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Abstract

This paper deals with the problem of robust H, filtering for a class of state-delayed nonlinear systems
with norm-bounded parameter uncertainty appearing in all the matrices of the linear part of the system
model. The nonlinearities are assumed to satisfy the global Lipschitz conditions and appear in both the
state and measured output equations. Attention is focused on the design of a nonlinear filter which ensures
both the robust stability and a prescribed H, performance of the filtering error dynamics for all admissible
uncertainties. A sufficient condition for the existence of such a filter is given in terms of a linear matrix
inequality (LMI). When this LMI is feasible, the expression of a desired H, filter is also presented. A

numerically example is provided to demonstrate the applicability of the proposed approach.

Keywords: H filtering, uncertain systems, time-delay systems, nonlinear systems, linear matrix inequal-

ity, robust filtering.

1 Introduction

State estimation is a subject of great practical and theoretical importance which has received much attention
in the past years. The Kalman filtering approach is one of the most popular ways to deal with this topic.
This approach provides an optimal estimation of some desired variables of a dynamic system from available
measurements in the sense that the covariance of the estimation errors is minimized [1]. It should be pointed
out that the Kalman filtering approach is based on the assumptions that the system under consideration is
exactly known and its disturbances are stationary Gaussian noises with known statistics. In practical appli-
cations, however, the statistics of the noise sources may not be exactly known and the system uncertainties
are unavoidable in modelling, which limit the application scope of the Kalman filtering approach.

To deal with the estimation problem for systems without exact knowledge of the statistics of the noise
signals and with modelling uncertainties, H filtering has been introduced as an alternative [2, 10, 12]. The
purpose is to design an estimator which guarantees that the L9-induced gain from the noise signals to the
estimation error is below a prescribed level. It is worth noting that in the context of H filtering, the noise
sources are assumed to be arbitrary signals with bounded energy, or bounded average power. It is known that

the H, filtering approach provides not only a guaranteed noise attenuation level but also robustness against
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unmodeled dynamics [13]. When parameter uncertainty appears in a system model, the robust H, filtering
problem has been investigated and many results have been reported. For example, for continuous systems
with norm-bounded uncertainty, the robust H, filtering problem was considered in [17] and a sufficient
condition for the solvability was presented in terms of two Riccati equations. By using a similar technique,
the results in [17] were extended to a class of uncertain nonlinear systems in [5]. The corresponding results
for uncertain discrete-time systems with nonlinearities can be found in [18].

On the other hand, it is well-known that time delay arises quite naturally in propagation phenomena,
population dynamics or engineering systems such as chemical processes, long transmission lines in pneumatic
systems, and so on [7, 9]. A number of estimation and control problems relating to time-delay systems have
been addressed by many researchers [8, 14, 19, 20]. More recently, attention has been focused on the problem
of Hy filtering for time-delay systems. In [11], Ho filtering for systems with a single time delay in the
measurements has been developed. For systems with time-delays in both the states and measurements, the
same problem was considered in [6] and a Riccati based method was proposed. The robust H filtering
problem for time-delay systems was addressed in [4], where an LMI approach was adopted, while in [16]
a Riccati-like approach was developed. However, for time-delay systems in the simultaneous presence of
parameter uncertainties and nonlinearities, the problem of robust H filtering has not been fully investigated,
which is more involved and still open.

In this paper, we consider the problem of robust H filtering for a class of state-delayed nonlinear systems
with parameter uncertainty. The class of systems under consideration is described by a linear delayed state
space model with the addition of known nonlinearities which depend on state as well as delayed state and
satisfy the global Lipschitz conditions. The nonlinearities and time delay appear in both the state and
measured output equations. The parameter uncertainties are assumed to be time-varying norm-bounded,
and appear in all the matrices of the linear part of the system model. The problem we address is the design
of a nonlinear filter such that the filtering error dynamics are robustly stable and the Ls-induced gain from
the noise signals to the estimation error is less than a prescribed level for all admissible uncertainties. A
sufficient condition for the solvability of this problem is obtained in terms of an LMI. The desired filter can
be constructed through a convex optimization problem that can be efficiently implemented using standard

numerical algorithms [3].

