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We present a voting system that is based on an iterative method that assigns a
reputation to n + m items, n objects and m raters, applying some filter to the votes.
Each rater evaluates a subset of objects leading to an n × m rating matrix with a
given sparsity pattern. From this rating matrix a formula is defined for the reputation
of raters and objects. We propose a natural and intuitive nonlinear formula and
also provide an iterative algorithm that linearly converges to the unique vector of
reputations and this for any rating matrix. In contrast to classical outliers detection,
no evaluation is discarded in this method but each one is taken into account with
different weights for the reputations of the objects. The complexity of one iteration
step is linear in the number of evaluations, making our algorithm efficient for large
data set.

1 Introduction

Many measures of reputation have been proposed under the names of reputation,
voting, ranking or trust systems and they deal with various contexts ranging from
the classification of football teams to the reliability of each individual in peer to
peer systems. Surprisingly enough, the most used method for reputation on the Web
amounts simply to average the votes. In that case, the reputation is, for instance, the
average of scores represented by 5 stars in YouTube, or the percentage of positive
transactions in eBay. Therefore such a method trusts evenly each rater of the system.
Besides this method, many other algorithms exploit the structure of networks gener-
ated by the votes: raters and evaluated items are nodes connected by votes. A great
part of these methods use efficient eigenvector based techniques or trust propagation
over the network to obtain the reputation of every node [15, 13, 9, 16, 7, 14, 17].
They can be interpreted as a distribution of some reputation flow over the net-
work where reputations satisfy some transitivity: you have a high reputation if you
have several incoming links coming from nodes with a high reputation. The aver-
age method, the eigenvector based techniques and trust propagation may suffer from
noise in the data and bias from dishonest raters. For this reason, they are sometimes
accompanied by statistical methods for spam detection [19, 10], like in the context
of web pages trying to boost their PageRank scores by adding artificial incoming
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links [8, 2]. Detected spam is then simply removed from the data. This describes
the three main strategies for voting systems: simple methods averaging votes where
raters are evenly trusted, eigenvector based techniques and trust propagation where
reputations directly depend on reputations of the neighbours, and finally statistical
measures to classify and possibly remove some of the items.

Concerning the Iterative Filtering (IF) systems which we introduce here, we will
make the following assumption: Raters diverging often from other raters’ opinion are
less taken into account. We label this the IF -property and will formally define it later
on. This property is at the heart of the filtering process and implies that all votes
are taken into account, but with a continuous validation scale, in contrast with the
direct deletion of outliers. Moreover, the weight of each rater depends on the distance
between his votes and the reputation of the objects he evaluates: typically weights of
random raters and outliers decrease during the iterative filtering. The main criticism
one can have about the IF -property is that it discriminates “marginal” evaluators,
i.e., raters who vote differently from the average opinion for many objects. However,
IF systems may have different basin of attraction, each corresponding to a group of
people with a coherent opinion.

Votes, raters and objects can appear, disappear or change making the system
dynamical. This is for example the case when we consider a stream of news like in
[5]: news sources and articles are ranked according to their publications over time.
Nowadays, most sites driven by raters involve dynamical opinions. For instance, the
blogs, the site Digg and the site Flickr are good places to exchange and discuss ideas,
remarks and votes about various topics ranging from political election to photos and
videos. We will see that IF systems allow to consider evolving voting matrices and
then provide time varying reputations.

2 Iterative Filtering Systems

We first consider the case where the votes are fixed, i.e., the voting matrix does not
change over time, and all objects are evaluated by all raters, i.e., the voting matrix
is full. With these assumptions, we present the main properties of IF systems and
then we restrict ourselves to the natural case of quadratic IF systems where the
reputations are given by a linear combination of the votes and the weights of the
raters are based on the Euclidean distance between the reputations and the votes.

Let X ∈ R
n×m be the voting matrix, r ∈ R

n be the reputation vector of the
objects and w ∈ R

m be the weight vector of the raters. The entry X ij is the vote
to object i given by rater j and the vector xj , the jth column of X , represents the
votes of rater j:

X = [x1 . . . xm] .

