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Abstract

We analyze linkage strategies for a set I of webpages for which the webmaster wants to maximize
the sum of Google’s PageRank scores. The webmaster can only choose the hyperlinks starting from the
webpages of I and has no control on the hyperlinks from other webpages. We provide an optimal linkage
strategy under some reasonable assumptions.
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1. Introduction

PageRank, a measure of webpages’ relevance introduced by Brin and Page, is at the heart of
the well known search engine Google [6,15]. Google classifies the webpages according to the
pertinence scores given by PageRank, which are computed from the graph structure of the Web.
A page with a high PageRank will appear among the first items in the list of pages corresponding
to a particular query.

If we look at the popularity of Google, it is not surprising that some webmasters want to increase
the PageRank of their webpages in order to get more visits from websurfers to their website. Since
PageRank is based on the link structure of the Web, it is therefore useful to understand how addition
or deletion of hyperlinks influence it.
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Mathematical analysis of PageRank’s sensitivity with respect to perturbations of the matrix
describing the webgraph is a topical subject of interest (see for instance [2,5,11,12,13,14] and
the references therein). Normwise and componentwise conditioning bounds [11] as well as the
derivative [12,13] are used to understand the sensitivity of the PageRank vector. It appears that
the PageRank vector is relatively insensitive to small changes in the graph structure, at least when
these changes concern webpages with a low PageRank score [5,12]. One could think therefore
that trying to modify its PageRank via changes in the link structure of the Web is a waste of
time. However, what is important for webmasters is not the values of the PageRank vector but
the ranking that ensues from it. Lempel and Morel [14] showed that PageRank is not rank-stable,
i.e. small modifications in the link structure of the webgraph may cause dramatic changes in the
ranking of the webpages. Therefore, the question of how the PageRank of a particular page or
set of pages could be increased – even slightly – by adding or removing links to the webgraph
remains of interest.

As it is well known [1,9], if a hyperlink from a page i to a page j is added, without no other
modification in the Web, then the PageRank of j will increase. But in general, you do not have
control on the inlinks of your webpage unless you pay another webmaster to add a hyperlink
from his/her page to your or you make an alliance with him/her by trading a link for a link [3,8].
But it is natural to ask how you could modify your PageRank by yourself. This leads to analyze
how the choice of the outlinks of a page can influence its own PageRank. Sydow [17] showed via
numerical simulations that adding well chosen outlinks to a webpage may increase significantly
its PageRank ranking. Avrachenkov and Litvak [2] analyzed theoretically the possible effect of
new outlinks on the PageRank of a page and its neighbors. Supposing that a webpage has control
only on its outlinks, they gave the optimal linkage strategy for this single page. Bianchini et al. [5]
as well as Avrachenkov and Litvak in [1] consider the impact of links between web communities
(websites or sets of related webpages), respectively on the sum of the PageRanks and on the
individual PageRank scores of the pages of some community. They give general rules in order to
have a PageRank as high as possible but they do not provide an optimal link structure for a website.

Our aim in this paper is to find a generalization of Avrachenkov–Litvak’s optimal linkage
strategy [2] to the case of a website with several pages. We consider a given set of pages and
suppose we have only control on the outlinks of these pages. We are interested in the problem of
maximizing the sum of the PageRanks of these pages.

Suppose G = (N,E) be the webgraph, with a set of nodes N = {1, . . . , n} and a set of links
E ⊆N×N. For a subset of nodes I ⊆N, we define

EI = {(i, j) ∈ E: i, j ∈ I} the set of internal links,

Eout(I) = {(i, j) ∈ E: i ∈ I, j /∈ I} the set of external outlinks,

Ein(I) = {(i, j) ∈ E: i /∈ I, j ∈ I} the set of external inlinks,

EI = {(i, j) ∈ E: i, j /∈ I} the set of external links.

If we do not impose any condition on EI and Eout(I), the problem of maximizing the sum of
the PageRanks of pages of I is quite trivial and does not have much interest (see the discussion
in Section 4). Therefore, when characterizing optimal link structures, we will make the following
accessibility assumption: every page of the website must have an access to the rest of the Web.

Our first main result concerns the optimal outlink structure for a given website. In the case
where the subgraph corresponding to the website is strongly connected, Theorem 10 can be
particularized as follows.
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Fig. 1. Every optimal linkage strategy for a set I of five pages must have this structure.

Theorem 1. Let EI,Ein(I) and EI be given. Suppose that the subgraph (I,EI) is strongly
connected and EI /= ∅. Then every optimal outlink structure Eout(I) is to have only one outlink
to a particular page outside of I.

We are also interested in the optimal internal link structure for a website. In the case where
there is a unique leaking node in the website, that is only one node linking to the rest of the web,
Theorem 11 can be particularized as follows.

Theorem 2. Let Eout(I),Ein(I) and EI be given. Suppose that there is only one leaking node in
I. Then every optimal internal link structure EI is composed of a forward chain of links together
with every possible backward link.

Putting together Theorems 10 and 11, we get in Theorem 12 the optimal link structure for a
website. This optimal structure is illustrated in Fig. 1.

Theorem 3. Let Ein(I) and EI be given. Then, for every optimal link structure, EI is composed
of a forward chain of links together with every possible backward link, and Eout(I) consists of a
unique outlink, starting from the last node of the chain.

This paper is organized as follows. In the following preliminary section, we recall some graph
concepts as well as the definition of the PageRank, and we introduce some notations. In Section
3, we develop tools for analysing the PageRank of a set of pages I. Then we come to the main
part of this paper: in Section 4 we provide the optimal linkage strategy for a set of nodes. In
Section 5, we give some extensions and variants of the main theorems. We end this paper with
some concluding remarks.

2. Graphs and PageRank

Let G = (N,E) be a directed graph representing the Web. The webpages are represented by
the set of nodesN = {1, . . . , n} and the hyperlinks are represented by the set of directed linksE ⊆
N×N. That means that (i, j) ∈ E if and only if there exists a hyperlink linking page i to page j .

