
The PageTrust algorithm:

How to rank web pages when negative links are allowed?

Cristobald de Kerchove
∗

Paul Van Dooren
†

Abstract

The paper introduces a novel algorithm derived from the

PageRank algorithm of Brin and Page. The PageRank al-

gorithm interprets an hyperlink from page a to page b as

being a positive vote from a to b. Starting from this in-

terpretation, it attributes a rank to each page. However, it

does not offer the possibility to take into account negative

votes. The PageTrust algorithm includes negative links and

converges to a trust value for each page. The PageTrust algo-

rithm appears as a natural extension of PageRank and it pre-

serves good properties of robustness against possible spam-

mers. Moreover several parameters allow us to strengthen

or weaken the role played by negative links.

1 Introduction

The importance of ranking methods that classify the
nodes of a network by relevance is growing more and
more these last years, especially in the context of search
engines for the web. Many of them use eigenvector
based techniques to extract information from the net-
work [8]. For instance, Brin and Page’s PageRank al-
gorithm [16], the Kleinberg’s HITS algorithm [7], the
SALSA algorithm [10], and their variants [13, 15, 18]
calculate dominant eigenvectors of matrices that repre-
sent the structure of that network. A key idea used to
prove that these eigenvectors are positive is the Perron-
Frobenius theorem [14] which uses that the matrix, from
which the dominant eigenvector is calculated, is nonneg-
ative, i.e., all its entries are nonnegative. That condition
explains why it becomes nontrivial to apply eigenvec-
tor based techniques when negative links are permitted.
These links would be represented by negative entries in
the matrix and the nonnegativity assumption then gets
lost. Though nontrivial, the consideration of negative
links can be of interest to refine the measures of ranking
methods. Moreover such links already exist in the web,
but they are simply not taken into account by Google,
see [12].

A first solution, that can be found for example
in [5, 19], is to zero the entries corresponding to the

∗Dept Math. Engineering, UCL, Louvain-la-Neuve Belgium.
†Dept Math. Engineering, UCL, Louvain-la-Neuve Belgium.

negative links in the matrix representing the structure of
the network. In that way, negative links do not give any
trust to the nodes they point to. But then a negative
link or an absence of link between two nodes amount to
the same result: in both cases, the corresponding entry
in the matrix is zero. The concern with that method is
therefore that the rank of a node does not change after
adding a negative inlink.

A second idea, proposed in [2], is to first ignore
negative links and hence to satisfy the nonnegativity
assumption. The obtained eigenvector gives the trust
values for all nodes, and can be interpreted as some
propagation of trust through the positive links of the
network. Then in order to integrate negative links, one
single step of propagation of distrust is applied. As a
consequence, the distrust value due to a negative link
given by node i is proportional to the trust value of i.
It follows that highly trusted nodes have the possibility
to highly decrease the trust value of other nodes. For
example, it is enough for the web page Yahoo!, that has
a very high PageRank, to negatively point to a node,
say x, to degrade x to the end of the ranking list. This
can encourage malicious nodes to negatively point to
other competing nodes only to make them fall down in
the ranking list.

Clearly other methods that take into account neg-
ative links exist, like for example in the sites Ebay [17],
Advogato [11] and Epinions [20]. However this paper
focuses on eigenvector based techniques where the final
ranking for the nodes is given by some eigenvector.

An ideal ranking method should decrease trust
values of nodes that receive more and more negative
links, but it should also be robust to attackers that
want to decrease trust values of competing nodes by
the means of negative links. The rest of the paper shows
how the PageTrust algorithm addresses these problems.
Since the PageTrust algorithm is a natural extension of
the PageRank algorithm, section 2 first introduces it.
Then section 3 explains how to extend the PageRank
algorithm to take into account negative links. The
properties of the new algorithm are analyzed in section
4, and several examples are given to compare it with
the PageRank algorithm.