The bipartite graph formed by the objects, the raters and their votes is repre-
sented by the n × m adjacency matrix A, i.e., Aij = 1 if object i is evaluated by
rater j, and 0 otherwise. For the sake of simplicity, we assume in this section that
every object has been evaluated by all raters

Aij = 1 for all i, j. (1)

The general case, where the bipartite graph is not complete, will be handled later.
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The belief divergence dj of rater j is the normalized distance between his votes
and the reputation vector r (for a particular choice of norm)

dj =
1

n
‖xj − r‖2

. (2)

Let us already remark that when the bipartite graph is not complete, i.e., Eq.(1) is
not satisfied, then the number of votes varies from one rater to another. Therefore
the normalization of the belief divergence dj in Eq.(2) will change depending on this
number.

Before introducing IF systems, we define the two basic functions of these systems:

(1) the reputation function F : R
n → R

m : F (w) = r,

that gives the reputation vector depending on the weights of the raters and implicitly
on the voting matrix X ;

(2) The filtering function G : R
m → R

n : G(d) = w,

that gives the weight vector for the raters depending on the belief divergence d of
each rater defined in Eq.(2).
We formalize the so-called IF-property described in the introduction that claims
that raters diverging often from the opinion of other raters are less taken into ac-
count. We will make the reasonable assumption that raters with identical belief
divergence receive equal weights. Hence, we can write

G(d) =

2

6

4

g(d1)
...

g(dm)

3

7

5
. (3)

We call the scalar function g the discriminant function associated with G.
A filtering function G satisfies the IF -property if its associated discriminant

function g is positive and decreases with d. Therefore, the IF -property merely implies
that a decrease in belief divergence dj for any rater j corresponds to a larger weight
wj . Eq.(3) indicates that every rater has the same discriminant function g, but we
could also consider personalized functions gj penalizing differently the raters. In [4]
three choices of function g are shown to have interesting properties

g(d) = d
−k

, (4)

g(d) = e
−k d

, (5)

g(d) = 1 − k d. (6)

All discriminant function g are positive and decrease with d for positive k and
therefore satisfy the IF-property. However k must be small enough to keep g positive
in Eq.(6) and hence to avoid negative weights.

Definition 1. IF systems are systems of equations in the reputations r
t of the ob-

jects and the weights w
t of the raters that evolve over discrete time t according to

the voting matrix X

r
t+1 = F (wt), (7)

w
t+1 = G(dt+1) with d

t+1
j =

1

n
‖xj − r

t+1‖2 (8)

for j = 1, . . . , m and some initial vector of weights w
0.
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Definition 1 does not imply any convergence properties, nor robustness to initial
conditions. The system (7-8) can have several converging solutions and it allows the
existence of cycles in the iterative processes.

Fixed points and quadratic systems. The fixed points of (7-8) satisfy

r
∗ = F (w∗), (9)

w
∗ = G(d∗) with d

∗
j =

1

n
‖xj − r

∗‖2 (10)

for j = 1, . . . , m. Let us remark that IF systems can be interpreted as a particular
iterative search method to find the stable fixed points of Eq.(9-10). IF systems are
a simple iterative scheme for this system with the advantage to be easily extended
to take into account dynamical voting matrices X

t with t ≥ 0.
In this paper, we focus on IF systems where we fix the reputation function F

appearing in Eq.(7,9) and the norm ‖.‖ given in the definition of the belief divergence
in Eq.(2).

Definition 2. Quadratic IF systems are IF systems where the reputation function
F and the belief divergence are respectively given by

F (w) = X
w

1T
w

, (11)

d =
1

n
(XT − 1r

T )◦21, (12)

where 1 is the vector of all 1’s and (XT − 1r
T )◦2 is the componentwise product

(XT − 1r
T ) ◦ (XT − 1r

T ).

In that definition, the reputation function F (w) is naturally given by taking the
weighted average of the votes and the belief divergence d (given in the matrix form)
is defined using the Euclidian norm. Therefore Eq.(12) are quadratic equations in
r and amount to consider an estimate of the variances of the votes for every rater
according to a given reputation vector r.
For any positive vector w, the reputation vector r then belongs to the polytope

P = {r ∈ R
n | r =

m
X

j=1

λjxj with

m
X

j=1

λj = 1 and λj ≥ 0}. (13)

From Eq.(11), the iterations and the fixed point in Eq.(7,9) are given by quadratic
equations in r and w

r
t+1(1T

w
t) = Xw

t
, (14)

r
∗(1T

w
∗) = Xw

∗
. (15)

The next theorem establishes the correspondence between the iterations of
quadratic IF systems and some steepest descent methods minimizing some energy
function. The fixed points in Eq.(14,15) are then the stationary points of that energy
function.