Let us first briefly recall some usual concepts about directed graphs (see for instance [4]). A
link (i, j) is said to be an outlink for node i and an inlink for node j . If (i, j) ∈ E, node i is called
a parent of node j . By
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j ← i,

we mean that j belongs to the set of children of i, that is j ∈ {k ∈N: (i, k) ∈ E}. The outdegree
di of a node i is its number of children, that is

di = |{j ∈N: (i, j) ∈ E}|.
A path from i0 to is is a sequence of nodes 〈i0, i1, . . . , is〉 such that (ik, ik+1) ∈ E for every
k = 0, 1, . . . , s − 1. A node i has an access to a node j if there exists a path from i to j . In this
paper, we will also say that a node i has an access to a set J if i has an access to at least one node
j ∈ J. The graph G is strongly connected if every node of N has an access to every other node of
N. A set of nodes F ⊆N is a final class of the graph G = (N,E) if the subgraph (F,EF) is
strongly connected and moreover Eout(F) = ∅ (i.e. nodes of F do not have an access to N \F).

Let us now briefly introduce the PageRank score (see [5,6,12,13,15] for background). Without
loss of generality (please refer to the book of Langville and Meyer [13] or the survey of Bianchini
et al. [5] for details), we can make the assumption that each node has at least one outlink, i.e.
di /= 0 for every i ∈N. Therefore the n× n stochastic matrix P = [Pij ]i,j∈N given by

Pij =
{
d−1
i if (i, j) ∈ E,

0 otherwise

is well defined and is a scaling of the adjacency matrix of G. Let also 0 < c < 1 be a damping
factor and z be a positive stochastic personalization vector, i.e. zi > 0 for all i = 1, . . . , n and

z
T

1 = 1, where 1 denotes the vector of all ones. The Google matrix is then defined as

G = cP + (1− c)1z
T
.

Since z > 0 and c < 1, this stochastic matrix is positive, i.e. Gij > 0 for all i, j . The PageRank
vector � is then defined as the unique invariant measure of the matrix G, that is the unique left
Perron vector of G,

�T = �TG,

�T1 = 1.
(1)

The PageRank of a node i is the ith entry �i = �Tei of the PageRank vector.
The PageRank vector is usually interpreted as the stationary distribution of the following

Markov chain (see for instance [13]): a random surfer moves on the webgraph, using hyperlinks
between pages with a probability c and zapping to some new page according to the personalization
vector with a probability (1− c). The Google matrix G is the probability transition matrix of this
random walk. In this stochastic interpretation, the PageRank of a node is equal to the inverse of
its mean return time, that is �−1

i is the mean number of steps a random surfer starting in node i

will take for coming back to i (see [7,10]).

3. PageRank of a website

We are interested in characterizing the PageRank of a set I. We define this as the sum

�TeI =
∑
i∈I

�i ,

where eI denotes the vector with a 1 in the entries of I and 0 elsewhere. Note that the PageRank
of a set corresponds to the notion of energy of a community in [5].
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Let I ⊆N be a subset of the nodes of the graph. The PageRank of I can be expressed as

�TeI = (1− c)z
T
(I − cP )−1eI from PageRank equations (1). Let us then define the vector

v = (I − cP )−1eI. (2)

With this, we have the following expression for the PageRank of the set I:

�TeI = (1− c)z
T

v. (3)

The vector v will play a crucial role throughout this paper. In this section, we will first present
a probabilistic interpretation for this vector and prove some of its properties. We will then show
how it can be used in order to analyze the influence of some page i ∈ I on the PageRank of the
set I. We will end this section by briefly introducing the concept of basic absorbing graph, which
will be useful in order to analyze optimal linkage strategies under some assumptions.

3.1. Mean number of visits before zapping

Let us first see how the entries of the vector v = (I − cP )−1eI can be interpreted. Let us
consider a random surfer on the webgraphG that, as described in Section 2, follows the hyperlinks
of the webgraph with a probability c. But, instead of zapping to some page of G with a probability
(1− c), he stops his walk with probability (1− c) at each step of time. This is equivalent to
consider a random walk on the extended graph Ge = (N ∪ {n+ 1},E ∪ {(i, n+ 1): i ∈N})
with a transition probability matrix

Pe =
(

cP (1− c)1
0 1

)
.

At each step of time, with probability 1− c, the random surfer can disappear from the original
graph, that is he can reach the absorbing node n+ 1.

The nonnegative matrix (I − cP )−1 is commonly called the fundamental matrix of the absorb-
ing Markov chain defined by Pe (see for instance [10,16]). In the extended graph Ge, the entry
[(I − cP )−1]ij is the expected number of visits to node j before reaching the absorbing node
n+ 1 when starting from node i. From the point of view of the standard random surfer described
in Section 2, the entry [(I − cP )−1]ij is the expected number of visits to node j before zapping
for the first time when starting from node i.

Therefore, the vector v defined in Eq. (2) has the following probabilistic interpretation. The
entry vi is the expected number of visits to the set I before zapping for the first time when the
random surfer starts his walk in node i.

Now, let us first prove some simple properties about this vector.

Lemma 1. Let v ∈ Rn
�0 be defined by v = cP v+ eI. Then,

(a) maxi /∈I vi � c maxi∈I vi;
(b) vi � 1+ cvi for all i ∈N; with equality if and only if the node i does not have an access

to I;
(c) vi � minj←i vj for all i ∈ I;with equality if and only if the node i does not have an access

to I.
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Proof

(a) Since c < 1, for all i /∈ I,

max
i /∈I vi = max

i /∈I

⎛⎝c
∑
j←i

vj

di

⎞⎠ � c max
j

vj .

Since c < 1, it then follows that maxj vj = maxi∈I vi .

(b) The inequality vi � 1
1−c

follows directly from

max
i

vi � max
i

⎛⎝1+ c
∑
j←i

vj

di

⎞⎠ � 1+ c max
j

vj .

From (a) it then also follows that vi � c
1−c

for all i /∈ I. Now, let i ∈N such that vi = 1
1−c

.
Then i ∈ I. Moreover,

1+ cvi = vi = 1+ c
∑
j←i

vj

di

,

that is vj = 1
1−c

for every j ← i. Hence node j must also belong to I. By induction, every
node k such that i has an access to k must belong to I.

(c) Let i ∈ I. Then, by (b)

1+ cvi � vi = 1+ c
∑
j←i

vj

di

� 1+ c min
j←i

vj ,

so vi � minj←i vj for all i ∈ I. If vi = minj←i vj then also 1+ cvi = vi and hence, by

(b), the node i does not have an access to I. �

Let us denote the set of nodes of I which on average give the most visits to I before zapping
by

V = argmaxj∈Ivj .