346

2 Notations and the PageRank algorithm

This section serves as a basis for the rest of this
paper. The principal notations are introduced and
the PageRank algorithm is briefly described with its
classical interpretation in terms of a random walk.

2.1 Notations Let G(N ,L+,L−) be a directed
graph where N , L+ and L− are respectively its set
of nodes, its set of positive links, and its set of nega-
tive links. The adjacency matrices for Gpos(N ,L+) and
Gneg(N ,L−) are respectively noted A+ and A−. The
outdegree of a node i ∈ N will be the number of posi-
tive outlinks of that node and is represented by di. From
the graph G, the vector π is calculated and its ith entry
πi is the rank assigned to node i in G.

Remark 2.1. For the sake of simplicity, we will as-

sume in the sequel that all nodes in N have at least

one positive child. Nonetheless the general case without

that assumption only implies minor modifications.

2.2 PageRank algorithm The PageRank algo-
rithm iterates on variables xi, i ∈ N , that will eventu-
ally converge by the iterations in (2.1) to the ranks πi.
First, these variables are initialized to the same value:

x
(0)
i = 1/n for all i ∈ N where n is the number of nodes

in G. Then it iterates in the following way:

x
(t+1)
i = α

∑

j,(j,i)∈L+

x
(t)
j /dj + (1− α) zi,(2.1)

for all i ∈ N . The parameter α belongs to]0, 1[and
allows us to balance the rank obtained thanks to its
parents and the one obtained by a constant source
determined by the nonnegative vector z, the so-called
personalization vector, satisfying

∑n

i=1 zi = 1.
Hence the vector x converges to the PageRank

vector π. This vector can be seen as the normalized
eigenvector of the Google matrix G:

λπ = Gπ,(2.2)

corresponding to the dominant eigenvalue λ, and for all
i, j ∈ N we have Gij = αA+

ji/dj + (1− α)zi.

2.3 PageRank interpretation The final value πi

obtained by (2.1) can be interpreted as the probability
of presence in node i of a random walker. At each step,
that walker, say in node i, chooses, with a probability
α, one of the children of i and, with a probability 1−α,
any node j ∈ N (That last motion is commonly called
the zapping). The choice between the children of node i
is made with equal probability while the choice between
all nodes during the zapping is distributed according to
the personalization vector z.

2.4 PageRank properties The PageRank has in-
teresting properties of robustness against attackers, see
for example [1, 6], even though spam farms exist, i.e.,
groups of pages pointing to one single page. Simple
techniques allow to detect such structure [3]. Moreover,
the practical use of the PageRank algorithm in Google

makes of it a reference among the search engine rank-
ings [9]. However, as already pointed out in the intro-
duction, it simply ignores the negative links in L− or
sometimes worse it uses them as positive links, see [12].
Next section explains how the PageTrust algorithm ex-
tends the PageRank algorithm to positive and negative
links.

3 The PageTrust algorithm

The section is organized in five parts: first, we introduce
the distrust matrix P which is the key element in the
PageTrust algorithm. Then the iterative procedure
on P (t) is described and interpreted. The section
terminates with the two modifiable parameters of the
PageTrust algorithm.

3.1 The distrust matrix Let us assume that sev-
eral random walkers move in the graph G like in the
PageRank algorithm, see § 2.3. The presence of negative
links in the graph will imply that each random walker
receives an opinion of every node. More precisely, each
one trusts or distrusts a set of nodes in N . The detailed
dynamics of their opinions will be given next subsection.
Let us first suppose, for the sake of clarity, that there is
no opinion dynamics. Hence the proportion of walkers
in node i who distrusts node k for any i, k ∈ N is given
and remains constant. That proportion is denoted Pik.
This defines the n × n distrust matrix P . Therefore
the diagonal of P gives the proportion of walkers that
distrust the node they are in. Such walkers will not
be considered as visitors but rather they will leave the
graph. In that manner, (1−Pii) represents the propor-
tion of remaining walkers in node i ∈ N . This is thus
characterized by the following iteration:

x
(t+1)
i = (1− Pii) ·

α
∑

j,(j,i)∈L+

x
(t)
j /dj + (1− α)zi

 ,

for all i ∈ N . Like in the PageRank algorithm, the
vector x is initialized to 1/n for each entry. Moreover
x is normalized to have its 1−norm equals to 1 after
each step. Eventually, the vector x will converge to the
eigenvector π that gives the trust ranks. In matrix form,
we have

x(t+1) =
DP ·Gx(t)