Notation. Throughout this paper, the notation X > Y (respectively, X > Y') for symmetric matrices X
and Y means that the matrix X — Y is positive semi-definite (respectively, positive definite); M7 represents
the transpose of the matrix M; £59[0, oo) is the space of square-integrable vector functions over [0, co); The

notation ||-|| refers to the Euclidean vector norm, while ||-||, stands for the usual Ls[0, co) norm.

2 Problem Formulation

Consider the following class of uncertain nonlinear time-delay systems:

(X): #(t) = (A4+AA®R)z(t) + (Ag+ AAy(t) z(t — 1) + Gg(z(t),z(t — 7)) + Bw(t) (1)
y(t) = (C+AC®H)) z(t) + (Cq+ ACy(t)) z(t — 7) + Hh(x(t), z(t — 7)) + Dw(t) (2)
z(t) = (E+AE(@))z(t) + (Eq+ AE4(t)) z(t — 7) (3)
z(t) = ¢(t), Vt € [-T,0], (4)



where z(t) € R” is the system state, y(¢) € R™ is the measurement, w(t) € R® is the noise signal which belongs
to L5[0, 00), z(t) € R is a linear combination of state variables to be estimated, g(-,-) : R* x R* — R" and
h(-,-) : R* x R" — R" are known nonlinear functions, A, Ay, B, C, Cy, D, E, E;, G and H are known
real constant matrices, ¢(t) is a real-valued continuous initial function on [—7,0], 7 > 0 is a known time
delay of the system, AA(t), AAq(t), AC(t), ACy(t), AE(t) and AE,4(t) are unknown matrices representing

time-varying parameter uncertainties, and are assumed to be of the form

AA() AAy(t) M,
AC(H) ACH) | = | My F(t)[Nl NQ} (5)
AE() AEy(t) M;

where My, My, M3, N; and Ny are known real constant matrices and F(-) : R — RF*J is an unknown

real-valued time-varying matrix satisfying
FWTF@)<I, Vt (6)

It is assumed that all the elements of F'(¢) are Lebesgue measurable. AA(t), AAy(t), AC(t), ACy(t), AE(t)
and AE,(t) are said to be admissible if both (5) and (6) hold.

Throughout the paper, we make the following assumption on the nonlinear functions in system ().

Assumption 1. (Lipschitz condition)

(1) 9(0,0) = 0;

(I1) llg(z1,22) — g(y1,y2) || < [S19(w1 — y1)ll + [|S2g (22 — y2)II
|h(z1, 22) — h(yr,y2)ll < [|S1h(zr — yo)|| + ||Son(z2 — y2)I|

for all z1, x2, y1, y2 € R, where S14, Sag, S1, and Sy, are known real constant matrices.

In this paper we are concerned with obtaining an estimate, Z(t), of z(¢) by a causal filter F using the
measurement ); = {y(7) : 0 < 7 < t}. More specifically, given a prescribed level of noise attenuation y > 0,
our objective is the design of a causal filter F such that the filtering error dynamics are asymptotically
stable and ||2(t) — 2(t)||3 < -y [|w(#)||3 under zero-initial conditions for any nonzero w(t) € Ls[0,00) and all

admissible uncertainties.

3 Main Results

In this section, an LMI approach is developed to solve the robust H filtering problem formulated in the

previous section. We first give the performance analysis result of the system (1) and (3).

Lemma 1. Consider the system (1) and (3), that is,

(21) : #(t) = (A+AA®R))z(t) + (Ag+AAy(t)) z(t — 1) + Gg(z(t), z(t — 7)) + Bw(t) (7)
z2(t) = (E+AE(t)z(t) + (Eq+ AE4(t)) z(t — 7) (8)
z(t) = ¢(t), Vt € [-7,0], 9)



Suppose Assumption 1 holds and vy > 0 is a given constant scalar, then the system (X1) is asymptotically
stable and Hz(t)||§ < Hw(t)”% under zero-initial conditions for any nonzero w(t) € L3[0,00) if there exist
scalars €1 > 0, e > 0 and €3 > 0 and matrices P > 0 and Q > 0 such that

Q1 (€1, €2, €3, P, Q) PAy+ ETE4+ (€1 + e3) N{ N3 PA ET M3
Agp + EgE + (61 + 63)N§N1 QQ(Gl, €9, €3, Q) 0 E;{Mg <0 (10)
ATP 0 Q3(e1, €2) 0
M]E MTE, 0 M Ms — e31
where
91(61,62,63,P,Q) = ATP+PA+(€1—|—63)N1TN1+ETE—|-2EQS£JSM+Q

Qo(e1,€2,€3,Q) = EjEq+ (e1+ e3)Ng Na + 2635552 — Q
Q3(e1,e9) = diag(—yI, —e 1, —ex)
A = [ B M, G

To prove this Lemma, we need the following result.