Then the following lemma is quite intuitive. It says that, among the nodes of I, those which
provide the higher mean number of visits to I are parents of I, i.e. parents of some node of I.

Lemma 2 (Parents of I). If Ein(I) /= ∅, then

V ⊆ {j ∈ I: there exists � ∈ I such that (j, �) ∈ Ein(I)}.
If Ein(I) = ∅, then vj = 0 for every j ∈ I.

Proof. Suppose first that Ein(I) /= ∅. Let k ∈V with v = (I − cP )−1eI. If we supposed that
there does not exist � ∈ I such that (k, �) ∈ Ein(I), then we would have, since vk > 0,

vk = c
∑
j←k

vj

dk

� c max
j /∈I vj = cvk < vk,
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which is a contradiction. Now, if Ein(I) = ∅, then there is no access to I from I, so clearly
vj = 0 for every j ∈ I. �

Lemma 2 shows that the nodes j ∈ I which provide the higher value of vj must belong to
the set of parents of I. The converse is not true, as we will see in the following example: some
parents of I can provide a lower mean number of visits to I that other nodes which are not
parents of I. In other word, Lemma 2 gives a necessary but not sufficient condition in order to
maximize the entry vj for some j ∈ I.

Example 1. Let us see on an example that having (j, i) ∈ Ein(I) for some i ∈ I is not sufficient
to have j ∈V. Consider the graph in Fig. 2. Let I = {1} and take a damping factor c = 0.85.
For v = (I − cP )−1e1, we have

v2 = v3 = v4 = 4.359 > v5 = 3.521 > v6 = 3.492 > v7 > · · · > v11,

so V = {2, 3, 4}. As ensured by Lemma 2, every node of the set V is a parent of node 1. But
here, V does not contain all parents of node 1. Indeed, the node 6 /∈V while it is a parent of 1
and is moreover its parent with the lowest outdegree. Moreover, we see in this example that node
5, which is a not a parent of node 1 but a parent of node 6, gives a higher value of the expected
number of visits to I before zapping, than node 6, parent of 1. Let us try to get some intuition
about that. When starting from node 6, a random surfer has probability one half to reach node
1 in only one step. But he has also a probability one half to move to node 11 and to be send far
away from node 1. On the other side, when starting from node 5, the random surfer cannot reach
node 1 in only one step. But with probability 3/4 he will reach one of the nodes 2, 3 or 4 in one
step. And from these nodes, the websurfer stays very near to node 1 and cannot be sent far away
from it.

In the next lemma, we show that from some node i ∈ I which has an access to I, there always
exists what we call a decreasing path to I. That is, we can find a path such that the mean number
of visits to I is higher when starting from some node of the path than when starting from the
successor of this node in the path.

Fig. 2. The node 6 
∈V and yet it is a parent of I = {1} (see Example 1).
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Lemma 3 (Decreasing paths to I). For every i0 ∈ I which has an access to I, there exists a
path 〈i0, i1, . . . , is〉 with i1, . . . , is−1 ∈ I and is ∈ I such that

vi0
> vi1

> · · · > vis
.

Proof. Let us simply construct a decreasing path recursively by

ik+1 ∈ argminj←ik
vj ,

as long as ik ∈ I. If ik has an access to I, then vik+1
< vik

< 1
1−c

by Lemma 1(b) and (c), so the

node ik+1 has also an access to I. By assumption, i0 has an access to I. Moreover, the set I has
a finite number of elements, so there must exist an s such that is ∈ I. �

3.2. Influence of the outlinks of a node

We will now see how a modification of the outlinks of some node i ∈N can change the
PageRank of a subset of nodes I ⊆N. So we will compare two graphs on N defined by their
set of links, E and Ẽ, respectively.

Every item corresponding to the graph defined by the set of links Ẽ will be written with a
tilde symbol. So P̃ denotes its scaled adjacency matrix, �̃ the corresponding PageRank vec-

tor, d̃i = |{j : (i, j) ∈ Ẽ}| the outdegree of some node i in this graph, ṽ = (I − cP̃ )−1eI and

Ṽ = argmaxj∈Ĩvj . Finally, by j←̃i we mean j ∈ {k: (i, k) ∈ Ẽ}.
So, let us consider two graphs defined, respectively, by their set of links E and Ẽ. Suppose that

they differ only in the links starting from some given node i, that is {j : (k, j) ∈ E} = {j : (k, j) ∈
Ẽ} for all k /= i. Then their scaled adjacency matrices P and P̃ are linked by a rank one correction.
Let us then define the vector

� =
∑
j←̃i

ej

d̃i

−
∑
j←i

ej

di

,

which gives the correction to apply to the line i of the matrix P in order to get P̃ .
Now let us first express the difference between the PageRank of I for two configurations

differing only in the links starting from some node i. Note that in the following lemma the
personalization vector z does not appear explicitly in the expression of �̃.

Lemma 4. Let two graphs defined respectively by E and Ẽ and let i ∈N such that for all
k /= i, {j : (k, j) ∈ E} = {j : (k, j) ∈ Ẽ}. Then

�̃TeI = �TeI + c�i

�Tv

1− c�T(I − cP )−1ei

.

Proof. Clearly, the scaled adjacency matrices are linked by P̃ = P + ei�
T. Since c < 1, the

matrix (I − cP )−1 exists and the PageRank vectors can be expressed as

�T = (1− c)z
T
(I − cP )−1,

�̃T = (1− c)z
T
(I − c(P + ei�

T))−1.
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Applying the Sherman–Morrison formula to ((I − cP )− cei�
T)−1, we get

�̃T = (1− c)z
T
(I − cP )−1 + (1− c)z

T
(I − cP )−1ei

c�T(I − cP )−1

1− c�T(I − cP )−1ei

and the result follows immediately. �

Let us now give an equivalent condition in order to increase the PageRank of I by changing
outlinks of some node i. The PageRank ofI increases essentially when the new set of links favors
nodes giving a higher mean number of visits to I before zapping.