1T DP ·Gx(t)
,(3.3)

347

where 1 is the n × 1 vector of 1’s. The matrix DP is
the diagonal matrix containing the diagonal of (I − P)
with I, the identity matrix. This defines a scaling of the
lines of the Google matrix G. Relatively speaking, the
smaller elements of DP will decrease the corresponding
elements of x(t+1) and hence a large element Pii (i.e., a
stronger distrust in node i) will result in a smaller rank
in component πi. This can be visualized by inserting
an intermediary node i0 between the parents of node
i and node i. Hence, a walker always visits node i0
before node i. Then we also add an outlink from i0 that
represents a leak to leave the graph and the probability
to use it is given by Pii. Therefore a walker in node i0
will reach node i with probability (1− Pii).

The next subsection describes how P can be
adapted as well during the random walk.

i j k

distrust

trust trust

Figure 1: A three nodes graph with (i, j), (j, k) ∈ L+

and (i, k) ∈ L−.

3.2 The dynamics of distrust Let us introduce
this part with the small example given in figure 1. Node
i trusts node j, and hence i would advise a random
walker to go and visit j. In the same way, node j would
advise a walker to go and visit ode k. But i distrusts
k, and we assume then that a walker leaving node i
will keep in mind that information. In that manner, a
walker leaving node i and reaching j should not visit k.
We can compare this to the situation where you tell a
secret to a friend of yours, but ask him not to repeat it
to your enemies.

The example of Figure 1 shows us three principles
for updating the matrix P that contains the proportions
of walkers with some opinions about nodes (trust or
distrust). Let us describe the motion of one single
walker in the graph and suppose that the number of
walkers is infinite.

1. A walker moves like a random walker in the PageR-
ank algorithm and keeps his opinion (see equa-
tion 3.4).

2. A walker in node i ∈ N automatically adopts
negative opinions of node i, that is he adds in his
list of distrusted nodes the nodes negatively pointed
by i (see equation 3.5).

3. A walker who distrusts the node k leaves the graph
if ever he visits k (see equation 3.5).

Formally, that leads to three operations to update
the distrust matrix P . Since P is now time dependent,

we have P
(t)
ik representing the proportion of walkers in

node i ∈ N who distrusts node k ∈ N at time t. We
first consider one step of walkers with the conservation
of their opinions:

P̃ (t+1) = T (t) · P (t),(3.4)

where T is the transition matrix with T
(t)
ij the ratio of

walkers in node i who was in node j at time t,

T
(t)
ij =

αA+
jix

(t)
j /dj + (1− α)zix

(t)
j

α
∑

k,(k,i)∈L+ x
(t)
k /dk + (1− α)zi

,

for all i, j ∈ N . Then we apply two corrections that
simply amount to putting some entries of P equal to 1
or 0 according to the adoption of the negative links of a
node or the presence of walkers who distrust the node
they reach:

P
(t+1)
ij =

1 if (i, j) ∈ L−,
0 if i = j,

P̃
(t+1)
ij otherwise,

(3.5)

for all i, j ∈ N . The complete iteration on the vector
x and the matrix P is given in two steps: first x is
updated from equation (3.3) that uses the diagonal of
P̃ (t) instead of P . Then P is updated from equations
(3.4) and (3.5), with the initial values P (0) = P̃ (0) =
A−.

Eventually x converges to the trust vector π that
is the dominant eigenvector of the matrix DP̃∞ · G
where the diagonal matrix DP̃∞ is the diagonal part

of P̃ (t) after convergence. The iterations on x can still
be interpreted in terms of a random walk.