Lemma 2. [15]Let A, D, S, F and P be real matrices of appropriate dimensions with P > 0 and F satisfying
FTF < 1. Then the following statements hold:

(a) For any scalar € > 0 and vectors z, y € R,

20T DFSy < e '2TDDTz + ey ST Sy

(b) For any scalar € > 0 satisfying el — DT PD > 0,

(A+DFS)'P(A+DFS) < ATPA+ ATPD(el — D' PD) 'DTPA+STS

Proof of Lemma 1. Under the conditions of the lemma, we first establish the asymptotic stability of

the system (X;) with w(t) = 0. To this end, we define the following Lyapunov-Krasovskii function candidate:

t
V(xy) = x(t)T Pz(t) + /t z(s)T Qx(s)ds (11)
where
zp=x(t+p), Be[-r0].

The time-derivative of V' (z;) along the solution of (7) with w(¢) = 0 is then given by

Vi) = 2:v(t)TP [(A+ AA(t) z(t) + (Ag + AAg(t) z(t — 7) + Gg(z(t), z(t — 7))]
+2(t)TQxz(t) — z(t — 7)T Qu(t — 7). (12)

Using Assumption 1, we have
lg( (@), 2(t =) || < [[S1gz (D] + (| S2gz(t — 1)

and hence
lg(z (), z(t = 7)1 < 2[|S1gz(8)1” + 2| Sag(t — 7)1 (13)
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Considering this and (5) and using statement (a) in Lemma 2, we can deduce that for any scalars e; > 0 and

€9 > 0,
T
2:(t)T P [AA()x(t) + AAg(t)z(t — 7)] = 22(t)T PM, F(#) [ N N ] [ e(t)T w(t—7)T
< el_lm(t)TPMlMlTPm(t) + €1 [N1z(t) + Noz(t — T)]T [N1z(t) + Noz(t — 7)] (14)
by setting
D=PM;, S=| Ny Ny |. g7 =] a(®)" at-7)7 |
and
2z(t) T PGg(z(t), z(t — 7)) < eglx(t)TPGGTP:B(t) + eag(z(t), x(t — 7)) g(x(t), z(t — 7))
< € 'z(t)" PGG" Px(t) + 262 [2(t)" S, S142(t) + z(t — 7)" S5, S22 (t — T]15)
by setting
D=PG, S=1.
Thus
. x(t)
Vi) < | z()T z(t—-7T |W 16
() < | 2wt —)" | [m(t—ﬂ] (16)
where

W =

ATP 4+ PA+ e, NNy + P(e; 'MiMT + €, " GGT)P + 26,5151 + Q

PAg+ e NI Ny

AgP + €1N2TN1 elNéTNQ + 2625%;829 - Q
(17)
On the other hand, from (10) it is easy to show that
Q1 (€1, €2, €3, P, Q) PAq+ETE;+ (1 + e3)N{ N, PM; PG
A§P+E;{E+ (61 +€3)NEN1 92(61,62,63,62) 0 0 <0 (18)
MIpP 0 —al 0
G'P 0 0 —el
By Schur complement, we can show that (18) is equivalent to
[ ATP + PA+ e NT Ny + 2657, 815+ Q PAg+ e NTN, rPM, PG | NI ET]
ATP + eN] Ny 1Ny Ny +2€355,52—Q 0 0 N ET
MIP 0 —al 0 0 0
T < 0.
G'P 0 0 —eol 0 0
Ny Ny 0 0 |—e'T 0
| E E, 0 0 0 —1 |
Therefore
ATP + PA + e,N{ Ny +26,57,S1,+ Q PAy+ e1N{ Ny PM; PG
ATP + e NI N 1Ny Ny +2€355,59 —Q 0 0 -0
MIPp 0 -l 0
GTp 0 0 —el



which by Schur complement implies that W < 0, and hence V(xt) < 0, which guarantees the asymptotic
stability of the system () with w(t) = 0.

