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ABSTRACT. We provide an introduction to the higher representation theory of Kac–Moody alge-

bras and categorification of Verma modules.
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Higher Representation Theory studies actions of groups, algebras, ..., on categories. In HRT

the usual basic structures of representation theory, like vector spaces and linear maps, are re-

placed by category theory analogs, like categories and functors. Opposite to vector spaces and

linear maps, the world of categories is tremendously big, offering enough room for finding

richer structures: for example, replacing linear maps by a functors always comes accompa-

nied by a “higher structure” which is associated to natural transformations between them. This

higher structure is invisible to traditional representation theory.

Categorical actions of Lie algebras were first developed by Chuang and Rouquier [2] to solve

a conjecture on modular representation theory of the symmetric group called the Broué con-

jecture. There were parallel ideas being developed at that time by Frenkel, Khovanov and Strop-

pel [4] based on earlier work of Khovanov and collaborators. All these ideas were boosted by the
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categorification of quantum groups by Lauda [12], Khovanov–Lauda [9, 10, 11] and Rouquier [21]

and converged to what is called nowadays Higher Representation Theory.

Besides it relations with representation theory, HRT has shown to share interesting connec-

tions with other subjects, like for example topology [14, 18, 20, 22]. A popular example is the

construction of Khovanov’s link homology in [22] (see also [23]), giving it a conceptual context

in terms of HRT of sl2.

Overview of the lectures: In this series of lectures I give an introduction to my joint work with

Grégoire Naisse on categorification of Verma modules for quantum Kac–Moody algebras [16,

17, 19].

• In Lecture 1, we first give the necessary background on representation theory of (quan-

tum) sl2 adjusting the exposition in [15] to the quantum case. We the give a somehow detailed

overview on the categorification of the finite-dimensional irreducible representations of quan-

tum sl2 using categories of modules for cohomologies of finite-dimensional Grassmannians

and partial flag varieties. This is due to Frenkel–Khovanov–Stroppel [4] and independently to

Chuang–Rouquier [2], and is an example of how such categorifications arise naturally.

• In Lecture 2, by working with infinite Grassmannians and adding a bit more structure we are

able to categorify Verma modules for quantum sl2. One natural sub-product of the geometric

approach to categorification of Verma modules is a certain superalgebra extending the well-

known nilHecke algebra, one of the fundamental ingredients in the categorification of quantum

sl2.

• In Lecture 3 we explain the case of categorification of Verma modules for Kac–Moody alge-

bras. This requires a generalization of KLR algebras, the latter being the main ingredient in the

categorification of quantum groups by Khovanov–Lauda–Rouquier.
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1. LECTURE I: BACKGROUND

1.1. sl2-actions.

1.1.1. Quantum sl2. Let k=C(q). Quantum sl2 is the associative k-algebra U generated by e, f

and k±1, modulo the relations

k f = q−2 f k, ke = q2ek, kk−1 = k−1k = 1, e f − f e = k −k−1

q −q−1
.

It is a Hopf algebra with comultiplication∆(e) = 1⊗e+e⊗k−1,∆( f ) = k⊗ f + f ⊗1,∆(k±1)⊗k±1,

antipode S(k±1) = k∓1, S(e) = −ek and S( f ) = −k−1 f . This is a quantization of the universal

enveloping algebra of sl2.

1.1.2. sl2-modules. We say that (quantum) sl2 acts on thek-vector space M if we have operators

E ,F,K ±1 ∈ Endk(M)

such that, for every m ∈ M we have

K F (m) = q−2F K (m), K E(m) = q−2EK (m), K K −1(m) = m = K −1K (m),

and

EF (m) = F E(m)+ K (m)−K −1(m)

q −q−1
.

We say that sl2 acts on M through the application f 7→ F , e 7→ E , k±1 7→ K ±1 or that M is an

sl2-module, or even that M is a representation of sl2. Sometimes we denote F (m) = F.m, E(m) =
E .m, etc ...

A subspace N ⊆ M which is closed under the sl2-action (U .N ⊆ N ) is called a submodule. An

sl2-module is irreducible if it does not contain any proper submodule (i.e. different from {0} and

M).

1.1.3. Integrable modules. We say that an sl2-action on M is integrable (or that M is integrable)

if for every m ∈ M we have E r1 (m) = 0 and F r2 (m) = 0 for r1,r2 À 0. Note that r1 and r2 depend

on m. In the case of weight modules (see 1.1.4 below) and q = 1, the name comes from the fact

that one can “integrate these up to the group”.

1.1.4. Weight modules. Fix a complex number ξ and for α ∈ ξ+Z⊂C put qα =λqα−ξ ∈ k[λ±1].

Suppose that M has an eigenvector for K that is, M has a vector mµ for some ξ ∈C and some

µ ∈ ξ+Z, such that K (mµ) = qµmµ. We say that mµ is a weight vector of weight µ. Note that M

becomes a k[λ±1]-vector space.

It is easy to show that in this case F (mµ) and E(mµ) are also weight vectors of weights µ−2

andµ+2 respectively. We see that the subvector space U .mµ ⊆ M is a submodule which consists
5



only of weight vectors. This is an example of a type of modules called weight modules. The

weight space Mµ ⊂ M is the subspace consisting of weight vectors of weight µ:

Mµ =
{
m ∈ M |K (m) = qµm

}
.

Define the support supp(M) as the set of all its weights: supp(M) = {
µ ∈C | Mµ 6= 0

}
.

Then, we have that ⊕
µ∈supp(M)

Mµ ⊆ M

is a submodule and, in general M is a weight module if as a vector space, it is the direct-sum of

all its weight spaces:

M = ⊕
µ∈supp(M)

Mµ.

From now on we will only consider weight modules.

There are also non-weight modules, and these are necessarily infinite-dimensional.

1.1.5. Dense modules. In the special case M =U .mµ all weight spaces are 1-dimensional, and

it is useful to depict M as in the diagram below:

. . .mµ+4mµ+2mµmµ−2mµ−4. . .

FFFFFF

EEEEEE
KKKKK

This is a collection of 1-dimensional k-vector spaces fixed by K ±1, while F and E allow moving

between them. This is an example of a class of modules called dense modules. In this case

supp(M) =µ+2Z.

1.1.6. Verma modules. Suppose that in a dense module as the one above we have E(mβ) = 0

for some β ∈ supp(M). Then U .mβ ⊂ M is a submodule with support β−2N0 which is called a

Verma module and denoted M(β).

0mβmβ−2mβ−4mβ−6. . .

FFFF

EEEEE
KKKK

The vector mβ for which E(mβ) = 0 is a highest weight vector (of highest weight β) and M(β) is

said to be a highest weight module1 (of highest weight β) (the terminology should be clear from

the diagrams).

1There is also the corresponding notion of lowest weight module.
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Verma modules are also called standard modules. They are defined as induced modules. Let

U (b) ⊂U be the (Hopf) subalgebra generated by k±1 and e. It is an example of Borel subalgebra

and this one is the standard Borel subalgebra.

Let kβ = kvβ be a 1-dimensional representation of U (b) generated by a weight vector vβ of

weight β:

k.vβ = qβvβ, e.vβ = 0.

The Verma module M(β) is the induced module

M(β) =U ⊗U (b) kβ.

It is easy to see that it is a highest weight module of highest weight β with the vector 1⊗ vβ
the highest weight vector, and that all weight spaces are 1-dimensional, and therefore it agrees

with the description above as a submodule of a dense module. Physicists like lowest-weight

modules, as do Rouquier [21].

The description of M(β) as an induced module has the advantage of giving immediately a

basis, the F basis. From now on we find convenient to label the basis vectors m′
0,m′

1, . . . :

0m′
0m′

1m′
2· · ·m′

im′
i+1· · ·

1111

[β][2][β−1][k +1][β− i ][k +2][β− i −1]
qβqβ−2i

Here, for α ∈ ξ+Zwe put

[α] := qα−q−α

q −q−1
∈ k(q)[λ±1].

There are other interesting bases: the canonical basis {m0,m1, . . . }:

0m0m1m2· · ·mimi+1· · ·
[1][2][i +1][i +2]

[β][β−1][β− i ][β− i −1]
qβqβ−2i

1.1.7. The Shapovalov form. Verma modules come equipped with a bilinear form, called the

Shapovalov form (−,−)β. It is the bilinear form on M(β) uniquely defined, for m,m′ ∈ M(β),

u ∈U , and f ∈ k, by

• (m0,m0)β = 1,

• (um,m′)β = (m,ρ(u)m′)β, where ρ is the q-linear antiautomorphism U →U defined by

ρ(e) = q−1k−1 f , ρ( f ) = q−1ke and ρ(k) = k,

• f (m,m′)β = ( f m,m′)β = (m, f m′)β.
7



For example,

(mi ,mi )β = q i (β−i ) [β− i +1][β− i +2] · · · [β]

[i ]!
.