3.3 PageTrust interpretation Let us imagine not
one single random walker, but an infinite number of
random walkers originally uniformly distributed in the
graph. Each of these walkers moves according to
the same rules than for the PageRank algorithm, see
§ 2.3. A walker in node j at time t chooses with equal
probability a child of j or zaps to any node inN , in both
cases say it reaches node i . Many other walkers also
reach node i with possibly different lists of distrusted
nodes. The proportion of walkers that distrust node k ∈

N is given in equation (3.4) by P̃
(t+1)
ik . Then, we make

the simplifying assumption that these walkers reach a
consensus where finally the proportion of walkers that
distrust the list of nodes S = {i1, i2, · · · , id} is simply
given by

∏

k∈S

P
(t+1)
ik ·

∏

k∈N\S

(1− P
(t+1)
ik).

348

In that manner, the opinions at the end of that consen-
sus are uniformly distributed. A walker who distrusts
node i then leaves the graph, hence the proportion of

remaining walkers is (1 − P̃
(t+1)
ii), that factor is used

in equation (3.3). Then the remaining walkers take into
account the negative links of node i, equation (3.5), and
choose a child of node i or zap, etc.

In that random walk, the entry x
(t)
i represents the

proportion of walkers in node i who trust i at time t.

3.4 Memory after zapping Let us introduce the
binary parameter M that will represent whether the
walkers keep their opinions after the zapping. So
far, they conserved their lists of distrusted nodes after
zapping, i.e., M = 1. As we will see in § 4.1, the loss of
memory after zapping, i.e., M = 0, implies a decrease
of the impact of negative links on the trust ranks. The
addition of a parameter M only modifies the transition
matrix T in equation 3.4. That dependence on M is
given by

T
(t)
ij =

αA+
jix

(t)
j /dj + M · (1− α)zix

(t)
j

α
∑

k,(k,i)∈L+ x
(t)
k /dk + (1− α)zi

,

for all i, j ∈ N . Let us remark that it is possible to have
M ∈ [0, 1]. In that case the parameter M represents the
probability to keep an opinion after zapping.

3.5 Degree of conviction As explained in § 3.3,
once a random walker reaches node i ∈ N , he mixes
up his opinion with the other present walkers in order
to reach a consensus. Then the walkers who distrust
node i (their proportion is P̃

(t)
ii at time t) leave node

i. Therefore the proportion of remaining walkers after

consensus is (1 − P̃
(t)
ii). Now let us suppose that the

walkers who distrust node i have a degree of conviction
β such that the proportion of remaining walkers after

consensus becomes (1− P̃
(t)
ii)β . For β = 0, they have no

influence and the PageTrust algorithm becomes exactly
the same as the PageRank algorithm. Then, the higher
β is, the more the negative links have an impact. As β
becomes very large, one walker is enough to convince all
present walkers in node i. This will modify the updates
on the vector x in equation (3.3) as follows:

x(t+1) =
(DP̃ (t))

β ·Gx(t)

1T (DP̃ (t))
β ·Gx(t)

,(3.6)

where 1 is the n× 1 vector of 1’s and the matrix DP̃ (t)

is the diagonal of (I − P̃ (t)).
The PageTrust algorithm with the parameters M

and β is presented in Algorithm 4.1.

Algorithm 4.1. (PageTrust Algorithm.)

input : A graph G(N ,L+,L−), α ∈]0, 1[, z > 0,
M ∈ {0, 1} and β ≥ 0.

output: A ranking vector π and the final
distrust matrix P .