Theorem 1. (see [4]) The fixed points of quadratic IF systems with integrable dis-
criminant function g, are the stationary points of the energy function
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E(r) =

m
X

j=1

Z dj(r)

0

g(u) du, (16)

where dj is the belief divergence of rater j that depends on r. Moreover one itera-
tion step in quadratic IF systems corresponds to a steepest descent direction with a
particular step size

r
t+1 = r

t − α
t∇rE(rt), (17)

with αt = n

2(1T wt)
.

3 Iterative Filtering with affine discriminant function

We look at the quadratic IF system with the discriminant function g defined in
Eq.(6) where the iterations are given by

r
t+1 = F (wt) = X

w
t

1T
wt

, (18)

w
t+1 = G(dt+1) = 1 − k d

t+1
, (19)

starting with equal weights w
0 = 1. By substituting w, the fixed point of the system

is given by a system of cubic equations in r
∗

(X − r
∗
1

T )(1 −
k

n
(XT − 1(r∗)T )◦21) = 0, (20)

with r
∗ in the polytope P defined in Eq.(13). Theorem 2 claims that r

∗ is unique
in P if k is such that the weights are strictly positive for all vectors of reputations
r ∈ P. This result uses the associated energy function that we define for affine IF
systems.

3.1 The energy function

The energy function in Eq.(16) associated with system (18,19) is given by

E(r) = −
1

2 k
w

T
w, (21)

where w depends on r according the function G(r). We will see later that this
energy function decreases with the iterations, i.e., (E(rt))t≥0 decreases, and under
some assumption on k, it converges to the unique minimum.
The iterations in system (18,19) can be written as a particular minimization step
on the function E,

r
t+1 = arg min

r

»

−
1

2 k
G(r)T

G(rt)

–

.

Therefore, we have for all t that (wt+1)T (wt) ≥ (wt)T (wt).
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Fig. 1. Four energy functions with two objects and increasing values of k. We have in
the unit square: (a) a unique minimum; (b) a unique minimum but other stationary
points are close to the border; (c) a unique minimum and other stationary points;
(d) a unique maximum.

3.2 Uniqueness

The following theorem proves that the stable point of quadratic IF systems with g

defined in Eq.(6) is unique, under some condition on parameter k. This result follows
directly from the energy function E that is a fourth-order polynomial equation.

Theorem 2. (see [4]) The system (18,19) has a unique fixed point r in P if

k < min
r∈P

‖d‖−1
∞ .

3.3 Convergence of the method

We analyze the convergence of system (18,19) that reaches the minimum of the
energy function E in P. Let r

t and r
t+1 be two subsequent points of the iterations

given by some search method. Then the next point r
t+1 is obtained by choosing a

direction vector v and a scalar γ such that

r
t+1 = r

t + γv. (22)

We will see that the direction v corresponds to a steepest descent in the first method
and a coordinate descent for the second one. This corresponds to some line search
on the scalar energy function
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e(y) = E(rt + y v) (23)

that is a polynomial of degree 4. We have that e(0) is the energy at r
t and e(γ)

is the energy at r
t+1. Finally it is useful for the sequel to define the scalar that

minimizes e given by

β = arg min
y with rt+y v∈P

E(rt + y v). (24)

System (18,19) provides a steepest descent method with a particular step size.
The direction v and the scalar γ in Eq.(22) are

v = −∇rE(rt) and γ = α
t =

n

2 (1T
wt)

,

so that we recover Eq.(17). This particular step size αt can be compared to the step
size β that minimizes E in the same direction given in Eq.(24). We have that the
particular step size αt is generally smaller than β in numeric simulations, meaning
that the step stops before reaching the minimum of the energy function E in the
direction v. The sequence (E(rt))t≥0 can be shown to decrease so that we have the
following convergence result.