Theorem 5 (PageRank and mean number of visits before zapping). Let two graphs defined respec-
tively by E and Ẽ and let i ∈N such that for all k /= i, {j : (k, j) ∈ E} = {j : (k, j) ∈ Ẽ}. Then

�̃TeI > �TeI if and only if �Tv > 0

and �̃TeI = �TeI if and only if �Tv = 0.

Proof. Let us first show that �T(I − cP )−1ei � 1 is always verified. Let u = (I − cP )−1ei . Then
u− cP u = ei and, by Lemma 1(a), uj � ui for all j . So

�Tu =
∑
j←̃i

uj

d̃i

−
∑
j←i

uj

di

� ui −
∑
j←i

uj

di

� ui − c
∑
j←i

uj

di

= 1.

Now, since c < 1 and � > 0, the conclusion follows by Lemma 4. �

The following Proposition 6 shows how to add a new link (i, j) starting from a given node i

in order to increase the PageRank of the set I. The PageRank of I increases as soon as a node
i ∈ I adds a link to a node j with a larger or equal expected number of visits to I before zapping.

Proposition 6 (Adding a link). Let i ∈ I and let j ∈N be such that (i, j) /∈ E and vi � vj . Let

Ẽ = E ∪ {(i, j)}. Then

�̃TeI � �TeI

with equality if and only if the node i does not have an access to I.

Proof. Let i ∈ I and let j ∈N be such that (i, j) /∈ E and vi � vj . Then

1+ c
∑
k←i

vk

di

= vi � 1+ cvi � 1+ cvj

with equality if and only if i does not have an access to I by Lemma 1(b). Let Ẽ = E ∪ {(i, j)}.
Then

�Tv = 1

di + 1

(
vj −

∑
k←i

vk

di

)
� 0

with equality if and only if i does not have an access to I. The conclusion follows from Theorem
5. �
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Fig. 3. For I = {1, 2, 3}, removing link (1, 2) gives �̃TeI < �TeI, even if v1 > v2 (see Example 2).

Now let us see how to remove a link (i, j) starting from a given node i in order to increase the
PageRank of the set I. If a node i ∈N removes a link to its worst child from the point of view
of the expected number of visits to I before zapping, then the PageRank of I increases.

Proposition 7 (Removing a link). Let i ∈N and let j ∈ argmink←ivk. Let Ẽ = E \ {(i, j)}. Then

�̃TeI � �TeI

with equality if and only if vk = vj for every k such that (i, k) ∈ E.

Proof. Let i ∈N and let j ∈ argmink←ivk . Let Ẽ = E \ {(i, j)}. Then

�Tv =
∑
k←i

vk − vj

di(di − 1)
� 0

with equality if and only if vk = vj for all k← i. The conclusion follows by Theorem 5. �

In order to increase the PageRank of I with a new link (i, j), Proposition 6 only requires that
vj � vi . On the other side, Proposition 7 requires that vj = mink←i vk in order to increase the
PageRank of I by deleting link (i, j). One could wonder whether or not this condition could be
weakened to vj < vi , so as to have symmetric conditions for the addition or deletion of links. In
fact, this cannot be done as shown in the following example.

Example 2. Let us see by an example that the condition j ∈ argmink←ivk in Proposition 7 cannot
be weakened to vj < vi . Consider the graph in Fig. 3 and take a damping factor c = 0.85. Let
I = {1, 2, 3}. We have

v1 = 2.63 > v2 = 2.303 > v3 = 1.533.

As ensured by Proposition 7, if we remove the link (1, 3), the PageRank of I increases (e.g. from
0.199 to 0.22 with a uniform personalization vector z = 1

n
1), since 3 ∈ argmink←1vk . But, if we

remove instead the link (1, 2), the PageRank of I decreases (from 0.199 to 0.179 with z uniform)
even if v2 < v1.

Remark 1. Let us note that, if the node i does not have an access to the set I, then for every
deletion of a link starting from i, the PageRank of I will not be modified. Indeed, in this case
�Tv = 0 since by Lemma 1(b), vj = 1

1−c
for every j ← i.
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3.3. Basic absorbing graph

Now, let us introduce briefly the notion of basic absorbing graph (see Chapter III about absorb-
ing Markov chains in Kemeny and Snell’s book [10]).

For a given graph (N,E) and a specified subset of nodes I ⊆N, the basic absorbing graph is
the graph (N,E0) defined by E0

out(I) = ∅,E0
I = {(i, i): i ∈ I},E0

in(I) = Ein(I) and E0
I
= EI.

In other words, the basic absorbing graph (N,E0) is a graph constructed from (N,E), keeping
the same sets of external inlinks and external links Ein(I),EI, removing the external outlinks
Eout(I) and changing the internal link structure EI in order to have only self-links for nodes of
I.

Like in the previous subsection, every item corresponding to the basic absorbing graph will
have a zero symbol. For instance, we will write �0 for the PageRank vector corresponding to the
basic absorbing graph and V0 = argmaxj∈I[(I − cP0)

−1eI]j .

Proposition 8 (PageRank for a basic absorbing graph). Let a graph defined by a set of links E
and let I ⊆N. Then

�TeI � �T
0 eI

with equality if and only if Eout(I) = ∅.

Proof. Up to a permutation of the indices, Eq. (2) can be written as(
I − cPI −cPout(I)

−cPin(I) I − cPI

)(
vI
vI

)
=
(

1
0

)
,

so we get

v =
(

vI
c(I − cPI)−1Pin(I)vI

)
. (4)

By Lemma 1(b) and since (I − cPI)−1 is a nonnegative matrix (see for instance the chapter on
M-matrices in Berman and Plemmons’s book [4]), we then have

v �
( 1

1−c
1

c
1−c

(I − cPI)−1Pin(I)1

)
= v0

with equality if and only if no node of I has an access to I, that is Eout(I) = ∅. The conclusion
now follows from Eq. (3) and z > 0. �

Let us finally prove a nice property of the set V when I = {i} is a singleton: it is independent
of the outlinks of i. In particular, it can be found from the basic absorbing graph.

Lemma 9. Let a graph defined by a set of links E and let I = {i} Then there exists an α /= 0
such that (I − cP )−1ei = α(I − cP0)

−1ei . As a consequence,

V =V0.

