
documents for Q1.
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Fig. 2. Left: running time vs. rank; Right: precision vs. recall
(rank=15).

The results of this experiment are different from those of
Example 1. In this example, although the truncated singular
value decomposition is the most expensive, it produces the
worst results. Compared with LANBI, E-LANBI obtains better
results, while requiring a little more time.

Example 3
For the third experiment, we show results obtained on the
CRAN data set, containing 4563 terms, 1398 documents and

225 queries. We also select Q1 as a query vector, for which
there are 25 relevant documents.
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Fig. 4. precision vs. recall (rank=20).

These experiments again behave differently from the previous
two. The left graph on Fig. 4 indicates that when low recall
is needed, the truncated singular value decomposition gets the
worst results. The right graph on Fig. 4 indicates that when
high recall is needed, LANBI gets the worst results. In both
cases, E-LANBI compares favorably with truncated singular
value decomposition and with LANBI.

These three experiments show the advantages of E-LANBI
in Latent Semantic Indexing. The combination of speed and
accuracy make E-LANBI a competitive alternative to both
truncated singular value decomposition and Lanczos bidiag-
onalization.

B. PCA for information retrieval

Two popular face databases, the Indian Face Database [15]
and ORL Face [16], are used to demonstrate the effectiveness
of the Extended Lanczos Bidiagonalization method proposed
in section 4. In our experiments, all images in the database
were manually cropped and resized to 92 × 112 pixels, with
256 gray levels per pixel. After the image cropping, most



of the complex background has been excluded. To apply the
eigenfaces technique, each image is vectorized to a column.
As suggested in section 2, LANBI and E-LANBI are applied
directly to the centered data matrix A = [a1−ā, · · · , an−ā]. To
remove randomness, both the Lanczos bidiagonalization and
the Extended Lanczos bidiagonalization were initialized with
the same vector b = (1, 1, · · · , 1)T . After feature selection,
the following simple classification scheme is used. For a given
test vector a, the distance between a and training class Cj is
defined by

d(a,Cj) =
1

|Cj |
∑
i∈Cj

||UTPCA(a− ai)||22

where |Cj | is the number of vectors in class Cj . This measure
is simply the average squared Euclidean distance between the
test vector and elements of a given class, measured in the
approximate subspace. Test vector a will then be classified
the class j with the smallest value of d(a,Cj).

Example 4
In this example, we consider the Indian Face Database, which
contains faces of 22 female and 37 male subjects. For each of
these 59 subjects, the database contains 11 face images (but we
only select the first 10 of these images). In our experiments,
the training set consists of the first five images, and the testing
set consists of the remaining 5 images of each subject.
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Fig. 5. Comparisons of running time and recognition rate
with different rank (INDIAN): (left) running time vs. rank

and (right) recognition rate vs. rank.

Example 5
In this example, we consider the ORL Face Database, com-
posed of 40 persons and 10 face images per person. In
this example, we choose the first five images per person
for training, the other five for testing, i.e. estimation of the
generalization performance.
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Fig. 6. Comparisons of running time and recognition rate
with different rank (ORL): (left) running time vs. rank and

(right) recognition rate vs. rank.

Fig. 5 and Fig. 6 show that E-LANBI obtains recognition
rates comparable to PCA, while being much cheaper. Com-
pared with LANBI, E-LANBI only requires a little extra cost,
and produces higher recognition rates, in particular when the
rank r is small.
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Fig. 7. Comparison of the reconstruction capability using
different methods (training images).

Now, using the ORL database, we compare visually the recon-
struction capability of PCA, LANBI and E-LANBI for training
images. Fig. 7 shows that PCA obtains the best reconstructed
images, and LANBI produces the worst reconstruction. Ef-
fectiveness of E-LANBI increases with s and reaches results
comparable to PCA when s = 7.
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Fig. 8. Comparison of the reconstruction capability using
different methods (testing images).

In Fig. 8, we also use the ORL database for testing images.
Fig. 8 shows that PCA produces again the best reconstructed
images. Compared with LANBI, E-LANBI obtains better
reconstructed images, because it constructs a better approx-
imating subspace.

Finally, we observe from our experiments that a small value
for parameter s is often already enough to obtain good results.

VI. CONCLUSION

In this paper, we propose a new Lanczos-type algorithm
for dimension reduction. Because it produces the best r-
dimensional approximation within a larger (r+s)-dimensional
subspace, it yields a better matrix approximation than the clas-
sical LANBI method. Compared with the truncated singular
value decomposition, our method frequently obtains a low-
dimensional approximation of similar quality, despite the lack
of optimality. Our experiments demonstrate that E-LANBI
provides a good and reasonably cheap alternative to truncated
singular value decomposition.
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