Theorem 3. (see [4]) The steepest descent method given by system (18,19) con-
verges to the unique fixed point in P if

k < min
r∈P

‖d‖−1
∞ .

There exist greater values of k such that the minimum of E remains unique
and the previous methods converge to this minimum. By increasing k, we allow the
maxima of E to appear in the polytope P, see Fig. 1(c). Then, we need to verify
during the iterations if (rt) remains in the basin of attraction of E.

Theorem 4. (see [4]) If the energy function E in Eq.(21) has a minimum, then the
system (18,19) is locally convergent and its asymptotic rate of convergence is linear.

Let us remark that for a singular matrix X , the rate of convergence will be faster.
In particular, when X is a rank 1 matrix, we have X = r

∗1T (every object receives
m identical votes from the raters) and the method converges in one step. When we
take greater values of k maxima of the function E may appear in P. However if
the sequence (1T

w
t) remains positive, the sequence (E(rt)) remains decreasing and

converges to a stationary point of E. In order to avoid saddle points and maxima,
we need to avoid to reach the minimum. The idea of increasing k is to make the
discriminant function g more penalizing and therefore to have a better separation
between honest and dishonest raters. We refer to [4] for more details on this.

4 Sparsity pattern and dynamical votes

This section extends some previous results to the case where the voting matrix has
some sparsity pattern, that is when an object is not evaluated by all raters. Moreover
we analyze dynamical voting matrices representing votes that evolve over time.
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4.1 Sparsity pattern

In general, the structure of real data is sparse. We hardly find a set of raters and
objects with a vote for all possible pairs. An absence of vote for object i from rater
j will imply that the entry (i, j) of the matrix X is equal to zero, that is, by using
the adjacency matrix A,

if Aij = 0, then X ij = 0.

These entries must not be considered as votes but instead as missing values. There-
fore the previous equations presented in matrix form require some modifications
that will include the adjacency matrix A. We write the new equations and their
implications using the order of the previous section. Let us already mention that
some theorems will be simply stated without proof. Whenever their extensions with
an adjacency matrix A are straightforward.

The belief divergence for IF systems in Eq.(2) becomes

dj =
1

nj

‖xj − aj ◦ r‖,

where aj is the jth column of the adjacency matrix A and nj is the jth entry of the
vector n containing the numbers of votes given to each item, i.e.,

n = A
T
1.

On the other hand, the scalar n remains the total number of objects, i.e., the number
of rows in A. Therefore, when A is full, then n = n1.

Eq.(11-12) for quadratic IF systems can be replaced by the following ones: the
reputation function, that remains the weighted average of the votes, is given in
matrix form by

F (w) =
[Xw]

[Aw]
,

where
[·]
[·] is the componentwise division. Let us remark that every entry of Aw must

be strictly positive. This means that every object is evaluated by at least one rater
with nonzero weight.
Then all possible vectors of reputations r are include in the polytope

P̄ = {r ∈ R
n | ri =

m
X

j=1

λjxj with
m

X

j=1

λj aij = 1 and λj ≥ 0}.

The third equation (12) for the belief divergence with the Euclidian norm is changed
into

d =

ˆ

(XT − A
T ◦ 1r

T )◦21
˜

ˆ

A
T 1

˜ . (25)

With these modifications, the iterations and the fixed point in Eq.(7,9) are given by
quadratic equations in r and w

(A ◦ r
t+1

1
T ) w

t = Xw
t (26)

(A ◦ r
∗
1

T ) w
∗ = Xw

∗
. (27)

Hence we expect an energy function to exist and Theorem 1 is generalized by the
following theorem.
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Theorem 5. (see [4]) The fixed points of quadratic IF systems with integrable dis-
criminant function g, are the singular points of the energy function

E(r) =
1

n

m
X

j=1

nj

Z dj(r)

0

g(u) du, (28)

where dj is the belief divergence of rater j that depends on r. Moreover one iteration
step in quadratic IF systems corresponds to a dilated steepest descent direction with
a particular step size

r
t+1 = r

t − α
t ◦ ∇rE(rt) (29)

with α
t = n

2
[1]

[Awt]
.

The number of votes nj gives somehow a weight of importance for the mini-

mization of the surface
R dj

0
g(u) du. Therefore a rater with more votes receives more

attention in the minimization process.