Proof. Let I = {i}. Since vI = vi is a scalar, it follows from Eq. (4) that the direction of the
vector v does not depend on EI and Eout(I) but only on Ein(I) and EI. �
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4. Optimal linkage strategy for a website

In this section, we consider a set of nodes I. For this set, we want to choose the sets of internal
links EI ⊆ I×I and external outlinks Eout(I) ⊆ I×I in order to maximize the PageRank
score of I, that is �TeI.

Let us first discuss about the constraints on E we will consider. If we do not impose any
condition on E, the problem of maximizing �TeI is quite trivial. As shown by Proposition 8, you
should take in this case Eout(I) = ∅ and EI an arbitrary subset of I×I such that each node
has at least one outlink. You just try to lure the random walker to your pages, not allowing him
to leave I except by zapping according to the preference vector. Therefore, it seems sensible to
impose that Eout(I) must be nonempty.

Now, let us show that, in order to avoid trivial solutions to our maximization problem, it
is not enough to assume that Eout(I) must be nonempty. Indeed, with this single constraint, in
order to lose as few as possible visits from the random walker, you should take a unique leaking
node k ∈ I (i.e. Eout(I) = {(k, �)} for some � ∈ I) and isolate it from the rest of the set I (i.e.
{i ∈ I: (i, k) ∈ EI} = ∅).

Moreover, it seems reasonable to imagine that Google penalizes (or at least tries to penalize)
such behavior in the context of spam alliances [8].

All this discussion leads us to make the following assumption.

Assumption A (Accessibility). Every node of I has an access to at least one node of I.

Let us now explain the basic ideas we will use in order to determine an optimal linkage strategy
for a set of webpages I. We determine some forbidden patterns for an optimal linkage strategy
and deduce the only possible structure an optimal strategy can have. In other words, we assume
that we have a configuration which gives an optimal PageRank �TeI. Then we prove that if some
particular pattern appeared in this optimal structure, then we could construct another graph for
which the PageRank �̃TeI is strictly higher than �TeI.

We will firstly determine the shape of an optimal external outlink structure Eout(I), when the
internal link structure EI is given, in Theorem 10. Then, given the external outlink structure
Eout(I) we will determine the possible optimal internal link structure EI in Theorem 11. Finally,
we will put both results together in Theorem 12 in order to get the general shape of an optimal
linkage strategy for a set I when Ein(I) and EI are given.

Proofs of this section will be illustrated by several figures for which we take the following
drawing convention.

Convention. When nodes are drawn from left to right on the same horizontal line, they are
arranged by decreasing value of vj . Links are represented by continuous arrows and paths by
dashed arrows.

The first result of this section concerns the optimal outlink structure Eout(I) for the set I,
while its internal structure EI is given. An example of optimal outlink structure is given after the
theorem.

Theorem 10 (Optimal outlink structure). Let EI,Ein(I) and EI be given. Let F1, . . . ,Fr be
the final classes of the subgraph (I,EI). Let Eout(I) such that the PageRank �TeI is maximal
under Assumption A. Then Eout(I) has the following structure:
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Eout(I) = Eout(F1) ∪ · · · ∪ Eout(Fr ),

where for every s = 1, . . . , r,

Eout(Fs ) ⊆ {(i, j): i ∈ argmink∈Fs
vk and j ∈V}.

Moreover for every s = 1, . . . , r , if EFs /= ∅, then |Eout(Fs )| = 1.

Proof. Let EI,Ein(I) and EI be given. Suppose Eout(I) is such that �TeI is maximal under
Assumption A.

We will determine the possible leaking nodes of I by analyzing three different cases.
Firstly, let us consider some node i ∈ I such that i does not have children in I, i.e. {k ∈

I: (i, k) ∈ EI} = ∅. Then clearly we have {i} =Fs for some s = 1, . . . , r , with i ∈ argmink∈Fs
vk

andEFs = ∅. From Assumption A, we haveEout(Fs ) /= ∅, and from Theorem 5 and the optimality
assumption, we have Eout(Fs ) ⊆ {(i, j): j ∈V} (see Fig. 4).

Secondly, let us consider some i ∈ I such that i has children inI, i.e. {k ∈ I: (i, k) ∈ EI} /= ∅
and

vi � min
k←i
k∈I

vk.

Let j ∈ argmink←ivk . Then j ∈ I and vj < vi by Lemma 1(c). Suppose by contradiction that the

node i would keep an access to I if we took Ẽout(I) = Eout(I) \ {(i, j)} instead of Eout(I). Then,
by Proposition 7, considering Ẽout(I) instead of Eout(I) would increase strictly the PageRank
of I while Assumption A remains satisfied (see Fig. 5). This would contradict the optimality
assumption for Eout(I). From this, we conclude that

• the node i belongs to final class Fs of the subgraph (I,EI) with EFs /= ∅ for some
s = 1, . . . , r;
• there does not exist another � ∈ I, � /= j such that (i, �) ∈ Eout(I);
• there does not exist another k in the same final class Fs , k /= i such that such that (k, �) ∈
Eout(I) for some � ∈ I.

Again, by Theorem 5 and the optimality assumption, we have j ∈V (see Fig. 4).
Let us now notice that

max
k∈I

vk < min
k∈I vk. (5)

Fig. 4. If vj < v�, then �̃TeI > �TeI with Ẽout(I) = Eout(I) ∪ {(i, �)} \ {(i, j)}.

Fig. 5. If vj = mink←i vk and i has another access to I, then �̃TeI > �TeI with Ẽout(I) = Eout(I) \ {(i, j)}.
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Fig. 6. Bold arrows represent one of the six optimal outlink structures for this configuration with two final classes (see
Example 3).

Indeed, with i ∈ argmink∈Ivk , we are in one of the two cases analyzed above for which we have
seen that vi > vj = argmaxk∈Ivk .

