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Abstract.

This paper presents an algorithm that solves optimization problems on
a matrix manifold M ⊆ Rm×n with an additional rank inequality con-
straint. New geometric objects are defined to facilitate efficiently finding
a suitable rank. The convergence properties of the algorithm are given
and a weighted low-rank approximation problem is used to illustrate the
efficiency and effectiveness of the algorithm.

1 Introduction

We consider low-rank optimization problems that combine a rank inequality
constraint with a matrix manifold constraint:

min
X∈M≤k

f(X), (1)

where k ≤ min(m,n),M≤k = {X ∈ M|rank(X) ≤ k} and M is a submanifold
of Rm×n. Typical choices for M are: the entire set Rm×n, a sphere, symmetric
matrices, elliptopes, spectrahedrons.

Recently, optimization on manifolds has attracted significant attention. At-
tempts have been made to understand problem (1) by considering a related but
simpler problem minX∈Rm×n

k
f(X), where Rm×nk = {X ∈ Rm×n|rank(X) = k},

(see e.g., [1, 2]). Since Rm×nk is a submanifold of Rm×n of dimension (m+n−k)k,
the simpler problem can be solved using techniques from Riemannian optimiza-
tion [3] applied to matrix manifolds. However, a disadvantage is that the man-
ifold Rm×nk is not closed in Rm×n, which complicates considerably the conver-
gence analysis and performance of an iteration.

Very recently a more global view of a projected line-search method on Rm×n≤k =

{X ∈ Rm×n|rank(X) ≤ k} along with a convergence analysis has been developed
in [4]. In [5], the results of [4] are exploited to propose an algorithm that succes-
sively increases the rank by a given constant. Its convergence result to critical
points can be deduced from [4, Th. 3.9]; it relies on the assumption, often sat-
isfied in practice, that the limit points have rank k. Under this assumption, a
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line-search method on Rm×n≤k is ultimately the same as a line-search method on

Rm×nk .
In this paper, we develop an efficient algorithm for the optimization prob-

lems. The main contributions are as follows: First, we generalize the admissible
set from Rm×n≤k to M≤k. Second, the proposed algorithm solves a rank inequal-
ity constrained problem while finding a suitable rank for approximation of the
locally optimal solution. Third, the proposed algorithm successively increases
or decreases the rank by an adaptively-chosen amount; therefore, the rank is
updating appropriately, which avoids excessive increase of rank in order to save
computations and storage. Finally, theoretical convergence results are given.

The rest of this paper is organized as follows. A tangent cone descent algo-
rithm is given in Section 2. Some theoretical results are presented in Section 3
without proofs. Finally, a performance study is provided on the weighted low-
rank problem [6] in Section 4.

2 A Tangent Cone Descent Algorithm

The following assumptions are assumed to hold throughout this paper: (i) The
closure ofMr := {X ∈M|rank(X) = r} is a subset of or equal toM≤r. (ii)Mr

is a manifold. (iii) The extension of cost function f in (1) on M is well-defined
and it is continuously differentiable.

The basic idea of the new algorithm is applying Riemannian optimization
methods on a fixed-rank manifold Mr while efficiently and effectively updating
the rank r. For each fixed-rank manifold Mr, efficient and well-understood
Riemannian optimization algorithms, see e.g., [7, 8, 9], can be used directly.
The main issue is to move from one fixed-rank manifold to another efficiently
and effectively.

A rank adjustment decision considers the following two functions: one is an
extension of f onM, i.e., fF :M→ R : X 7→ fF(X), such that f = fF

∣∣
M≤k

, and

the other is the restriction of f on a fixed-rank manifoldMr, i.e., fr :Mr → R :
X 7→ fr(X), such that fr = f |Mr

. The rank is increased at x ∈Mr if r < k and
the following two conditions hold simultaneously: Condition I (angle threshold
ε1): tan(∠(gradfF(X), gradfr(X))) > ε1; Condition II (difference threshold ε2):
‖gradfF(X) − gradfr(X)‖ ≥ ε2, where gradfF(X) and gradfr(X) denote the
Riemannian gradients of fF and fr at a point X ∈Mr.