Note that the canonical basis and the F basis are both orthogonal w.r.t. the Shapovalov form

and this will be important later

When M(β) is irreducible, the Shapovalov form is nondegenerate (this is in fact a iff condi-

tion, since the radical of 〈−,−〉 is a submodule). This allows defining a dual canonical basis of

M(β), denoted {m0,m1, . . . }, as (mi ,m j ) = δi , j . This gives

mi = q−i (β−i ) [i ]!

[β− i +1][β− i +2] · · · [β]
mi .

We need the [β+ i ]’s to be invertible in k (we can work for example in k(qβ)). In this basis the

sl2-action is described in the diagram below.

0m0m1m2· · ·mimi+1· · ·
qβ−1[β]qβ−3[β−1]qβ−2i−1[β− i ]

q−β+1[1]q−β+3[2]q−β+2i+1[i +1]
qβqβ−2i

The Verma module M(β) is irreducible unless β ∈ N0. If β = n ∈ N0 then M(n) contains

M(−n −2) as a submodule.

1.1.8. Finite-dimensional modules. We denote V (n) the quotient M(n)/M(−n − 2). It has a

canonical basis {v0, v1, . . . }:

0v0v1v2· · ·vivn−1vn0

[1][2][n −1][n]

[n][n −1][2][1]
qnqn−2iq−n

The basis {v0, v1, · · · } is a particular case of Lusztig-Kashiwara’s canonical bases for finite-dimen-

sional irreducible representations of quantum groups.

Note that V (n) has several symmetries: it is invariant under the operation that switches vi ↔
vn−2i for all i ∈ {0, . . . ,n} and E ↔ F .

Note also that in this case

k −k−1

q −q−1
vi = [n −2i ]vi = (qn−2i−1 +qn−2i−3 + . . .+q−n+2i+3 +q−n+2i+1)vi

if n −2i ≥ 0 (and its negative if n −2i ≤ 0) is a finite sum, and therefore, the main sl2-relation

can be written

EF (v)−F E(v) = [µ]v
8



for v in the weight space Vµ. Note that, as defined above, [µ] is a polynomial in q . As long as

we have the weight space decomposition and the representation is finite dimensional we don’t

really need K ±1. actually this is more general: we can get rid of K ±1 acting on a weight module

M whenever the support supp(M) ⊆ (Z).

The Shapovalov form descends to an nondegenerate bilinear form (−,−)n on V (n) (since we

have modded out by its radical. This allows defining the dual canonical basis of V (n) in the

same way as before yielding2:

(1) v i = q i (−n+1) [i ]!

[n − i +1]!
vi .

Either the canonical basis and the dual canonical basis are orthogonal bases w.r.t. to (−,−)n .

For each n ∈N0 there is a unique isomorphism class of n +1-dimensional irreducible repre-

sentation for sl2. Moreover, every finite-dimensional representation of sl2 decomposes into a

direct sum of V (n)’s for various n’s.

1.2. Categorical sl2-actions.

1.2.1. What should a categorical sl2-action be? Roughly speaking, a categorical sl2-action on a

category C consists of functors F, E, K±1 on C that “satisfy the sl2-relations”.

There are several ways of defining what is to satisfy the sl2-relations, and apparently we have

to make a choice.

The Grothendieck group of a category C endowed with a class of distinguished triples (e.g.

exact sequences in abelian categories, triangles in triangulated categories, direct-sum decom-

positions A ∼= B ⊕C in additive categories) is the abelian group K0(C ), freely generated by sym-

bols [A] for objects A of C , subjected to relations [B ] = [A]+ [C ] for each distinguished triple

(A,B ,C ). Sometimes we can take different Grothendieck groups for the same category. We will

then use the notation G0(−) in the case we take the Grothendieck group w.r.t. exact sequences.

Since we are assuming almost nothing about C , at the time being it seems reasonable to ask

that the functors F, E, K±1 induce an sl2-action on the Grothendieck group 3 of C . This means

the assignment f 7→ [F], e 7→ [E], k±1 7→ [K±1] defines an sl2-action on K0(C ).

This seems to be the simplest definition, but it doesn’t say much about the functors, nor about

C . The only information we can extract at this moment is that C is a graded category (in which q

corresponds to the grading shift {1} via q[A] = [A{1}]). We also know that the functors {E,F,K±1}

induce operators on the Grothendieck group. Assuming it exists, we call it a naïve categorical

2This is a convention which is different from [4]. The dual canonical basis elements there were defined as

(vi , v i ) = q j (n− j )δi j .
3In other words, we well be only interested in exact functors, where exact means they preserve the triples (i.e.

additive, exact or triangulated).
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sl2-action. This can be slightly improved by demanding that the functor F is isomorphic to a

left adjoint of E:

• sl2 acts weakly on C if the functors F, E, K±1 induce an sl2-action on the Grothendieck

group of C , and F is isomorphic to a left adjoint of E.

We say that (C ,F,E,K±1) is a weak categorification of the sl2-module K0(C ).

Note that (naïve, weak) categorical actions on C gives bilinear forms on K0(C ) (depending

on the type of category C is). For example, one can have

〈[X ], [Y ]〉 = gdim
(
HomC (X ,Y )

)
.

To go any further we have to restrict the class of categories C on which we act.

1.2.2. Integrable categorical sl2-actions. Suppose that sl2 acts weakly on C . Suppose also that

C has a zero object and if for every object X of C we haveEr1 (X ) = 0 andFr2 (X ) = 0 for r1,r2 À 0,

where Er1 (resp Fr2 ) is the composite of E (resp. F) with itself r1 (resp. r2) times.

In this case, the Grothendieck group of C is a direct sum of finite-dimensional irreducible

representations. Moreover, all weights occurring in K0(C ) are integers: supp(K0(C )) ⊆Z.

It seems reasonable to assume that C has finite coproducts (direct sums) and moreover to

ask that it has a block decomposition (recall the orthogonality of the several bases w.r.t. the

Shapovalov form)

C = ⊕
µ∈Z

Cµ,

where Cµ ⊆C is the full subcategory generated by objects M such that [M ] ∈ K0(C )µ.

In this case we can give a step further and ask the functors {E,F} to satisfy the following iso-

morphisms (recall we don’t need K±1 anymore):

EF(X ) ∼= FE(X )⊕ Id[µ](X ), for µ≥ 0,

FE(X ) ∼=EF(X )⊕ Id[−µ](X ), for µ≤ 0,

for every object X ∈Ci . Here Id[µ](X ) = X {µ−1}⊕ X {µ−3}⊕·· ·X {−µ+3}⊕ X {−µ+1}. Looking

further at the form of the direct sum decompositions above we see that we’d better work with

categories that are at least additive.

We have a bit more information about the functors that realize the action (we have a bit more

of knowledge about the higher structure).

We have made a crucial choice: we have imposed that the functors F and E satisfy a direct-

sum decomposition realizing the sl2-commutator. Later we will find important to reformulate

this condition.

We can now summarize.
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Definition 1.1. An integrable categorical sl2-action on an additive category C = ⊕
µ∈Z

Cµ consists

of functors F and E such that

• F is isomorphic to a left adjoint of E up to degree shift, and they satisfy

Fr1 (X ) = 0, Er2 (X ) = 0, for ri = ri (µ) À 0 (i = 1,2),

and

EF(X ) ∼= FE(X )⊕ Id[µ](X ), for µ≥ 0,

FE(X ) ∼=EF(X )⊕ Id[−µ](X ), for µ≤ 0,

for every object X ∈Cµ.

Note we haven’t given a notion of sl2-action that is not naïve, nor weak, nor integrable. This

will be done later in the context of categorification of Verma modules.

1.3. Categorification of the finite-dimensional irreducibles: the CR–FKS approach. The main

idea is to replace the weight spaces with categories, on which f and e act via (exact) functors F

and E:

VnVn−2Vn−4· · ·V−n+2V−n

FFF

EEE

and ask these functors to be an adjoint pair ((F,E) as always) and to satisfy the sl2-relations:

EF(Vn−2k ) ∼= FE(Vn−2k )⊕ Id[n−2k]
Vn−2k

, n −2k ≥ 0

FE(Vn−2k ) ∼=EF(Vn−2k )⊕ Id[−n+2k]
Vn−2k

, n −2k ≤ 0

1.3.1. Categorification of the weight spaces: the cohomology of Grassmannians. For 0 ≤ k ≤ n,

let Gk (n) denote the variety of complex k-planes in CN . The cohomology ring of Gk (n) has a

natural structure of a Z-gradedQ-algebra,

H∗(Gk (n),Q) = ⊕
0≤k≤k(n−k)

H k (Gk ,Q) .