Next, we shall show ||z(t)||3 < 7 |lw(t)||3 under zero initial condition. To this end, we introduce

Jzi/aﬁzuﬂ}u)—ﬁwAﬂTwuﬂdt (19)
0

Considering the stability of the system and the zero initial condition, we have that for all nonzero w(t) €
Lo [07 OO),

52 [0 at0) = et Tte) + Vo) a (20)
where V(x;) is given in (11). From (10), it is easy to have that
U =:e3] — MI Mz >0
Thus, by statement (b) in Lemma 2 for
A=E, D=M;, S=N

it follows that

A=) = | o7 ot =17 | (E+MFPON)" (B +M;F()N) [ x(f(_t)ﬂ ]
< [e@T a@-n)" | [ETE+ ETMyT M E + ;N7 N [ (f(_t) ) ] (21)

where
E:[E Ed},N:[N1 Nz].
Using (21) together with (14), (15) and (20), we obtain

o z(t)
Jg/ [ e a(t -7 w®)T || at-7) | |t
0
w(t)
where
- ETE+ ETM30 'MIE + esNTN +W Ty
IS -1
o _ | PB
21 — 0

and W is given in (17). By Schur complement we can verify that the LMI (10) ensures that I' < 0, and hence
J < 0 for any nonzero w(t) € L2[0,00), which implies that Hz(t)||§ <7z ||w(t)|\§ This completes the proof. [

Now we are in a position to provide a solution to the robust H filtering problem for the system (3).



Theorem 3.1. Consider the uncertain nonlinear system (X) satisfying Assumption 1. If there exist scalars
€1 > 0, e > 0 and e3 > 0 and matrices P > 0, P, > 0, Q1 > 0 and Qa2 > 0 and Z such that the following
LMT holds:

Di(e1,€,€3,P1,P,Q1,Q2,7Z) Yi(er,e3, P, P, Z) Yo(Pr, P, 7) 1

11 [1]

Yi(e1, €3, P1, Po, Z)T Dy (€1, €2,€3,Q1,Q2) 0 2 <0 (22)
TQ(Pl,PQ,Z)T 0 @3(61,62) 0
=7 =73 0 MIM; — 3]
where
¢1(€15627637P15P25Q15Q27Z) = diag(¢11(617627635P15Q1)a(DQQ(eQaP?aQQaZ)) (23)
@11(61,62,63,P1,Q1) = ATP1 +P1A+(61 +€3)N1TN1 +2625,11;)S19+Q1 (24)
Byo(e2, Py, Q2,Z) = ATPy+ PLA—2C —CTZ" + ETE + 26,578, + Q, (25)
Da(er. 2, €0, P P2, Q1,Q2) = diag ( (a1 +es)NFNo +26255,80y — Q1+ FfEa+2:575,-Q> ) (26)
Tl(el, €3, Pl, PQ, Z) = diag ( PlAd + (61 + 63)N1TN2 y PQAd — ZCd =+ ETEd ) (27)
[ PB PM PG 0 0
Yo (P, Py, Z) = ! L ! , (28)
PoB—7ZD PyM;— ZM, 0 PG —-ZH
D3(e1,62) = diag(—vI,—e1l,—exl, —eal, —e€o1), (29)
0 0
= = , 2o = 30
[ S, Ss
S = 91, 8= g 31
! | Sin ? San (31

then the robust Ho, filtering problem is solvable. Furthermore, when (22) is satisfied, a suitable nonlinear

filter is given as follows:

(Sp): @ () = Ai(t)+ Agi(t — 1) + Gg(&(t), &(t — 7))
+L[y(t) — C&(t) — Cad(t — 1) — Hh(3(t), &(t — 7))] (32)
2(t) = E2(t) + Eue(t—1) (33)
where L = P{lZ.