Initialization of x(0), P (0), P̃ (0) and t = 0;
Build the Google matrix G;
while max(x(t+1) − x(t)) > ǫ do

for i = 1 to |N | do

x
(t+1)
i ← (1− P̃

(t)
ii)β ·

∑

k∈N Gik x
(t)
k ;

Build the transition matrix T (t);
for j = 1 to |N | do

P̃
(t+1)
ij ←

∑

k∈N T
(t)
ik P

(t)
kj ;

if (i, j) ∈ L− then

P
(t+1)
ij ← 1;

else if i = j then

P
(t+1)
ij ← 0;

else

P
(t+1)
ij ← P̃

(t+1)
ij ;

end

end

end

x(t+1) ← x(t+1)/1T x(t+1);
t← t + 1;

end

4 Properties and examples

This section analyzes several properties of the
PageTrust algorithm and illustrates them by different
examples where the vector z is always taken as uniform.

4.1 Zapping, memory and degree of conviction
The impact of zapping has already been analyzed for
the PageRank algorithm [4, 9], and is similar for the
PageTrust algorithm. The difference resides in the
memory M that tells us whether a random walker keeps
or looses his memory after zapping. Clearly, if he looses
it, negative links will be less penalizing. If in addition
the zapping is high, i.e., if α is close to 0, then the
effect of negative links will still decrease. Therefore the
binary M used with the zapping α allows us to control
the strength of negative linkage. Table 1 illustrates
this discussion for the graph in Figure 2 with β = 1
and compares the PageTrust with the PageRank of the
nodes.

The degree of conviction is another parameter that
allows us to control the PageTrust vector. That para-
meter ranges from 0 to ∞, from the recovering of the

349

α = .9 α = .5
PR M = 0 M = 1 PR M = 0 M = 1

1 .18 .24 .31 .18 .19 .30
2 .18 .19 .20 .18 .19 .21
3 .27 .36 .49 .26 .28 .45
4 .18 .10 0 .18 .17 0
5 .18 .11 .01 .19 .18 .04

Table 1: The effect of the memory after zapping in
PageTrust for the graph given in figure 2. Two columns
compare the results with PageRank.

3

1

4

2

5

Figure 2: Example of graph with one distrust from node
1 to node 4.

PageRank algorithm to the absolute contagion where
one random walker is enough to convince all the other
ones. Obviously, the higher β, the more penalizing the
negative links. Table 2 illustrates that fact with α = .9
and M = 0.

β = 0 β = 1 β = 2 β =∞
PR

1 .18 .24 .30 .31
2 .18 .19 .20 .20
3 .27 .36 .47 .49
4 .18 .10 .01 0
5 .18 .11 .02 .01

Table 2: Depending on parameters in PageTrust, node
4 and indirectly node 5 are more and more penalized
by the link of distrust (1, 4) ∈ L−. The first column
amounts to PageRank.

4.2 Robustness to malicious behaviors Ideally,
as explained in the introduction, the PageTrust must
be robust to attacks. Two possible attacks are to use
negative links to increase its own PageTrust or to de-
crease the PageTrust of competing nodes. Linkage strat-
egy with positive links have already been investigated
in [1, 6].

Since PageTrust of node i can be interpreted as the
proportion of walkers in i once the steady state reached,
one strategy could be to try to lure back walkers to
itself via negative links. A similar idea was used in [1]

with positive links. They explain that optimal linkage
strategy is obtained for a node when it points to one of
its parents in order to make the random walker return
to itself. With negative links, such a strategy seems
less obvious. For instance, a natural idea consists in
pointing negatively to nodes that represent a leak for
node i, that is nodes that send the walkers far away
from node i. But that strategy, illustrated in Figure 3,
does not help since a walker that distrusts the leaking
nodes, node 3 in the figure, will not choose between the
remaining outlinks (link (3, 2) in the figure) but it will
rather leave the graph as explained in § 3.3. Therefore
this way is not interesting. For example in Figure 3, the
PageTrust that is lost by node 3 is mainly earned by
node 5 and 6. Even though node i does not necessarily

1 2 3

4

5

6

Figure 3: Node 3 is a leak for node 1 since it can send
walkers to the nodes 4, 5, 6 what makes the walkers move
away from node 1.

increase its PageTrust, it is able to decrease the one of
nodes it distrusts. And this is interesting when they are
compared in the same ranking list. A reasonable way
to avoid such a behavior is to consider negative links in
both directions. In other words, if node i declares itself
against node k, we have to consider that automatically
node k will declare itself against node i. Taking back
the example in Figure 3, the mutual distrust between
node 1 and 3 is not interesting for node 1 nor for node
3. Table 3 shows the results when a mutual distrust
exist between node 1 and 3 in Figure 3 with M = 0 and
α = .9.