We write Hk := H∗(Gk (n),Q).

The graded ring Hk can be given an explicit description in terms of Chern classes. We have

Hk =Q[c1, . . . ,ck , c̄1, . . . , c̄n−k ]/Ik,n
11



where degc j = 2 j = deg c̄ j , and Ik,n is the ideal generated by equating the terms in the equation(
1+ c1t + c2t 2 · · ·+ ck t k)(

1+ c̄1t + c̄2t 2 +·· ·+ c̄n−k t n−k)= 1

that are homogeneous in t . This is a neat way of encoding a large number of relations at once.

Example 1.2. As a simple example, take k = 1. Then G1(n) is the complex projective space, and

H1
∼=Q[x]/(xn) with deg(x) = 2.

Let

• Hk -gmod: the category of graded, finitely generated, projective Hk -modules, with degree-

preserving maps,

and set

• Vn−2k = Hk -gmod.

The rings Hk being graded local rings (they have an unique maximal left/right ideal) implies

that their Grothendieck group is a free Z[q, q−1]-module, generated by a unique indecompos-

able projective module, since objects satisfy the Krull-Schmidt property.

Hence,

K0(Vn)⊗Z[q,q−1]Q(q) ∼=Q(q)

so that the category

V =
n⊕

k=0

Vn−2k

categorifies the irreducible representation V (n) in the sense that

K0
(
V (n)

)= n⊕
k=0

K0(Vn−2k )⊗Z[q±1]Q(q) ∼=V (n)

asQ(q)-vector spaces.

At this point we do not have any categorical sl2-action...

1.3.2. Moving between the weight spaces: the categorical sl2-action. Consider the partial flag

variety

Gk,k+1(n) = {
(Wk ,Wk+1)|dimCWk = k, dimCWk+1 = (k +1), 0 ⊂Wk ⊂Wk+1 ⊂Cn}

.

We write Hk,k+1 := H∗(
Gk,k+1(n)

)
for the cohomology ring of this variety. Again, this ring is

simple to describe explicitly in terms of Chern classes: polynomial ring:

(2) Hk,k+1 :=Q[c1,c2, . . .ck ;ξ; c̄1, c̄2, . . . , c̄n−k−1]/Ik,k+1,n ,

where Ik,k+1,n is the ideal generated by equating the homogeneous terms in the equation(
1+ c1 + c2t 2 + . . .+ ck t k)(

1+ξt
)(

1+ c̄1t + c̄2t 2 + . . .+ c̄n−k−1t n−k−1)= 1.
12



As before, everything is completely explicit. Here the generator ξ has degree 2 and corresponds

to the Chern class of the natural line bundle over Gk,k+1(n)) whose fibre over a point 0 ⊂ Wk ⊂
Wk+1 ⊂Cn in Gk,k+1(n) is the line Wk+1/Wk .

This variety has natural forgetful maps

Gk,k+1(n)

Gk+1(n) Gk (n)

inducing inclusion maps

Hk,k+1

Hk+1 Hk

on cohomology.

These inclusions make Hk,k+1 an (Hk+1, Hk )-bimodule. Since these rings are commutative

we can also think of Hk,k+1 as an (Hk , Hk+1)-bimodule which we will denote by Hk+1,k .

Recall that we get functors between categories of modules by tensoring with a bimodule. We

compose these functors by tensoring the corresponding bimodules.

The action of e and f is given by tensoring with the bimodules Hk+1,k and Hk,k+1, respectively.

Vk,k+1

Vk+1 Vk

. . . . . .

Define the functors

Fk : Vn−2k → Vn−2k−2 Resk,k+1
k+1

(
Hk,k+1 ⊗k (−)

)
{1−n +k}

Ek : Vn−2kk+2 → Vn−2k Resk,k+1
k

(
Hk,k+1 ⊗k+1 (−)

)
{−k}

The grading shifts in the definition of E and F are necessary to ensure that these functors satisfy

the sl2-relations in Proposition 1.4 below.

Proposition 1.3. The functors Fk , Ek have both left and right adjoints and commute with the

grading shift functor on graded modules.

This implies that they are exact, take projectives to projectives and therefore induce maps on

the Grothendieck groups. As a matter of fact,

Fk (Hk ) =⊕[k]Hk+1{1−n +k}, Ek (Hk+1) =⊕[n−k]Hk {−k}.
13



Proposition 1.4. The functors Fk , Ek satisfy the sl2-relations

EkFk
∼= FkEk ⊕ Id[n−2k]

Vk
, n −2k ≥ 0

FkEk
∼=EkFk ⊕ Id[n−2k]

Vk
, n −2k ≤ 0

1.3.3. Categorification of V (n). Put

F= ⊕
k≥0

Fk and E= ⊕
k≥0

Ek .

Theorem 1.5 (Frenkel-Khovanov-Stroppel, Chuang-Rouquier).

(1) Functors E and F induce an action on the Grothendieck group K0(V (n)).

(2) With this action K0(V (n)) is isomorphic with V (n), as sl2-modules.

(3) The isomorphism sends classes of projective indecomposables to canonical basis elements.

(4) ([M ], [N ])n = gdimHomV (n)(M , N ).

Due to results of Chuang-Rouquier and Rouquier we know that V (n) is essentially unique.

This will be our typical example of a strong categorical action, where the isomorphisms are

fixed by the 2-morphisms. An important ingredient is an action of the nilHecke algebra.

1.3.4. Categorifying the dual canonical basis. In order to categorify the dual canonical basis we

have to work with a bigger category.

We consider

• Hk -fmod: the category of graded, finitely generated, Hk -modules, with degree-preserving

maps,

and set

• Ṽn−2k = Hk -fmod,

• Ṽ =
n⊕

k=1
Ṽn−2k = Hk -fmod.

The Grothendieck group G0(Vn−2k ) is a free Z[q, q−1]-module generated by the unique sim-

ple module since objects in Vn−2k either have finite length (and the unique indecomposable

projective module after tensoring withQ(q) over Z[q±1]).

Example 1.6. For example, for H1 we have that the simple S of Q[x]/xn is the quotient of

Q[x]/xn by the (maximal) ideal generated by x, and its projective cover is the indecomposable

Q[x]/xn . The projective indecomposableQ[x]/xn has a composition series

0 ⊆ xn−1Q[x]/xn ⊆ ·· · ⊆ x2Q[x]/xn ⊆ xQ[x]/xn ⊆Q[x]/xn ,

where xmQ[x]/xn ⊆ xm−1Q[x]/xn is the submodule generated by xm . We have

xiQ[x]/xn

xi+1Q[x]/xn
∼= S{2i },

14



and so, in the Grothendieck group we have

[Q[x]/xn] =
n−1∑
i=0

q2i [S] = qn−1[n]q [S],

where we have written [−]q for quantum numbers to avoid confusion with the notation for the

classes on the Grothendieck group (cf. (1) which gives v1 = qn−1[n]v1).

For the Grothendieck group of Ṽ (n) we have an isomorphism

G0
(
Ṽ (n)

)= n⊕
k=0

G0(Ṽn−2k )⊗Z[q±1]Q(q) ∼=V (n)

asQ(q)-vector spaces.

The categorical action is constructed as as before, and we have the following.

Theorem 1.7 (Frenkel-Khovanov-Stroppel, Chuang-Rouquier).

(1) Functors E and F induce an action on the Grothendieck group G0(V (n)).

(2) With this action G0(V (n)) is isomorphic with V (n), as sl2-modules.

(3) The isomorphism sends classes of projective indecomposables to canonical basis elements,

and classes of irreducibles to dual canonical basis elements.

The duality between a canonical basis vector and a dual canonical basis vector is categorified

by a Hom-like form.

Within this construction it is not possible to categorify the “change-of basis”, since the formu-

las expressing dual canonical basis vectors in terms of canonical basis vectors (and vice versa)

involve denominators.

One way to go around is to work with completed Grothendieck groups à la Achar-Stroppel. A

different approach is to consider slightly different categories and work with topological Grothen-

dieck groups, as we will see in §2.3.

Again in this case we have an action of the nilHecke algebra.