Finally, consider a node i ∈ I that does not belong to any of the final classes of the sub-
graph (I,EI). Suppose by contradiction that there exists j ∈ I such that (i, j) ∈ Eout(I). Let
� ∈ argmink←ivk . Then it follows from inequality (5) that � ∈ I. But the same argument as above
shows that the link (i, �) ∈ Eout(I) must be removed since Eout(I) is supposed to be optimal (see
Fig. 5 again). So, there does not exist j ∈ I such that (i, j) ∈ Eout(I) for a node i ∈ I which
does not belong to any of the final classes F1, . . . ,Fr . �

Example 3. Let us consider the graph given in Fig. 6. The internal link structure EI, as well
as Ein(I) and EI are given. The subgraph (I,EI) has two final classes F1 and F2. With
c = 0.85 and z the uniform probability vector, this configuration has six optimal outlink struc-
tures (one of these solutions is represented by bold arrows in Fig. 6). Each one can be writ-
ten as Eout(I) = Eout(F1) ∪ Eout(F2), with Eout(F1) = {(4, 6)} or Eout(F1) = {(4, 7)} and ∅ /=
Eout(F2) ⊆ {(5, 6), (5, 7)}. Indeed, since EF1 /= ∅, as stated by Theorem 10, the final class F1
has exactly one external outlink in every optimal outlink structure. On the other hand, the final class
F2 may have several external outlinks, since it is composed of a unique node and moreover this
node does not have a self-link. Note that V = {6, 7} in each of these six optimal configurations,
but this set V cannot be determined a priori since it depends on the chosen outlink structure.

Now, let us determine the optimal internal link structure EI for the set I, while its outlink
structure Eout(I) is given. Examples of optimal internal structure are given after the proof of the
theorem.

Theorem 11 (Optimal internal link structure). Let Eout(I),Ein(I) and EI be given. Let L = {i ∈
I: (i, j) ∈ Eout(I) for some j ∈ I} be the set of leaking nodes of I and let nL = |L| be the
number of leaking nodes. Let EI such that the PageRank �TeI is maximal under Assumption A.

Then there exists a permutation of the indices such that I = {1, 2, . . . , nI},L = {nI − nL +
1, . . . , nI}
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Fig. 7. Every i ∈ I must link to every j ∈ I with vj � vi .

v1 > · · · > vnI−nL
> vnI−nL+1 � · · · � vnI

and EI has the following structure:
EL
I ⊆ EI ⊆ EU

I,

where

EL
I = {(i, j) ∈ I×I: j � i} ∪ {(i, j) ∈ (I \L)×I: j = i + 1},

EU
I = EL

I ∪ {(i, j) ∈L×L: i < j}.

Proof. Let Eout(I),Ein(I) and EI be given. Suppose EI is such that �TeI is maximal under
Assumption A.

Firstly, by Proposition 6 and since every node of I has an access to I, every node i ∈ I links
to every node j ∈ I such that vj � vi (see Fig. 7), that is

{(i, j) ∈ EI: vi � vj } = {(i, j) ∈ I×I: vi � vj }. (6)

Secondly, let (k, i) ∈ EI such that k /= i and k ∈ I \L. Let us prove that, if the node i has
an access to I by a path 〈i, i1, . . . , is〉 such that ij /= k for all j = 1, . . . , s and is ∈ I, then
vi < vk (see Fig. 8). Indeed, if we had vk � vi then, by Lemma 1(c), there would exists � ∈ I

such that (k, �) ∈ EI and v� = minj←k vj < vi � vk . But, with ẼI = EI \ {(k, �)}, we would

have �̃TeI > �TeI by Proposition 7 while Assumption A remains satisfied since the node k would
keep access to I via the node i (see Fig. 9). That contradicts the optimality assumption. This
leads us to the conclusion that vk > vi for every k ∈ I \L and i ∈L. Moreover vi /= vk for
every i, k ∈ I \L, i /= k. Indeed, if we had vi = vk , then (k, i) ∈ EI by (6) while by Lemma 3,
the node i would have an access to I by a path independant from k. So we should have vi < vk .

We conclude from this that we can relabel the nodes of N such that I = {1, 2, . . . , nI},L =
{nI − nL + 1, . . . , nI} and

v1 > v2 > · · · > vnI−nL
> vnI−nL+1 � · · · � vnI

. (7)

It follows also that, for i ∈ I \L and j > i, (i, j) ∈ EIif and only if j = i + 1. Indeed,
suppose first i < nI − nL. Then, we cannot have (i, j) ∈ EI with j > i + 1 since in this case
we would contradict the ordering of the nodes given by Eq. (7) (see Fig. 8 again with k = i + 1 and
remember that by Lemma 3, node j has an access toIby a decreasing path). Moreover, node i must
link to some node j > i in order to satisfy Assumption A, so (i, i + 1) must belong to EI. Now,
consider the case i = nI − nL. Suppose we had (i, j) ∈ EI with j > i + 1. Let us first note that
there cannot exist two or more different links (i, �) with � ∈L since in this case we could remove
one of these links and increase strictly the PageRank of the setI. If vj = vi+1, we could relabel the

nodes by permuting these two indices. If vj < vi+1, then with ẼI = EI ∪ {(i, i + 1)} \ {(i, j)},
we would have �̃TeI > �TeI by Theorem 5 while Assumption A remains satisfied since the i
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Fig. 8. The node i cannot have an access to I without crossing k since in this case we should then have vi < vk .

Fig. 9. If v� = minj←k vj , then �̃TeI > �TeI with Ẽout(I) = Eout(I) \ {(k, �)}.

would keep access to I via node i + 1. That contradicts the optimality assumption. So we have
proved that

{(i, j) ∈ EI: i < j and i ∈ I \L} = {(i, i + 1): i ∈ I \L}. (8)

Thirdly, it is obvious that

{(i, j) ∈ EI: i < j and i ∈L} ⊆ {(i, j) ∈L×L: i < j}. (9)

The announced structure for a set EI giving a maximal PageRank score �TeI under Assump-
tion A now follows directly from Eqs. (6), (8) and (9). �

Example 4. Let us consider the graphs given in Fig. 10. For both cases, the external outlink
structure Eout(I) with two leaking nodes, as well as Ein(I) and EI are given. With c = 0.85 and z
the uniform probability vector, the optimal internal link structure for configuration (a) is given by
EI = EL

I, while in configuration (b) we have EI = EU
I (bold arrows), with EL

I and EU
I defined

in Theorem 11.

Finally, combining the optimal outlink structure and the optimal internal link structure de-
scribed in Theorems 10 and 11, we find the optimal linkage strategy for a set of webpages. Let us
note that, since we have here control on both EI and Eout(I), there are no more cases of several
final classes or several leaking nodes to consider. For an example of optimal link structure, see
Fig. 1.