The parameters ε1 and ε2 are important for finding the exact/approximate
solutions and controlling the computational efficiency of the method. A smaller
ε1 value makes it easier to increase rank per iteration. The smaller ε2 is the
stricter the accuracy of the approximate local minimizer required. In particular,
convergence to critical points of (1) is obtained if ε2 is set to be 0.

Next, we discuss the details about updating the rank. The tangent cone to
M≤k at a point X ∈M≤k, TXM≤k, is equal to the set of all smooth admissible
directions for M≤k at X (see e.g., [10]). Note that TXM≤k is a linear space
for X ∈ Mk but is not for any point X ∈ M≤k−1. The tangent cone TXM≤k
contains the tangent space TXMr and also the curves approaching X by points



of rank greater than r, but not beyond k, i.e., TXM≤k = TXMr + {ηk−r ∈
NXMr

⋂
TXM|rank(ηk−r) ≤ k − r}. The characterizations of TXM≤k for

M = Rm×n have been given in [4].
To obtain the next iteration on M≤k ⊆ M, a general line-search method is

considered: Xn+1 = R̃Xn
(tnηXn,r̃), where tn is a step size and R̃ is a rank-related

retraction defined below in Definition 1.

Definition 1 (Rank-related retraction) Let X ∈ Mr. A mapping R̃X :
TXM → M is a rank-related retraction if, ∀ηX ∈ TXM, (i) R̃X(0) = X,
(ii) ∃δ > 0 such that [0, δ) 3 t 7→ R̃X(tηX) is smooth and R̃X(tηX) ∈ Mr̃

for all t ∈ [0, δ), where r̃ is the integer such that r ≤ r̃, ηX ∈ TXM≤r̃, and

ηX /∈ TXMr̃−1, (iii) d
dt R̃X(tηX)|t=0 = ηX .

It can be shown that a rank-related retraction always exists.
Note R̃X is not necessarily a retraction onM since it may not be smooth on

the tangent bundle TM :=
⋃
X∈M TXM. The modified Riemannian optimiza-

tion algorithm is sketched as Alg. 1.
Generally speaking, η∗ in Step 7 in Alg. 1 is not unique and any one can be

used to change to rank r̃. The key to efficiency of the algorithm is to choose r̃
correctly and then choose an appropriate η∗. In [4], a similar idea is developed
for M = Rm×n and r̃ = k. The authors define the search direction as the
projection of the negative gradient onto the tangent cone. If M = Rm×n and
r̃ = k, the choice of η∗ in Step 7 is equivalent to the definition in [4, Corollary
3.3].

3 Main Theoretical Results

Suppose the cost function f is continuously differentiable and the algorithm
chosen in Step 2 of Alg. 1 has the property of global convergence to critical
points of fr, we give the following main results. The proofs are omitted due to
space constraints (see [11]).

Theorem 1 (Global Result) The sequence {Xn} generated by Alg. 1 satisfies

lim infn→∞ ‖PTXnM≤k
(gradfF(Xn))‖ ≤

(√
1 + 1

ε21

)
ε2.

Theorem 2 (Local Result) Let fF be a C2 function and X∗ be a nondegen-
erate minimizer of fF with rank r∗. Suppose ε2 > 0. Denote the sequence of
iterates generated by Algorithm 1 by {Xn}.

There exists a neighborhood of X∗, UX∗ , such that if D = {X ∈M|f(X) ≤
f(X0)} ⊂ UX∗ ; D is compact; f̂ : TM→ R : ξ 7→ fF ◦ R̃(ξ) is a radially L-C1

function with sufficient large βRL defined in [3, Definition 7.4.1] such that for
any X,Y ∈ D, ‖R̃−1X (Y )‖ < βRL, then there exists N > 0 such that

∀n > N rank(Xn) = r and Xn ∈ UX∗ .