L− = ∅ L− = {(1, 3), (3, 1)}
PR β = 1 β = 2

1 .09 .04 .01
2 .18 .13 .11
3 .18 .17 .18
4 .18 .21 .22
5 .18 .22 .23
6 .18 .23 .25

Table 3: PageTrust with different parameters shows
that distrusting a leaking node is not synonym of
increasing its trust rank. The first column amounts to
PageRank.

350

4.3 Local Trust Metric Thus far, the PageTrust
algorithm allows us to obtain a global trust metric given
by the vector π. By global trust metric, we mean a
measure of trust that does not depend on the point of
view of any user. This is of interest when users have no a
priori about the graph G, like for instance in the case of
the web graph where no web pages are trusted a priori.
However, this can be done via the personalization vector
z that distributes a kind of initial trusts over the nodes.

In contrast, a local trust metric depends on a certain
view point of some user, say represented by node i.
A natural idea, proposed in [19] with the PageRank
algorithm, is to put zi to 1 and the rest of the entries of
z to 0. In that way, it is as if the random walkers start
in node i. Thereafter, there is a probability (1 − α)
that they come back to node i. In that manner, node
i stays the reference for the walkers, and for example
no nodes distrusted by node i will be visited. Therefore
parameter α allows us to favor or not trust proximity :
close to 1 the walker often comes back to the source
node i, and close to 0 he will more probably go further
through some chains of friends. Table 4 illustrates two
different opinions depending on the source node for the
example in Figure 2 where we add a mutual distrust
between node 1 and node 4.

α = .5, β = 1, M = 0
node2 node5

1 .23 .13
2 .30 .20
3 .34 .20
4 .06 .16
5 .06 .31

Table 4: PageTrust with selected parameters gives the
view points of node 2 and 5. This is for the graph in
figure 2 with in addition a distrust link from node 4 to
node 1.

4.4 Convergence and complexity The iteration
in equation (3.3) with the fixed distrust matrix P is
guaranteed to converge. The same can be shown when
we iterate on P̃ (t) by equations (3.5) and (3.4) with
a fixed vector x. However, the Algorithm 4.1 iterates
both on the vector x and the matrix P̃ that mutually
influence each other, and the proof of its convergence
has still to be established. Nevertheless we observed
experimentally that the algorithm converges linearly. If
we increase the memory M , the zapping α, or the degree
of conviction β, then the rate of convergence decreases.
The complexity of the algorithm is in O(k̄nn−) per
iteration step where k̄, n− and n are respectively the

mean degree, the number of nodes that have received
negative links and the total number of nodes.

5 Conclusion

In this paper we described how the PageTrust algorithm
naturally extends the PageRank algorithm to the inclu-
sion of negative links in a graph. We believe that this
method has interesting properties and can find applica-
tions in the context of Web mining. The PageTrust can
be used as global metric, but also as local metric. The
latter metric is more convenient for sites with exchanges
of opinions like for example in Ebay, Epinions, peer to
peer systems, etc. But further investigations are needed
to validate this. Future research will focus on validat-
ing our method with real data sets and comparing re-
sults with existing methods. In addition we still need
to analyze the sensitivity of its parameters, its rate of
convergence, its memory space and its implementation.

The key idea of this paper is the addition of a
sort of memory in the random walk on a graph. The
same principle can be applied for other algorithms where
an interpretation of random walk exists. Therefore we
think that other eigenvector based methods can benefit
from that principle and can be extended to take into
account negative links in a graph.