Theorem 12 (Optimal link structure). Let Ein(I) and EI be given. Let EI and Eout(I) such that
�TeI is maximal under Assumption A. Then there exists a permutation of the indices such that
I = {1, 2, . . . , nI},

v1 > · · · > vnI
> vnI+1 � · · · � vn

and EI and Eout(I) have the following structure:
EI = {(i, j) ∈ I×I: j � i or j = i + 1},
Eout(I) = {(nI, nI + 1)}.

Proof. Let Ein(I) and EI be given and suppose EI and Eout(I) are such that �TeI is maximal
under Assumption A. Let us relabel the nodes of N such that I = {1, 2, . . . , nI} and v1 � · · · �
vnI

> vnI+1 = maxj∈I vj . By Theorem 11, (i, j) ∈ EI for every nodes i, j ∈ I such that j � i.
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a

b

Fig. 10. Bold arrows represent optimal internal link structures. In (a) we have EI = EL
I, while EI = EU

I in (b).

a

b

Fig. 11. For I = {1, 2, 3}, c = 0.85 and z uniform, the link structure in (a) is not optimal and yet it satisfies the necessary
conditions of Theorem 12 (see Example 5).

In particular, every node of I has an access to node 1. Therefore, there is a unique final class
F1 ⊆ I in the subgraph (I,EI). So, by Theorem 10, Eout(I) = {(k, �)} for some k ∈F1 and
� ∈ I. Without loss of generality, we can suppose that � = nI + 1. By Theorem 11 again, the
leaking node k = nI and therefore (i, i + 1) ∈ EI for every node i ∈ {1, . . . , nI − 1}. �

Let us note that having a structure like described in Theorem 12 is a necessary but not sufficient
condition in order to have a maximal PageRank.

Example 5. Let us show by an example that the graph structure given in Theorem 12 is not
sufficient to have a maximal PageRank. Consider for instance the graphs in Fig. 11. Let c = 0.85
and a uniform personalization vector z = 1

n
1. Both graphs have the link structure required Theo-

rem 12 in order to have a maximal PageRank, with v(a) = (6.484 6.42 6.224 5.457)T and

v(b) =
(
6.432 6.494 6.247 5.52

)T. But the configuration (a) is not optimal since in this
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case, the PageRank �T
(a)eI = 0.922 is strictly less than the PageRank �T

(b)eI = 0.926 obtained
by the configuration (b). Let us nevertheless note that, with a non uniform personalization vector
z = (0.7 0.1 0.1 0.1)T, the link structure (a) would be optimal.

5. Extensions and variants

Let us now present some extensions and variants of the results of the previous section. We
will first emphasize the role of parents of I. Secondly, we will briefly talk about Avrachenkov–
Litvak’s optimal link structure for the case where I is a singleton. Then we will give variants
of Theorem 12 when self-links are forbidden or when a minimal number of external outlinks
is required. Finally, we will make some comments of the influence of external inlinks on the
PageRank of I.

5.1. Linking to parents

If some node of I has at least one parent in I then the optimal linkage strategy for I is to
have an internal link structure like described in Theorem 12 together with a single link to one of
the parents of I.

Corollary 13 (Necessity of linking to parents). Let Ein(I) /= ∅ and EI be given. Let EI and
Eout(I) such that �TeI is maximal under Assumption A. Then Eout(I) = {(i, j)}, for some i ∈ I

and j ∈ I such that (j, k) ∈ Ein(I) for some k ∈ I.

Proof. This is a direct consequence of Lemma 2 and Theorem 12. �

Let us nevertheless remember that not every parent of nodes of I will give an optimal link
structure, as we have already discussed in Example 1 and we develop now.

Example 6. Let us continue Example 1. We consider the graph in Fig. 2 as basic absorbing graph
for I = {1}, that is Ein(I) and EI are given. We take c = 0.85 as damping factor and a uniform
personalization vector z = 1

n
1. We have seen in Example 1 than V0 = {2, 3, 4}. Let us consider

the value of the PageRank �1 for different sets EI and Eout(I):

Eout(I)

∅ {(1, 2)} {(1, 5)} {(1, 6)} {(1, 2), (1, 3)}
EI = ∅ / 0.1739 0.1402 0.1392 0.1739
EI = {(1, 1)} 0.5150 0.2600 0.2204 0.2192 0.2231

As expected from Corollary 15, the optimal linkage strategy for I = {1} is to have a self-link
and a link to one of the nodes 2, 3 or 4. We note also that a link to node 6, which is a parent of
node 1 provides a lower PageRank that a link to node 5, which is not parent of 1. Finally, if we
suppose self-links are forbidden (see below), then the optimal linkage strategy is to link to one or
more of the nodes 2–4.

In the case where no node ofI has a parent inI, then every structure like described in Theorem
12 will give an optimal link structure.
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Proposition 14 (No external parent). Let Ein(I) and EI be given. Suppose that Ein(I) = ∅. Then
the PageRank �TeI is maximal under Assumption A if and only if

EI = {(i, j) ∈ I×I: j � i or j = i + 1},
Eout(I) = {(nI, nI + 1)}

for some permutation of the indices such that I = {1, 2, . . . , nI}.

Proof. This follows directly from �TeI = (1− c)z
T

v and the fact that, if Ein(I) = ∅

v = (I − cP )−1eI =
(

(I − cPI)−11
0

)
,

up to a permutation of the indices. �

5.2. Optimal linkage strategy for a singleton

The optimal outlink structure for a single webpage has already been given by Avrachenkov
and Litvak in [2]. Their result becomes a particular case of Theorem 12. Note that in the case
of a single node, the possible choices for Eout(I) can be found a priori by considering the basic
absorbing graph, since V =V0.

Corollary 15 (Optimal link structure for a single node). Let I = {i} and let Ein(I) and EI be
given. Then the PageRank �i is maximal under Assumption A if and only if EI = {(i, i)} and
Eout(I) = {(i, j)} for some j ∈V0.