Proof. Set
Z(t) = z(t) — z(t)

Then from (1)-(3), (32) and (33) we obtain

i = (A—LO)i(t)+ (Ag — LCy)i(t — 1) + [AA(t) — LAC(t)] z(t)
+[AAg(t) — LACy(t)] z(t — 7) + G€(x(t), z(t — 7),2(t), 2(t — 7)) + Bw(t) (34)

where




Defining

T
n(t)= | 27 FOT ] 2 = 2() - 20)
we have the filtering error dynamics as follows
nt) = (Ac+AA()n(t) + (Aed + AAca(t)) n(t — 7) + Gele(x(t), 2(t — 7), (), 2(t — 7)) + Bew(t)(37)
Z(t) = (Bc+ AE(t)n(t) + (Bed + AEca(t)) n(t — 1) (38)
where
(A0 AA(t 0 A 0
4, = A4 = () A= | M ,
|0 A-LC AA(t) — LAC(t) 0 0 Ag—LCy
[ AAy(t 0 G 0 B
AAcal(t) = d( ) s Gc = = ) c = — s
| AAy(t) — LACy(t) 0 0 G B
E = |o E] AEC(t):[AE(t) 0}, Ecd:[o Ed}, AE,q(t) = [ AE,(#) 0],
T
Ee(z(t), z(t — 7),2(1),2(t — 7)) = [ gz (t),x(t — )T &(a(t),x(t —7),2(t), &t —7))" ] :
By Assumption 1, it is easy to show that
N 2 _ 2
el (®), 2t = 7,80, 3t = )I* < 2||Sint)| +2 | Somtt — 1) (39)
where _
. S, 0] & [8y o0
R A RO
Now we write )
AA(t) AA 4t M,
e e LI
AEc(t) Alacd(t) M3 i
where
Mlc: Ml aNlc:[Nl O]aNQC:[N2 0]-
M, — LM,
Let
P. = diag(P1, P), Qc = diag(Q1, Q2)
O1(e1,€2,€3, P, Qc) = ALP.+ P.A.+ (€1 + €3) N Nic + EI E. + 26,57 S1 + Q.
Oa(e1,€2,€3,Qc) = ElyEcq+ (e1 + €3)NgeNoe + 26257 S — Qe
@3(61,62) = diag(—’yl, —61[,—62[,—621, —621)
Ac = Bc Mlc Gc ]
then it follows from (22) that
[ O1(€e1, €2, €3, P, Q) P Aje + E'Ecq+ (61 +€3)N.Noe  PA, ET'M;
Agcpc + EZ(;EC + (€1 + 63)N27;Nlc O2 (€1, €2, €3, Qc) 0 Engg
ATP, 0 O3(e1, €2) 0
MTE, M1 Eq 0 M Ms — e31
[ ) (e1, 0,63, P1, Py, Q1,Qo, %) Tiler,es,Pr, P2, Z) Yo(Py,Ps, Z) g
_ Yi(er,e3, P, P, Z)T o€, €2,€3,Q1,Q2) 0 =P <0
Yo(Py, Py, Z)T 0 D3 (e, €2) 0 '
I =T =) 0 MTMs — e3]




Therefore, by Lemma 1 the desired result follows immediately. This completes the proof. O

Remark 1. Theorem 3.1 provides a method for designing robust H, filters for the uncertain nonlinear system
(X), and the desired Hy, filter can be constructed by solving an LMI. It is worth pointing out that the LMI
in (22) can be solved efficiently, and no tuning of parameters is required [3], although there are several

parameters and matrices to be determined.
Remark 2. In the context of Theorem 3.1, we can determine the lowest v by solving the following optimization
problem:
minimize y
subject to €1 > 0, €2 > 0, €3 >0, P, >0, P, >0, Q1 > 0, Q2 > 0 and (22).
In the case when there are no nonlinearities in system (X), that is, the system (%) reduces to the following

uncertain time-delay system:

(Xn): z(t) = (A+AA(®R))z(t) + (Ag+ AAy(t)) z(t — 7) + Bw(t) (40)
y(t) = (C+AC()x(t) + (Cq+ ACy(t)) z(t — 7) + Dw(?) (41)
z2(t) = (E+AE(t))z(t) + (Eq+ AE4(t)) z(t — 1) (42)
z(t) = ¢(t), YVt € [—7.0], (43)

where AA(t), AA4(t), AC(t) and ACy(t), AE(t), AE,(t) are unknown matrices satisfying (5) and (6). Then,

from Theorem 3.1, we have the following robust H, filter design result for the above system.