Algorithm 1 Modified Riemannian Optimization Algorithm

1: for n = 0, 1, 2, . . . do
2: Apply a Riemannian algorithm (e.g. one of GenRTR [7], RBFGS [8, 9],

RTR-SR1 [9]) to approximately optimize f overMr with initial point Xn

and stop at X̃n ∈Mr, where either ‖gradfr(X̃n)‖ < ε3 (flag← 1) or X̃n

is close to M≤r−1 (flag← 0);
3: if flag = 1 then
4: if Both Conditions I and II are satisfied then
5: Set r̃ and η∗ to be r and gradfr(X̃n) respectively;
6: while ‖gradfF(X̃n)− η∗‖ > ε1

2 ‖η
∗‖ do

7: Set r̃ to be r̃ + 1 and η∗ ∈ argminη∈TXM≤r̃
‖gradfF(X̃n)− η‖F ;

8: end while
9: Obtain Xn+1 by applying an Armijo-type line search algorithm along

η∗ using a rank-related retraction;
10: else
11: If ε3 is small enough, stop. Otherwise, ε3 ← τε3, where τ ∈ (0, 1);
12: end if
13: else {flag = 0}
14: If the rank has not been increased on any previous iteration, reduce

the rank of X̃n based on truncation while keeping the function value
decrease, update r, obtain next iterate Xn+1;

15: Else reduce the rank of X̃n such that the next iterate Xn+1 satisfies
f(Xn+1)− f(Xi) ≤ c(f(Xi+1)− f(Xi)), where i is such that the latest
rank increase was from Xi to Xi+1, 0 < c < 1. Set r to be the rank of
Xn+1;

16: end if
17: end for

4 Application

We illustrate the effectiveness of Alg. 1 for the weighted low-rank approximation
problem:

min
X∈M≤k

‖A−X‖2W , f(X) = ‖A−X‖2W = vec{A−X}TWvec{A−X} (2)

where M = R80×10, A is given, W ∈ R800×800 is a positive definite symmetric
weighting matrix and vec{A} denotes the vectorized form of A, i.e., a vector
constructed by stacking the consecutive columns of A in one vector.

The matrix A is generated by A1A
T
2 ∈ Rm×n, where A1 ∈ R80×5, A2 ∈ R10×5.

W = UΣUT , where U ∈ R800×800 is a random orthogonal matrix generated by
Matlab’s QR and RAND. The mn singular values of the weighting matrix are
generated by Matlab function LOGSPACE with condition number 100 and mul-
tiplying, element-wise, by a uniform distribution matrix on the interval [0.5, 1.5].
Three values of k are considered, one less than the true rank, one equal to the



k method rank f Rel Err(‖A−X‖W‖A‖W ) t

k = 3 Alg. 1 3 8.846+01 3.513−01 4.823−01
DMM 3 8.846+01 3.513−01 4.706+00

SULS 3 8.846+01 3.513−01 2.190+00

APM 3 8.846+01 3.513−01 5.000+00

k = 5 Alg. 1 5 2.191−19 1.557−11 6.890−01
DMM 5 1.606−15 1.324−09 4.351+00

SULS 5 2.147−12 4.874−08 1.045+00

APM 5 7.611−09 2.895−06 3.585+00

k = 7 Alg. 1 5 1.799−21 1.346−12 4.730−01
DMM 5 1.915−18 4.407−11 2.182+00

SULS 7(0/100) 1.401−12 3.780−08 2.316+00

APM 7(0/100) 2.349−10 4.865−07 7.002+00

Table 1: Method comparisons. The number in the parenthesis indicates the
fraction of experiments where the numerical rank (number of singular values
greater than 10−8) found by the algorithm equals the true rank. The subscript
±k indicates a scale of 10±k. Alg. 1 and SULS, are stopped when the norm of the
final gradient on the fixed-rank manifold over the norm of initial full gradient
is less than 10−8 while DMM and APM are stopped when the norm of final
gradient over the norm of initial gradient is less than 10−7.

true rank and one greater than the true rank. Four algorithms are compared:
Alg. 1, DMM [12], SULS [4] and APM [6]. The initial point of Alg. 1 and SULS
is a randomly generated rank-1 matrix and the initial points of DMM and APM
are randomly generated n-by-(n− k) and m-by-(m− k) matrices respectively.

Results shown in Table 1 are the average of 100 runs for different data ma-
trices R, weighting matrices W and initial points. The results show that Alg. 1
with ε1 =

√
3, ε2 = 10−4 (GenRTR is used as the inner algorithm, when the sizes

become larger, limited-memory RBFGS [9], for example, may be a better choice)
has significant advantages compared with the other methods. It achieves good
accuracy in the approximation with less computational time. Furthermore, for
Alg. 1, all Riemannian objects, their updates and Xn are based on an efficient
three factor, U,D, V , representation, and the singular values are immediately
available while, for the other three methods, an additional SVD is required.
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