1.3.5. Unraveling the higher structure: the nilHecke algebra. We are interested in studying the

natural transformations between various composites of the functors Fk ’s and Ek ’s. The presen-

tation of Hk,k+1 we have makes it easy to explicitly construct bimodule homomorphisms and

determine relations between them.

Up to a shift, the functor Fm decomposes into a direct sum of functors, each one involving

tensoring (at the left) with a bimodule like

Hr+m,r+m−1 ⊗r+m−1 Hr+m−1,r+m−2 ⊗r+m−2 · · ·⊗r+2 Hr+2,r+1 ⊗r+1 Hr+1,r .

This bimodule is isomorphic to the bimodule

Hr+m,...,r = H∗(
Gr,r+1,...,r+m(n),Q

)
,

15



where

Gr,r+1,...,r+m(n) = {
(Wr ,Wr+1, . . . ,Wr+m)

∣∣dimCW j = j , 0 ⊂Wr ⊂ ·· · ⊂Wr+m ⊂Cn}
.

Once again, we can give an explicit description of this cohomology ring using Chern classes:

Hr,··· ,r+m =Q[c1, . . . ,cr ,ξ1,ξ2, . . . ,ξm , c̄1, . . . , c̄n−m]/Ir,...,r+m ,

where Ir,...,r+m is the ideal generated by the homogeneous terms in the equation

(1+x1t +x2t 2 +·· ·+xr t r )(1+ξ1t )(1+ξ2t ) · · · (1+ξm t )(1+ y1t +·· ·+ yn−m t n−m).

The degree two generators ξ j arise from the Chern classes of the line bundles Wr+ j /Wr+ j−1.

Lemma 1.8. The operators ξi and ∂ j : Hr,··· ,r+m → Hr,··· ,r+m (1 ≤ i ≤ n, 1 ≤ j ≤ n −1), defined on

f ∈ Hr,··· ,r+m by

ξ( f ) = ξi f and ∂ j ( f ) = f − s j ( f )

ξ j −ξ j+1
,

are (Hr , Hr+m)-bimodule maps.

The Q-algebra generated by the operators ξi (1 ≤ i ≤ n) and ∂i (1 ≤ i ≤ n − 1) is called the

nilHecke algebra and will be denoted NHm . It can be defined over any associative unital ring k
and has a presentation by the generators above and relations

(3)

ξiξ j = ξ jξi ,

∂iξ j = ξ j∂i if |i − j | > 1, ∂i∂ j = ∂ j∂i if |i − j | > 1,

∂iξi = ξi+1∂i +1, ∂2
i = 0,

ξi∂i = ∂iξi+1 +1, ∂i∂i+1∂i = ∂i+1∂i∂i+1.

An immediate consequence of Lemma 1.8 is the following.

Proposition 1.9. The composite functors Fm carry an action of the nilHecke algebra NHm .

By adjunction, the E’s also carry an action of the nilHecke algebra.

The nilHecke algebra is Z-graded with deg(ξ) = 2 and deg(∂i ) = −2. Later we will call this

grading the q-grading.

Note also that the category V (n) is abelian. In order for it to have a nilHecke action is enough

it is k-linear. For example we can work with projective objects and K0.
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1.4. Axiomatic definition of integrable 2-representations (optional).

1.4.1. Integrable 2-representations. The data of an integrable categorical sl2- action allows to

sketch a notion of integrable 2-representation.

If (F,E} define an integrable sl2-action on C we can form the 2-category C whose objects

are the categories {Cµ}µ∈Z, and for where HomC(Cµ,Cν) is the full subcategory if Fun(Cµ,Cν)

generated by direct sums, compositions and grading shifts of functors F and E.

It is implicit from the start that C has a Grothendieck group. In order to have a meaningful

notion of a 2-representation we have to impose the same is true for C: in this case K0(C) will

result in a representation of U given in the form of a category, like the diagrams in the form of a

quiver as we have seen before. The action of U consists of sending e and f to the arrows there.

1.4.2. Strong integrable 2-representations. Using the example of the categorification of V (n) us-

ing the cohomology of Grassmannians as an inspiration we can define a notion of (strong) in-

tegrable 2-representation of U as follows (see [1]).

Definition 1.10 (Cautis-Lauda). A strong integrable 2-representation of U consists of a graded,

additive k-linear idempotent complete 2-category K where:

• The objects of K are indexed by the weights µ ∈Z.

• There are identity 1-morphisms Idµ for each µ, as well as 1-morphisms Fµ : µ→ µ−2 in

K. We also assume that Fµ has a right adjoint and define the 1-morphism Eµ : µ−2 → µ

as

Eµ := (Fµ)R {µ+1},

On this data we impose the following conditions:

(i) (Integrability) The identity 1-morphism Idµ+2r of the object µ+2r is isomorphic to the

zero 1-morphism for r À 0 or r ¿ 0.

(ii) HomK(1µ,1µ{`}) is zero if ` < 0 and one-dimensional if ` = 0. Moreover, the space of

2-morphisms between any two 1-morphisms is finite dimensional.

(iii) We have the following isomorphisms in K:

FµEµ ∼=EµFµ⊕ Id[µ]
µ , if µ≥ 0,

EµFµ ∼= FµEµ⊕ Id[−µ]
µ , if µ< 0,

(iv) The F’s carry an action of the nilHecke algebra.

We denote K(n) the strong integrable 2-representation where µ is isomorphic to the zero

object unless µ ∈ {−n,−n +2, . . . ,n −2,n}.

Remark 1.11. (1) Note that we do not require an action of the nilHecke algebra on the E’s.

The existence of such an action will follow formally from the action on the F’s.

(2) The integrability condition implies that
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(a) Fµ also has (a shift of) Eµ as left adjoint (the pair (Fµ,Eµ) is a then called a biadjoint

pair),

(b) the 1-morphisms Eµ have no negative degree endomorphisms.

(3) We can replace the condition (integrability) by the two conditions above. Note that in

some cases biadjointness can be hard to check.

1.4.3. CR–FKS gives a strong integrable 2-representation. Using the CR–FKS construction we de-

fine a 2-category V=V(n) as follows.

• The objects of V are the blocks Vµ for µ ∈ supp(V (n)) (recall these are H(n−µ)/2 -gmod for

µ ∈ {n,n −2, . . . ,−n +2,−n}),

• For each pair of objects Vµ, Vν, the morphisms are formed by the full subcategory of

Fun(Vµ,Vν) and natural transformations, enriched in Q-linear categories, generated by

grading shifts of direct sums of compositions of the various Fα’s andEα’s with the correct

domain and target objects.

By the results of CR this 2-representation is essentially unique. This is false in the naïve or

weak level.

1.4.4. An even stronger notion of 2-representation: “proper” 2-representations. Khovanov-Lauda

and Rouquier defined the notion of a categorified quantum group, sometimes referred to as a

2-Kac-Moody algebra. It is a certain monoidal 2-category whose Grothendieck group is isomor-

phic to a quantum group (seen as a category).

We say that a 2-representation C of sl2 is proper if is consistent with U in the following sense:

there is a 2-functor R : U →C such that we have a commutative diagram

U
R //

K0
��

C

K0
��

U
R // K0(C)

Cautis and Lauda proved in [1] that strong integrable 2-representations are proper.

1.5. References for Lecture I.
[2] J. Chuang and R. Rouquier, Derived equivalences for symmetric groups and sl2-

categorification, Ann. of Math. (2) 167 (2008), no. 1, 245-298.

[4] I. Frenkel, M. Khovanov and C. Stroppel, A categorification of finite-dimensional irre-

ducible representations of quantum sl2 and their tensor products. Selecta Math. (N.S.)

12 (2006), no. 3-4, 379-431.

[13] A. Lauda, An introduction to diagrammatic algebra and categorified quantum sl2,

Bull. Inst. Math. Acad. Sin. (N.S.) 7 (2012), no. 2, 165-270.

[15] V. Mazorchuk, Lectures on sl(2,C)-modules, Imperial College Press, London, 2010.
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2. LECTURE II: CATEGORIFICATION OF VERMA MODULES: sl2

2.1. (Universal) Verma modules revisited. Recall that we put λ = qβ and treat λ as a formal

parameter. This gives the universal Verma module which, abusing notation, we write M(λ). It is

universal in the sense that any Verma module can be obtained from this one by specializing λ:

there is an “evaluation map” M(λ) → M(β) (λ 7→ qβ). Note that our ground field now contains

C(q,λ). We prefer to work over C((q,λ)), the field of formal Laurent series for technical reasons

related to the fact that we interpret denominators in C(q,λ) as Laurent series.