Corollary. Consider the uncertain time-delay system (Xn). If there exist scalars o > 0, > 0, matrices
P >0,P,>0,0Q1 >0, Q>0 and Z such that the following LMI holds:

A

@1(01,0,,6,P1,P2,Q1,Q2,Z) Tl(aaﬁanP?’Z) TQ(P17P27Z) El
Tl(a,ﬁ,Pl,Pz,Z)T P9 (0, 58,Q1,Q2) 0 E2 <0 (44)
Yo (P, P2, Z)T 0 D3(cx) 0
=T =T 0 MIM; — BI
where
N P B P M
To(Pr, P, Z) = ! o
P,B—7D P,M; — ZM,
&3(61) = diag(—’y[, —61[)

and @1(a777ﬁ7 Pla P27 Qla Q27 Z)7 @2(0,’7,,6, Qh Q2)7 Tl(aaﬁa Pla P2a Z)a Ela and =9 are given in (23)7(27)
and (30), respectively, then the robust Ho filtering problem for the uncertain time-delay system (Xy) is

solvable. Furthermore, when (44) is satisfied, a suitable robust Hy, filter is given as follows:

() : i = Ai(t) + Agi(t — 7) 4 Lo [y(t) — Ci(t) — Cai(t — 7)] (45)
z2(t) = Ex(t)+ Eqr(t—1) (46)

where L, = PQ_IZ.



Remark 3. It is worth noting that the robust H filtering problem for time-delay systems without nonlinear-
ities was studied in [16], where the considered uncertain system involved no delays in the measurement and
the estimated variables. Under the assumption that the matrix My is of full row rank it was shown in [16]
that the solution to the problem involves solving a pair of indefinite algebraic Riccati equations. Corollary 3
in this paper, however, shows that for a more general uncertain time-delay system, the robust Ho, filtering
problem can be solved by an LMI without any assumptions on the matrix Ms. It is worth pointing out
that solving Riccati equations requires tuning of a symmetric positive definite matrix, while solving an LMI
involves no parameter tuning. Thus using Corollary 3 will make the H, filter design relatively direct and

simple.

4 Numerical Example

In this section, we give an example to demonstrate the effectiveness of the proposed method.

Consider the uncertain nonlinear delay system (X) with the following parameters:

[ 15 05 ~1 02 0.5 0.3 0.2 0.2 0.1
A = aAd: 7B: 7G: aMIZ
1 -3 05 —0.5 0.3 02 0.1 01 02
1 05 0 —1 0.5 0.2 0.1 0.2 0.3
C = 7Cd: 7D: 7H: 7M2:
| 0.8 0.2 1 1 0.2 0.3 0 0.1 0.2
(01 0. 0.1 3 01 1 0. 1 0.
po_ |01 03 B 0 —0 My — 0.3 0 N - 0.1 0.3 N, 01 03 |
[ 05 0.1 06 1 0.2 0.1 0.2 0.2 0 0.2

The nonlinearities g(z(t), z(t — 7)) and h(x(t),z(t — 7)) are assumed to satisfy Assumption 1 with

0.3 0 0.2 0.2 0.6 0.1 0.1 0.2
S = , Soq = , Sip = , Sop = .
1 [ 0.1 0.2 ] 2 [ 0.3 0.1 ] t [ 0.1 0.2 ] 2 [ 0.2 0.1 ]
In this example we assume that 7 = 1.5 and we require a noise attenuation level v = 1.5.
Using the Matlab LMI Control Toolbox to solve the LMI (22), we obtain the solution as follows:

?

o 1.1184 —1.2419 | 226096 —30.6174 0: = 1.6058 —2.5660
DT | Z12419 44571 | —306174 567138 |7 ' | —2.5660 8.0843 |’

0, = 51.4539 —79.8173 4 _ | 74073 —11.0126
2 7 | Z79.8173 1475590 |’ | —2.6541  18.6921
61 = 1.1154, €y =0.4265, €3 = 0.3666.

Therefore, by Theorem 3.1 the robust H, filtering problem is solvable, and a desired nonlinear filter is given
by (32) and (33) with

0.9826 —0.1516
0.4836  0.2478 |

5 Conclusions

In this paper, we have studied the problem of robust H, filter design for a class of state-delayed nonlinear

systems with time-varying norm-bounded parameter uncertainty in all the matrices of the linear part of the

10



system model. A sufficient condition for the solvability of this problem has been presented. The desired
filter which ensures not only the robust stability but also a prescribed Hy, performance of the filtering error
dynamics for all admissible uncertainties, has been constructed by solving a certain LMI. A numerical example

has shown the effectiveness of the proposed approach.
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