Proof. This follows directly from Lemma 9 and Theorem 12. �

5.3. Optimal linkage strategy under additional assumptions

Let us consider the problem of maximizing the PageRank �TeI when self-links are forbidden.
Indeed, it seems to be often supposed that Google’s PageRank algorithm does not take self-links
into account. In this case, Theorem 12 can be adapted readily for the case where |I| � 2. WhenI
is a singleton, we must haveEI = ∅, soEout(I) can contain several links, as stated in Theorem 10.

Corollary 16 (Optimal link structure with no self-links). Suppose |I| � 2. Let Ein(I) and EI be
given. Let EI and Eout(I) such that �TeI is maximal under Assumption A and assumption that
there does not exist i ∈ I such that {(i, i)} ∈ EI. Then there exists a permutation of the indices
such that I = {1, 2, . . . , nI}, v1 > · · · > vnI

> vnI+1 � · · · � vn, and EI and Eout(I) have the
following structure:

EI = {(i, j) ∈ I×I: j < i or j = i + 1},
Eout(I) = {(nI, nI + 1)}.

Corollary 17 (Optimal link structure for a single node with no self-link). Suppose I = {i}. Let
Ein(I) and EI be given. Suppose EI = ∅. Then the PageRank �i is maximal under Assumption
A if and only if ∅ /= Eout(I) ⊆V0.
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Let us now consider the problem of maximizing the PageRank �TeI when several external
outlinks are required. Then the proof of Theorem 10 can be adapted readily in order to have the
following variant of Theorem 12.

Corollary 18 (Optimal link structure with several external outlinks). Let Ein(I) and EI be given.

LetEI andEout(I) such that�TeI is maximal under Assumption A and assumption that |Eout(I)| �
r. Then there exists a permutation of the indices such that I = {1, 2, . . . , nI}, v1 > · · · > vnI

>

vnI+1 � · · · � vn, and EI and Eout(I) have the following structure:
EI = {(i, j) ∈ I×I: j < i or j = i + 1},
Eout(I) = {(nI, jk): jk ∈V for k = 1, . . . , r}.

5.4. External inlinks

Finally, let us make some comments about the addition of external inlinks to the set I. It is
well known that adding an inlink to a particular page always increases the PageRank of this page
[1,9]. This can be viewed as a direct consequence of Theorem 5 and Lemma 1. The case of a
set of several pages I is not so simple. We prove in the following theorem that, if the set I has
a link structure as described in Theorem 12 then adding an inlink to a page of I from a page
j ∈ I which is not a parent of some node of I will increase the PageRank of I. But in general,
adding an inlink to some page of I from I may decrease the PageRank of the set I, as shown
in Examples 7 and 8.

Theorem 19 (External inlinks). Let I ⊆N and a graph defined by a set of links E. If

min
i∈I vi > max

j /∈I vj

then, for every j ∈ I which is not a parent of I, and for every i ∈ I, the graph defined by
Ẽ = E ∪ {(j, i)} gives �̃TeI > �TeI.

Proof. This follows directly from Theorem 5. �

Example 7. Let us show by an example that a new external inlink is not always profitable for
a set I in order to improve its PageRank, even if I has an optimal linkage strategy. Consider
for instance the graph in Fig. 12. With c = 0.85 and z uniform, we have �TeI = 0.8481. But
if we consider the graph defined by Ẽin(I) = Ein(I) ∪ {(3, 2)}, then we have �̃TeI = 0.8321 <

�TeI.

Example 8. A new external inlink does not not always increase the PageRank of a set I in even
if this new inlink comes from a page which is not already a parent of some node of I. Consider

Fig. 12. For I = {1, 2}, adding the external inlink (3, 2) gives �̃TeI < �TeI (see Example 7).
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Fig. 13. For I = {1, 2, 3}, adding the external inlink (4, 3) gives �̃TeI < �TeI (see Example 8).

a

b

Fig. 14. In (a) and (b), bold arrows represent optimal link structures forI = {1, 2, 3}with respect to a target setS = {1, 2}
(see Example 9).

for instance the graph in Fig. 13. With c = 0.85 and z uniform, we have �TeI = 0.6. But if we
consider the graph defined by Ẽin(I) = Ein(I) ∪ {(4, 3)}, then we have �̃TeI = 0.5897 < �TeI.

6. Conclusions

In this paper we provide the general shape of an optimal link structure for a website in order
to maximize its PageRank. This structure with a forward chain and every possible backward
links may be not intuitive. At our knowledge, it has never been mentioned, while topologies like a
clique, a ring or a star are considered in the literature on collusion and alliance between pages [3,8].
Moreover, this optimal structure gives new insight into the affirmation of Bianchini et al. [5] that,
in order to maximize the PageRank of a website, hyperlinks to the rest of the webgraph “should
be in pages with a small PageRank and that have many internal hyperlinks”. More precisely, we
have seen that the leaking pages must be choosen with respect to the mean number of visits before
zapping they give to the website, rather than their PageRank.

Let us now present some possible directions for future work.
We have noticed in Example 5 that the first node of I in the forward chain of an optimal link

structure is not necessarily a child of some node of I. In the example we gave, the personalization
vector was not uniform. We wonder if this could occur with a uniform personalization vector and
make the following conjecture.

Conjecture. Let Ein(I) /= ∅ and EI be given. Let EI and Eout(I) such that �TeI is maximal
under Assumption A. If z = 1

n
1, then there exists j ∈ I such that (j, i) ∈ Ein(I), where i ∈

argmaxkvk .
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If this conjecture was true we could also ask if the node j ∈ I such that (j, i) ∈ Ein(I) where
i ∈ argmaxkvk belongs to V.

Another question concerns the optimal linkage strategy in order to maximize an arbitrary linear
combination of the PageRanks of the nodes of I. In particular, we could want to maximize the
PageRank �TeS of a target subset S ⊆ I by choosing EI and Eout(I) as usual. A general shape
for an optimal link structure seems difficult to find, as shown in the following example.

Example 9. Consider the graphs in Fig. 14. In both cases, let c = 0.85 and z = 1
n

1. Let I =
{1, 2, 3} and let S = {1, 2} be the target set. In the configuration (a), the optimal sets of links EI

and Eout(I) for maximizing �TeS has the link structure described in Theorem 12. But in (a), the
optimal EI and Eout(I) do not have this structure. Let us note nevertheless that, by Theorem 12,
the subsets ES and Eout(S) must have the link structure described in Theorem 12.
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