In terms of the canonical basis, the universal Verma module M(λ) has the form:

0m0m1m2· · ·mimi+1· · ·
[1][2][i +1][i +2]

[λ,0][λ,−1][λ,−i ][λ,−i −1]
λλq−2i

where

[λ,r ] = λqr −λ−1q−r

q −q−1

(recall this is [β+ r ]).

2.2. Towards a categorification of a Verma module: initial constraints. Just by looking at the

diagram above for M(λ) one sees that one needs to categorify “multiplication by [λ,k]”. We see

that

• we need (at least) a bigraded category.

Note also that we cannot write [λ,k] as a finite sum. One way forward is to

• interpret the denominator as a power sum

1

q −q−1
=−q−1(1+q +q2 +·· ·),

and ask our categories to have (controlled) infinite coproducts.

But we also have the minus signs!. One possibility to deal with them is to

• work with supercategories4.

Notation: For an object X in such a category we denote by X 〈r, s〉 its shift up by r units in the first

grading (the “q”) and by s units in the second (the “λ”) and by ΠX its shift in the Z/2Z-degree,

called the parity.

To categorify multiplication by
1

q −q−1
one can (and we will!) consider the infinite coproduct⊔

i∈N0

Π(−)〈2i −1,0〉.

4See 2.7 for definitions and conventions on super structures.
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We have made some choices, and they seem reasonable at this point! Altogether, if we are to

categorify Verma modules we can work with (at least) additive, bigraded, supercategories, which

have infinite coproducts.

In this context a weak categorification of the Verma module M(λ) should consist of an addi-

tive, bigraded, supercategory, with infinite coproducts

M (λ) = ⊕
µ∈supp(M(λ))

M (λ)µ,

and functors F, E, K±1 ∈ Fun
(
M (λ)

)
such that F is a left adjoint of E, and they satisfy a categor-

ical version of the sl2-relations.

Let’s look at what we mean by sl2-relations in this context. There is a point whose impor-

tance is fundamental: F is a left adjoint but not a right adjoint of E (the pair (F,E) is not an

adjoint pair), otherwise, there would be an r ∈N such that Fr = 0 (see the remarks right after the

definition of strong integrable 2-representation).

This means that F, E and K±1 cannot be connected through a direct-sum decomposition as in

the case of categorification of integrable representations. Otherwise, that maps realizing the

decomposition could be used to imply that (F,E) is a biadjoint pair.

Recall that we want this EF-relation to imply the sl2-commutator on the Grothendieck group.

Therefore, the next type of relation one can think of is to ask that M (λ) admits exact sequences

and the composite functors EF and FE be related through an exact sequence...

One of the principal features of the universal Verma module is that it projects to the irre-

ducible representation V (n) (for any n). It seems reasonable to impose that

• a weak categorification of M(λ) comes equipped with a categorical projection onto a cat-

egorification of V (n).

Let’s sketch a provisional definition.

Definition 2.1 (Provisional definition). A weak categorification of the Verma module M(λ) is an

additive, bigraded, supercategory M (λ), with infinite coproducts and admitting exact sequences,

M (λ) = ⊕
µ∈supp(M(λ))

M (λ)µ,

and functors F, E, K±1 ∈ Fun(M (λ)), which commute with grading shifts, and descend to opera-

tors on a Grothendieck group of M (λ) and satisfy:

(1) F
(
M (λ)µ

)⊆M (λ)µ−2,E
(
M (λ)µ

)⊆M (λ)µ+2,K
(
M (λ)µ

)⊆M (λ)µ, for allµ ∈ supp(M(λ)),

(2) F is isomorphic to a left adjoint of E (up to a shift),

(3) KF∼= FK〈−2,0〉, KE∼=EK〈2,0〉, KK±1 ∼=K±1K∼= IdM (λ).

(4) F, E K±1and commute with grading shifts and with the parity change Π,
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(5) there is a (non-split) exact sequence

0 →EF→ FE→QK⊕ΠQK−1,

where Q is the infinite coproduct Q(−) =⊔
i∈N0 (Π(−))〈2i −1,0〉,

(6) For any n ∈N0 there is a “projection” from M (λ) to a categorification of V (n).

2.3. Topological Grothendieck groups. The fact that we are to work with infinite coproducts

impose severe restrictions on the categories we will work with. Recall that we in order to cate-

gorify Verma modules we need the Grothendieck group of each block M (λ)µ (µ ∈ supp(M(λ)))

to be finite dimensional (and non-zero).

We will work with (bigraded, super, locally additive5) categories C whose enriched Hom

spaces

HOM(M , N ) = ⊕
`,r∈Z

HOM`,r (M , N ) = ⊕
`,r∈Z

Hom(M , N〈`,r 〉)

are finite-dimensional in each degree. Moreover we demand that

• pairs (`,r ) ∈ Z2 for which HOM`,r (M , N ) 6= 0, lie inside a cone C ⊂ Z2 compatible with

an order in Z2,

• HOM`,r (M , N ) = 0 for r ¿ 0 or r À 0,

We also require that C has:

• local Krull-Schmidt property: every object decomposes into a locally finite direct sum

of small6 objects having local endomorphisms rings (see [16, §5.1]),

or

• local Jordan-Hölder property (if C is abelian: every object has locally finitely many com-

position factors, plus a stability condition) (see [16, §5.2]),

or both.

Remark 2.2. A locally Krull-Schmidt category is idempotent complete. Moreover, an object

with local endomorphism ring is indecomposable, and have only 0 and 1 as idempotents.

For these type of categories we can define the

• Topological Grothendieck group G0(C ): this is the freeZ((q,λ))-module generated by the

classes of simple objects (up to shifts).

• Topological split Grothendieck group K 0(C ): this is the free Z((q,λ))-module generated

by the classes of indecomposables (up to shifts).

5We say that an additive, strictly Z-graded category C (A{r } 6∼= A for all A ∈ C ) is locally additive if all its locally

finite coproducts are biproducts.
6An object A in a category C is small if every map f : A → ∐

i⊂I
Bi factors through

∐
j∈J

B j for a finite subset J ⊂ I .
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Both Grothendieck groups above are modules over Zπ = Z[π]/π2 −1. When specializing the

parameter π=−1 and extending the scalars toQ, we write

G̃0(C ) =G0(C ))⊗ZπQ[π]/(π+1),

and the same for K̃ 0(C ).

Remark 2.3. The conditions above are mainly technical and are necessary to be able to define

Grothendieck groups with the correct properties for the sake of categorification. A complete

description of these categories and the details its Grothendieck groups can be found in [16, §5].

2.4. Extending CR–FKS to Verma modules. In the following it seems more natural to categorify

M(λq−1) and this will be clear very soon. We want to find nice bigraded (super)rings Ωk with

1-dimensional Grothendieck groups and (Ωk ,Ωk+1)-bimodules (denoted Ωk,k+1), such that

• Ωk,k+1 is a free Ωk+1-left module of graded rank [k +1],

• Ωk,k+1 is a free Ωk -left module of graded rank [λ;−k],

• The (Ωk ,Ωk )-bimodules

Ωk(k+k)k :=Ωk,k+1 ⊗k+1Ωk+1,k , Ωk(k−k)k :=Ωk,k−1 ⊗k−1Ωk−1,k

are related through a short exact sequence

0 −−→Ωk(k−1)k →Ωk(k+1)k →Ωk [ξ]〈2k +2,−1〉⊕ΠΩk [ξ]〈−2k,1〉

· · ·mk−1mkmk+1· · ·
[k][k +1]

[λ;−k +1][λ;−k]
λq−2(k−1)

Ωk,k+1

Ωk+1 Ωk

2.4.1. Categorification of the weight spaces of M(λq−1): H∗(G(n)) and H∗(G(n))!. Let Gk be the

Grassmannian variety of k-planes in C∞.

Its (rational) cohomology ring is just a polynomial ring generated by the Chern classes

H(Gk ) ∼=Q[x1, . . . , xk ], deg(xk ) = 2k,

The Ext-algebra ExtH(Gk )(Q,Q) is an exterior algebra

ExtH(Gk )(Q,Q) =∧•(ω1, . . . ,ωk ),

with deg(ωk ) = (
qdeg(ωk ),λdeg(ωi

)= (−2k,2).

We form

Ωk = H(Gk )⊗ExtH(Gk )(Q,Q)

which we regard as a bigraded superring. Here the xi ’s are even while the ωi ’s are odd.
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Put

Mλq−1−2k =Ωk -modlf

The latter being bigraded, left (super) Ωk -modules that are finite dimensional on each degree

and cone bounded.