Acknowledgements

This paper presents research supported by a grant “Ac-
tions de recherche concertées – Large Graphs and Net-
works” of the “Communauté Française de Belgique” and
by the Belgian Network DYSCO (Dynamical Systems,
Control, and Optimization), funded by the Interuniver-
sity Attraction Poles Programme, initiated by the Bel-
gian State, Science Policy Office.

References

[1] K. Avrachenkov and N. Litvak, Decomposition of the

Google PageRank and Optimal Linking Strategy, Tech.
report, INRIA, (2004), http://www.inria.fr/rrrt/rr-
5101.html.

[2] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins,
Propagation of Trust and Distrust, Proc. of the 13th
Int. Conf. on WWW, (2004), pp. 403–412

[3] Z. Gyongyi and H. Garcia-Molina, Link Spam Al-

liances, Proc. of the 31st Int. Conf. on Very large data
bases, VLDB Endowment, (2005), pp. 517-528.

[4] I. C. F. Ipsen and R. S. Wills, Mathematical Properties

and Analysis of Googles PageRank, Bol. Soc. Esp. Mat.
Apl., 34 (2006), pp. 191-196.

[5] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina,
The EigenTrust Algorithm for Reputation Management

in P2P Networks, Proc. of the 12th Int. Conf. on
WWW, (2003), pp. 640–651.

351

[6] C. de Kerchove, L. Ninove, and P. Van Dooren, Maxi-

mizing PageRank via Outlinks, tentatively accepted to
LAA.

[7] J. M. Kleinberg, Authoritative Sources in a Hyperlinked

Environment, J. ACM 46, 5 (1999), pp. 604–632.
[8] A. N. Langville and C. D. Meyer, A survey of eigen-

vector methods of web information retrieval, SIAM Re-
view, 47(1), (2005), pp. 135-161.

[9] , Google’s PageRank and Beyond: the Science of

Search Engine Rankings, Princeton University Press,
Princeton, NJ, (2006).

[10] R. Lempel and S. Moran, The Stochastic Approach for

Link-Structure Analysis and the TKC Effect, Proc. of
the 11th Int. Conf. on WWW, (2000), pp. 387–401.

[11] R. Levien, Advogato Trust Metric, PhD Dissertation,
UC Berkeley, USA, (2003).

[12] P. Massa and C. Hayes, Page-reRank: Using Trusted

Links to re-Rank Authority, in Proceedings of Web
Intelligence Conference, France, Sept. 2005.

[13] A. O. Mendelzon and D. Rafiei, An Autonomous Page

Ranking Method for Metasearch Engines, Proc. of the
11th Int. Conf. on WWW, (2002).

[14] C. D. Meyer, Matrix Analysis and Applied Linear

Algebra, SIAM, Philadelphia, (2000).
[15] A. Y. Ng, A. X. Zheng, and M. I. Jordan, Stable

Algorithms for Link Analysis, Proc. of the 24th annual
Int. ACM SIGIR Conf., (2001), pp. 258–266.

[16] L. Page, S. Brin, R. Motwani, and T. Winograd,
The PageRank Citation Ranking: Bring Order to the

Web, Technical report, Computer Science Departe-
ment, Stanford University, (1998).

[17] P. Resnick, R. Zeckhauser, J. Swanson, and K. Lock-
wood, The Value of Reputation on eBay: A Controlled

Experiment Revue, Experimental Economics, Springer
Netherlands, Vol 9/2, (2006), pp. 79-101.

[18] M. Richardson and P. Domingos, The Intelligent

Surfer: Probabilistic Combination of Link and Content

Information in PageRank, Advances in Neural Infor-
mation Processing Systems 14, (2002), pp. 1441–1448.

[19] M. Richardson, R. Agrawal, and P. Domingos, Trust

Management for the Semantic Web, Proc. of the 2nd
Int. Semantic Web Conf., LNCS., vol 2870, (2003),
pp. 351–368.

[20] http://www.epinions.com/

352