4.2 Affine quadratic IF systems.

The system for the discriminant function g(d) = 1 − k d is given by

r
t+1 = F (wt) =

[Xw]

[Aw]
, (30)

w
t+1 = G(dt+1) = 1 − k d

t+1
, (31)

with the belief divergence defined in Eq.(25).
The energy function is given by

E(r) = −
1

2 kn
w

T [w ◦ n], (32)

where w depends on r according to the function G(r).
Theorem 2 remains valid for the system (30-31) and the arguments are similar.
The steepest descent method adapted to the system (30-31) converges with the
property that the sequence (E(rt)) decreases. The proofs are closely related to the
ones presented in Theorems 3.

Theorem 6. (see [4]) The steepest descent method given by system (30,31) con-
verges to the unique fixed point in P̄ if

k < min
r∈P̄

‖d‖−1
∞ .

The choice of k can be made larger to better separate honest from dishonest
raters. Theorem 4 remains valid with a few modifications in its proof to take into
account the adjacency matrix A.

Theorem 7. (see [4]) If the energy function E in Eq.(32) has a minimum, then
(30,31) is locally convergent and its asymptotic rate of convergence is linear.

This section shows that most of the earlier analysis can still be applied when we
introduce a sparsity pattern in the voting matrix.
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Fig. 2. Trajectory of reputations (circles) for a 5-periodic voting matrix

4.3 Dynamical votes

We consider in this section the case of time-varying votes. Formally, we have discrete
sequences

(X t)t≥0, (At)t≥0

of voting matrices and adjacency matrices evolving over time t. Hence the IF system
(7,8) takes into account the new voting matrix X

t+1 in the functions Ft+1 and Gt+1

that become time-dependent:

r
t+1 = Ft+1(w

t), (33)

w
t+1 = Gt+1(d

t+1). (34)

The system (30,31) for dynamical voting matrices is then given by (30,31)

r
t+1 = Ft+1(w

t) =

ˆ

X
t+1

w
t
˜

ˆ

A
t+1

wt
˜ , (35)

w
t+1 = Gt+1(d

t+1) = 1 − k d
t+1

, (36)

with the belief divergence d
t+1 defined as in Eq.(25) after replacing X and r by

X
t+1 and r

t+1. We already now that for subsequent constant matrices X
t with

T1 ≤ t ≤ T2, the iterations on r
t and w

t of system (35,36) and its variant for
coordinate descent tend to fixed vectors r

∗ and w
∗ provided that k is not too large.

In [4] we give derive stronger results for the case of 2-periodic voting sequences.
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5 Concluding remarks

The general definition of Iterative Filtering systems provides a new framework to
analyze and evaluate voting systems. We emphasized the need for a differentiation
of trusts between the raters unlike what is usually done on the Web. The originality
of the approach lies in the continuous validation scale for the votes. Next, we as-
sumed that the set of raters is characterized by various possible behaviors including
raters who are clumsy or partly dishonest. However, the outliers being in obvious
disagreement with the other votes remain detectable by the system as shown in the
simulations in the cases of alliances, random votes and spammers.

Our paper focuses on the subclass of quadratic IF systems and we show the
existence of an energy function that allows us to link a steepest descent to each
step of the iteration. It then follows that the system minimizes the belief divergence
according to some norm defined from the choice of the discriminant function.

This method was illustrated in [4] using two data sets: (i) the votes of 43 countries
during the final of the EuroVision 2008 and (ii) the votes of 943 movie lovers in the
website of MovieLens. It was shown that the IF method penalizes certain types
of votes. In the first set of data, this yielded a difference in the ranking used by
Eurovision and the ranking obtained by our method, in the sense that countries
trading votes with e.g. neighboring countries, would get a smaller weight. The second
set of data was used to verify the desired property mentioned in the introduction:
raters diverging often from other raters’ opinion are less taken into account.

We see two application areas of voting systems: first, the general definition of IF
systems offers the possibility to analyze various systems depending on the context
and the objectives we aim for; second, the experimental tests and the comparisons
are crucial to validate the desired properties (including dynamical properties) and
to discuss the choice of the IF systems.
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