2.4.2. Moving between the weight spaces: the categorical sl2-action. Let Gk,k+1 be the infinite

1-step partial flag variety

{0 ⊂Wk ⊂Wk+1 ⊂C∞|dimC(W j ) = j }.

We have

H(Gk,k+1) ∼=Q[y1, . . . , yk ,ξ], deg(y j ) = 2 j ,deg(ξ) = 2.

Put

Ωk,k+1 = H(Gk,k+1)⊗ExtH(Gk+1)
(
Q,Q

)
We consider the maps

Ωk,k+1

H(Gk,k+1)⊗ExtH(Gk+1)(Q,Q)

H(Gk+1)⊗ExtH(Gk+1)(Q,Q) H(Gk )⊗ExtH(Gk )(Q,Q)
Ωk+1 Ωk

Explicitly, these maps are

φ∗
k : Ωk →Ωk,k+1,


x j 7→ y j ,

ω j 7→ω j +ξω j+1,

and

ψ∗
k+1 : Ωk+1 →Ωk,k+1,


x j 7→ y j +ξ j j−1,

ω j 7→ω j .

with y0 = 1 and yi+1 = 0.

Define the functors

Fk : Mλq−1−2k →Mλq−1−2(k+1) Resk,k+1
k+1

(
Ωk,k+1 ⊗k (−)

)〈−k,0〉

Ek : Mλq−1−2(k+1) →Mλq−1−2k Resk,k+1
k

(
Ωk,k+1 ⊗k+1 (−)

)〈k +2,−1〉

Kk : Mλq−1−2k →Mλq−1−2k (−)〈2k,1〉
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and Qk : Mλq−1−2k →Mλq−1−2k , defined for all k ≥ 0 byQ(−) =Π(−)⊗Q[ξ]〈1,0〉 and put

M (λq−1) = ⊕
k≥0

Mλq−1−2k

and

F= ⊕
k≥0

Fk , E= ⊕
k≥0

Ek , K= ⊕
k≥0

Kk .

Proposition 2.4. Functors F, E are exact and E is isomorphic to a right adjoint of F (they are not

biadjoint!). Moreover, there is an action of the nilHecke algebra on Fm (and on Em).

Actually, there is a bigger (super)algebra acting on Fm and Em . It can be computed through

bimodule homomorphisms the same way we did NHm . We will find this algebra again in §3.1.2.

Theorem 2.5. We have natural isomorphisms

KK−1 ∼= Id ∼=K−1K,

KF∼= FK〈−2,0〉, KE∼=EK〈2,0〉,
and a natural exact sequence

0 −−→ FE−−→EF−−→KQ⊕ΠK−1Q−−→ 0.

2.4.3. The categorification theorem.

Theorem 2.6. (1) The functorsF,E andK induce an action of quantum sl2 on the Grothendieck

group of M (λq−1). With this action K 0(M ) is isomorphic with the Verma module M(λq−1)

after specializing the action of [Π] to −1.

(2) The isomorphism from K 0(M (λq−1)) sends classes of projective indecomposable objects

to canonical basis elements, and classes of irreducibles to dual canonical basis elements.

2.5. DGAs and the recovering of CK–FKS’s categorification of V (n).

2.5.1. DG rings. For n ∈N0 and for each k we turn Ωk and Ωk,k+1 into DG rings by introducing

differentials d k
n and d k,k+1

n , both with degrees 〈n,−2〉 and Z/2Z-degree 1.

These act trivially on H(Gk ) and H(Gk,k+1) and send the generators of ExtH(Gi )(Q,Q) to ele-

ments of H(Gk ) (and H(Gk,k+1) respectively). Moreover, these differentials commute with the

canonical maps that giveΩk,k+1 the structure of a (Ωk ,Ωk+1)-bimodule, so that it becomes a DG

bimodule.

Proposition 2.7. The DG rings (Ωk ,d k
n ) and (Ωk,k+1,d k

n ) are formal. Moreover we have quasi-

isomorphisms

(Ωk ,d k
n ) ∼=q.i . (H(Gk (n)),0)

(Ωk,k+1,d k
n ) ∼=q.i . (H(Gk,k+1(n)),0).
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2.5.2. The snake lemma and consequences. Recall that in the case of V (n) we had a direct sum

decomposition for the functors EF and FE. We will now see that this comes naturally as a con-

sequence of our exact sequence and differentials.

We can equip Ωk [ξ]⊕ΠΩk [ξ]〈−2k − 2〉 with a differential dn such that it becomes a DG bi-

module over (Ωk ,d k
n ). This is not a direct sum of two DG bimodules, since dn mixes terms of

both summands. This differential is compatible with the maps in the SES and we have a short

exact sequence of DG ((Ωk ,dn), (Ωk ,dn))-bimodules

0 → (
Ωk(k−1)k ,dn

)→ (
Ωk(k+1)k ,dn

)→ (Ωk [ξ]〈2k,−1〉⊕ΠΩk [ξ]〈−2k −2,1〉,dn) → 0.

By the snake lemma, it descends to a long exact sequence of H(Ωk ,dn) ∼= H(Gk;n)-bimodules

. . . // H 1
(
Ωk(k+1)k ,dn

)
// H 1 (Ωk [ξ]〈2k,−1〉⊕ΠΩk [ξ]〈−2k −2,1〉,dn)

rr
H 0

(
Ωk(k−1)k ,dn

)
// H 0

(
Ωk(k+1)k ,dn

)
// H 0 (Ωk [ξ]〈2k,−1〉⊕ΠΩk [ξ]〈−2k −2,1〉,dn)

rr
H 1

(
Ωk(k−1)k ,dn

)
// . . .

We know that the homology of
(
Ωk(k+1)k ,dn

)
is concentrated in parity 0 and thus we have a

long exact sequence

0 // H 1 (Ωk [ξ]〈2k,−1〉⊕ΠΩk [ξ]〈−2k −2,1〉,dn)

qq
H 0

(
Ωk(k−1)k ,dn

)
// H 0

(
Ωk(k+1)k ,dn

)
// H 0 (Ωk [ξ]〈2k,−1〉⊕ΠΩk [ξ]〈−2k −2,1〉,dn)

qq0.

Since we have explicit formulas and nice decompositions we can easily compute the homolo-

gies:

(1) For n −2k ≥ 0 the homology of
(
Ωk [ξ]〈2k,−1〉⊕ΠΩk [ξ]〈−2k −2,1〉,dn

)
is concentrated

in parity 0 and given by ⊕
{n−2k}

q2k H(Gk;n).

Therefore we get the following short exact sequence

0 → H(Gk,k−1;n)⊗H(Gk−1;n ) H(Gk−1,k;n)

,→ H(Gk,k+1;n)⊗H(Gk+1;n ) H(Gk+1,k;n)�
⊕

{n−2k}

q2k H(Gk;n) → 0.
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(2) For n −2k ≤ 0 the homology is concentrated in parity 1 and it is isomorphic to⊕
{2k−n}

q−2k−2λ2ΠH(Gk;n).

After shifting by the degree of the connecting homomorphism, it yields the short exact

sequence

0 → ⊕
−{2k−n}

q2k H(Gk;n) ,→ H(Gk,k−1;n)⊗H(Gk−1;n ) H(Gk−1,k;n)

�H(Gk,k+1;n)⊗H(Gk+1;n ) H(Gk+1,k;n) → 0.

Proposition 2.8. Both exact sequences split, and recover the well-known sl2 categorical action of

CR–FKS [2, 4] using cohomology of the finite Grassmannians and 1-step flag varieties.

Define the DG ((Ωk+1,dn), (Ωk ,dn))-bimodule

(Ω̂k+1,k ,dn) = (Ωk+1,k ,dn)〈0,0〉,

and the DG ((Ωk ,dn), (Ωk+1,dn))-bimodule

(Ω̂k,k+1,dn) = (Ωk,k+1,dn)〈−n,1〉.
Proposition 2.9. We have quasi-isomorphisms of bigraded DG ((Ωk ,dn), (Ωk ,dn))-bimodules

(Ω̂k,k+1 ⊗k+1 Ω̂k+1,k ,dn) ∼= (Ω̂k,k−1 ⊗k−1 Ω̂k−1,k ,dn)⊕[n−2k] (Ωk ,dn), if n −2k ≥ 0,

(Ω̂k,k−1 ⊗k−1 Ω̂k−1,k ,dn) ∼= (Ω̂k,k+1 ⊗k+1 Ω̂k+1,k ,dn)⊕[2k−n] (Ωk ,dn), if n −2k ≤ 0.

2.5.3. Derived equivalences. Let Dc (Ω̂k ,dn) and Dc (Ω̂k,k+1,dn) be respectively the derived cat-

egory of bigraded, left, compact (Ω̂k ,dn) modules and the derived category of bigraded, left,

compact (Ω̂k+1,k ,dn)-modules.

Proposition 2.10. There are equivalences of triangulated categories between

Dc (Ω̂k ,dn) ∼=Db(H(Gk (n))-gmod) =Db(Vk+1,k )

Dc (Ω̂k+1,1,dn) ∼=Db(H(Gk,k+1(n))-gmod) =Db(Vk+1,k ),

where Db(−) is the bounded derived category.

Recall that Vk and Vk+1,k are the categories used in CR–FKS.

The induction (derived) functor Indk+1,k
k is the derived tensor functor associated with the DG

bimodule (Ω̂k+1,k ,dn):

Indk+1,k
k = (Ω̂k+1,k ,dn)⊗L

k (−) : Dc (Ω̂k ,dn) →Dc (Ω̂k+1,k ,dn)

and the restriction functor Resk+1,k
k coincides with the (derived) functor

Resk+1,k
k = RHom(Ωk ,dn )

(
(Ω̂k+1,k ,dn),−)

: Dc (Ω̂k+1,k ,dn) →Dc (Ω̂k ,dn).
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Analogously, we define

Indk+1,k
k+1 : Dc (Ω̂k+1,dn) →Dc (Ω̂k+1,k ,dn), Resk+1,k

k+1 : Dc (Ω̂k+1,k ,dn) →Dc (Ω̂k+1,dn).

For each k ≥ 0 define the functors

Fk (−) = Resk,k+1
k+1 ◦((Ω̂k+1,k ,dn)⊗L

k (−)
)
,

and

Ek (−) = Resk,k+1
k ◦((Ω̂k,k+1,dn)⊗L

k+1 (−)
)
,

where (Ω̂k+1,k ,dn) is seen as a DG ((Ωk+1,k ,dn), (Ωk ,dn))-bimodule and (Ω̂k,k+1,dn) as a DG

((Ωk ,dn), (Ωk,k+1,dn))-bimodule.

Corollary 2.11. The functors Fk and Ek are biadjoint up to a shift. Moreover we have natural

isomorphisms

Ek ◦Fk
∼= Fk−1 ◦Ek−1 ⊕[n−2k] Idk , if n −2k ≥ 0,

and

Fk−1 ◦Ek−1
∼=Ek ◦Fk ⊕[2k−n] Idk , if n −2k ≤ 0.

Corollary 2.12. Define the category W (n) = ⊕
k≥0

Dc (Ω̂k ,dn). We have a Z[q, q−1]-linear isomor-

phism of Uq (sl2)-modules, K0(W (n)) ∼=V (n), for all n ≥ 0.

2.5.4. nilHecke action. By taking tensor products we can form the DG ((Ωk ,dn), (Ωk+m ,dn)-

bimodule (Ω̂k,...,k+m ,dn) and the DG (Ωk+m ,dn), (Ωk ,dn))n-bimodule (Ω̂k+m,...,k ,dn).

Proposition 2.13. The nilHecke algebra NHm acts as endomorphisms of the DG bimodules

(Ω̂k,...,k+m ,dn) and (Ω̂k+m,...,k ,dn).

Corollary 2.14. The nilHecke algebra NHs acts as endomorphisms of Es and of Fs .

This action coincides with the one from Lauda and Chuang-Rouquier.

2.6. References for Lecture II.

[16] G. Naisse and P. Vaz, An approach to categorification of Verma modules,

arXiv:1603.04555v2 [math.RT] (2016).
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2.7. Appendix to Lecture II: reminders on super structures. The following material is stan-

dard and can be found for example in [3, 7] or [8].

2.7.1. Superrings. A superring is a Z/2Z-graded ring. Let R = R0 ⊕R1 be a superring. We will

call the Z/2Z-grading the parity and use the notation p(r ) to indicate the parity of a homoge-

neous element r ∈ R. Elements with parity 0 are called even, elements of parity 1 are called

odd. Whenever we refer to an element of R as even or odd, we will always be assuming that it is

homogeneous.

A subsuperring of R is a subring which is itself a superring, that is, the canonical inclusion

preserves the parity.

The supercenter Zs(R) of R is the set of all elements of R which supercommute with all ele-

ments of R, that is Zs(R) = {x ∈ R|xr = (−1)p(x)p(r )r x for all r ∈ R}.

2.7.2. Supermodules and superbimodules. A left R-supermodule M is a Z/2Z-graded module

over R such that Ri •M j ⊆ Mi+i (i , j ∈Z/2Z).

A left supermodule map f : M → N is a homogeneous group homomorphism that supercom-

mutes with the action of R,

f (r •m) = (−1)p( f )p(r )r • f (m),

for all r ∈ R and m ∈ M . A right supermodule map is a homogeneous right module homomor-

phism.

An (R,R ′)-superbimodule is both a left R-supermodule and a right R ′-supermodule, with

compatible actions. A superbimodule map is both a left supermodule map and a right super-

module map. Then, if R has a supercommutative ring structure and if we view it as an (R,R)-

superbimodule, multiplying at the left by an element of R gives rise to a superbimodule endo-

morphism.

Let M and N be respectively an (R ′,R) and an (R,R ′′)-superbimodules. One form their tensor

product over R in the usual way for bimodules, giving a superbimodule. Given two superbimod-

ule maps f : M → M ′ and g : N → N ′, we can form the tensor product f ⊗ g : M ⊗N → M ′⊗N ′,
which is defined by

( f ⊗ g )(b ⊗m) = (−1)p(g )p(b) f (b)⊗ g (m),

and gives a superbimodule map.

Now define the parity shift of a supermodule M , denoted ΠM = {π(m)|m ∈ M }, where π(m)

is the element m with the parity inversed, and if M is a left supermodule (or superbimodule)

with left action given by

r •π(m) = (−1)p(r )π(r •m),

for r ∈ R and m ∈ M . The action on the right remains the same.

In this context, the map R →ΠR defined by r 7→π(ar ) for some odd element a ∈ R is a Z/2Z-

grading preserving homomorphism of (R,R)-superbimodules.
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Let π : M → ΠM denote the change of parity map x 7→ π(x). It is a supermodule map with

parity 1 and satisfies π2 = Id. The map π⊗π : ΠM ⊗N → M ⊗ΠN is Z/2Z-grading preserving

and such that (π⊗π)2 =− Id, thus

Π(M ⊗N ) ∼=ΠM ⊗N ∼= M ⊗ΠN

are isomorphisms of supermodules. Of course, all the above extends to the case when R has ad-

ditional gradings, making it a multigraded superring. In this context we can speak of (multi)graded

modules, (multi)graded bimodules, etc.

2.7.3. Supercategories, superfunctors and supernatural transformations. A supercategory is a

category C equipped with a strong categorical action of Z/2Z. A superfunctor is a morphism of

strong categorical Z/2Z-actions. More precisely,

Definition 2.15. A supercategory is the following data:

• a category C ,

• a functor ΨC : C →C ,

• and a natural isomorphism ξC :Ψ2
C
→ 1C ,

such that

• ξC 1ΨC
= 1ΨC ξC as natural isomorphisms from Ψ3

C
to ΨC .

The data of a superfunctor (F,αF ) : (C ,ΨC ) → (D,ΨD) is:

• a functor F : C →D and

• a natural isomorphism αF : FΨC →ΨDF ,

and the only condition is that

• 1FξC = (ξD1F )(1ΨD
αF )(αF 1ΨC

).

Left (resp. right) supermodules and left (resp. right) supermodule maps form supercate-

gories, as well as superbimodules and superbimodule maps.

Definition 2.16. Let (F,αF ), (G ,αG ) : (C ,ΨC ) → (D,ΨD) be superfunctors. A supernatural trans-

formation between (F,αF ) and (G ,αG ) is a natural transformation ϕ : F → G which commutes

with the natural isomorphisms αF ,αG in the sense that the diagram

FΨC

ϕ1Ψ //

αF

��

GΨC

αG

��
ΨDF

1Ψϕ // ΨDG

commutes.
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3. LECTURE III: ALGEBRAIC CATEGORIFICATION OF VERMAS FOR SYMMETRIZABLE g

3.1. Towards 2-Verma modules for sl2. Recall that the nilHecke algebra NHm was obtained by

studying natural transformations of the CR–FKS functors Fm (and Em). We have also seen that

the categorification of V (n) obtained from D(M (λq−1),dn) is canonically isomorphic to the

one using Db(V (n),0) (recall V (n) is CR–FKS’s). The action of the nilHecke algebra on M (λq−1)

descends to an action on D(M (λq−1),dn) that coincides with the action on V (n). But we can

say a bit more:

• There is a (bigraded, super-) algebra Am , that can be seen as an extension of the nilHecke

algebra NHm and acts on Fm by natural transformations (and therefore on Em).

Here is the main idea: the composite functor F n acting on M (λq−1) decomposes into func-

tors associated with bimodules of the form

Ωk,...,k+n :=Ωk,k+1 ⊗k+1Ωk+1,k+2 ⊗k+2 · · ·⊗k+n−1Ωk+n−1,k+n .

One can compute that

Ωk,...,k+n
∼=Q[x1, . . . , xk ,ξ1, . . . ,ξm]⊗∧•(σ1, . . . ,σk ,ω1, . . . ,ωn),

where deg(xi ) = (2i ,0), deg(ξi ) = (2,0), deg(σi ) = (−2i ,2) and deg(ωi ) = (−2(k + i ),2).

One can verify that action of NHn on Q[ξ1, . . . ,ξn] extend to maps of (Ωk ,Ωk+n) bimodules

iff ∂i (ω j ) = −δi jωi+1 (the sign is just a convention). Note that ∂i is an even operator of degree

deg(∂i ) = (−2,0).

As we did above we can define a bigraded, (super)algebra Ak,n as the algebra of operators on

Q[ξ1, . . . ,ξm]⊗∧•(ω1, . . . ,ωn) generated by ∂i (i = 1, . . . ,n−1) and multiplication by ξ j and by ω j

( j = 1, . . . ,n).

In the sequel we will consider the case k = 0 and the superalgebra An = A0,n .

3.1.1. Cyclotomic nilHecke algebra: categorification of V (n) using NH. The nilHecke algebra

can be given a diagrammatic presentation as follows.

Generators: The following n-strand diagrams (the q-degree is indicated under the diagram).

· · ·

(2)

· · · · · ·

(−2)

· · ·

Let k be a commutative unital ring (we can take k=Z).

Definition 3.1. Let NHn be thek-algebra generated by isotopy classes of the diagrams described

above with multiplication given by gluing diagrams on top of each other. We read diagrams from

bottom to top by convention and so ab means we stack a atop of b. The diagrams are subjected

to the local relations below.
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= 0(4)

=(5)

= + = +(6)

Definition 3.2. NH = ⊕
m≥0

NHm .

Fix n ∈N. Define the cyclotomic ideal I n ⊂ NH as the 2-sided ideal generated by all diagrams

having n dots on the leftmost strand:

n · · ·

Definition 3.3. The cyclotomic nilHecke algebra NHn is the quotient NHn = NHn /I n . We have

NHn = ⊕
k≥0

NHn
k .

Proposition 3.4. There is an isomorphism NHn
k
∼= Mat

(
k !, Hk

)
.

This implies immediately that the Grothendieck group of NHk is 1-dimensional, since Morita

equivalent rings have the same Grothendieck groups. This also implies the following.

Corollary 3.5. There is an isomorphism ofQ-vector spaces⊕
k≥0

K0(NHn
k -gmod)⊗Z[q±1]Q(q) ∼=V (n).

It is natural to take NHn
k as a categorification of the weight space Vn−2k . The sl2-action on

NHn -gmod follows a familiar scheme using induction and restriction functors for the inclusion

NHn
k → NHn

k+1 that add a vertical strand at the right of a diagram from NHn
k . We will see this in

detail in §3.1.2 and §3.1.7.

3.1.2. The superalgebras An .

• Generators: The following n-strand diagrams (a triple (q,λ,π) below each diagram indicates

its q-degree, its λ-degree and its parity). The nilHecke generators,

· · ·

(2,0,0)

· · · · · ·

(−2,0,0)

· · ·
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and the floating dots,

· · ·

(−2`,2,1)

· · ·

Here, there are ` ≥ 1 strands to the left of the floating dot. Note the degree of a floating dot is

not defined locally.

We say an isotopy is admissible if it doesn’t change the relative height of floating dots (we are

assuming that diagrams are equipped with a height function).

Definition 3.6. Let An be the k-(super)algebra generated by admissible isotopy classes of the

diagrams described above with multiplication defined as in NHm . The diagrams are subjected

to the nilHecke relations of Definition 3.1, together with the local relations (7) and (8) below.

· · · = − ·· · ,(7)

− = −(8)

Definition 3.7. A = ⊕
n≥0

An .

3.1.3. Bases for An (optional). From the defining relations one can see immediately that one

can write a diagram of An as a k-linear combination of diagrams containing three regions:

(1) A region consisting of n vertical strands and only floating dots,

(2) A region consisting of n vertical strands and only (nilHecke) dots,

(3) A region consisting only of crossings.

The six ways of placing these regions give basis of An . For example,

Proposition 3.8. The superalgebra An is a free k-module. The sets

{xk1
1 · · ·xkn

n Tϑω
`1
1 · · ·ω`n

n : ki ∈N0,`i ∈ {0,1},ϑ ∈ Sn},

and

{Tϑxk1
1 · · ·xkn

n ω
`1
1 · · ·ω`n

n : ki ∈N0,`i ∈ {0,1},ϑ ∈ Sn},

being basis.

There is another basis which turns out to be useful, defined in terms of a special type of

floating dot. Using (8) on
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together with (6) and (4) gives

−

The following is now an easy consequence of this.

Lemma 3.9. We have the following relation in An for any pair of consecutive strands:

(9) = −

Definition 3.10. We say that a floating dot is tight if it is placed directly to the right of the left-

most strand.

For example, the floating dot in the diagram below is tight:

. . .

. . .

. . .

Using Lemma 3.9 recursively we can write any diagram of An as a linear combination of dia-

grams involving only nilHecke generators and tight floating dots. Moreover we are able to give

a basis for An in terms of tight floating dots7.

Proposition 3.11. There is a basis of An defined in terms of generators of the nilHecke algebra

and tight floating dots.

3.1.4. The algebra An is isomorphic to a matrix algebra. From the action of ∂i on the supercom-

mutative ring R = k[ξ1, . . . ,ξn]⊗∧•(ω1, . . . ,ωn) explained above on can see that the symmetric

group Sn acts (from the left) on R: it acts via the permutation action on k[ξ1, . . . ,ξn] while the

simple transposition si = (i i +1) acts on the ω j ’s as

si (ω j ) =ω j +δi , j (ξi −ξi+1)ωi+1,

together with si ( f g ) = si ( f )si (g ).

This action respects the bigrading as well as the parity, as one easily checks. On can easily

check as well that the action of An on R corresponds with the diagrammatic presentation given

above.

Denote RSn ⊂ R be the subring of Sn-invariants. We have the following.

Proposition 3.12. (1) The supercenter of An is isomorphic to RSn .

7This basis is defined combinatorially (see [17, §2.2, §2.7]) and its particular form is not important for this

lectures.
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(2) There are isomorphisms

An
∼= EndRSn (R) ∼= Mat

(
n!,RSn

)
of bigraded superalgebras.

As with NHn this allows computing Grothendieck groups of An very easily.

3.1.5. Categorical sl2-action and a new categorification of M(λq−1). The inclusion of algebras

An ,→ An+1 that adds a vertical strand to the right of a diagram gives rise to an induction functor8

Indn+1
n : An -smod → An+1 -smod.

In terms of bimodules, it can be viewed as tensoring on the left with the (An+1,An)-bimodule

An+1 ⊗An −. Taking its right adjoint gives a restriction functor

Resn+1
n : An+1 -smod → An -smod,

which is given by tensoring with the (An , An+1)-bimodule An ⊗An+1 −.

Proposition 3.13. We have

gdims An =
(
F n vλq−1 ,F n vλq−1

)
λq−1

,

where (−,−)λqm is the universal Shapovalov form.

We shift these functors by the right amount to get an sl2 commutator relation: we define the

functors

Fn := Indn+1
n , En := Resn+1

n 〈2n,−1〉, Qn :=Π(−)⊗k[ξ]〈1,0〉.

Theorem 3.14. There is a short exact sequence of functors

0 → Fn−1En−1 →EnFn →Qn+1〈m −2n,1〉⊕ΠQn+1〈2n −m,−1〉→ 0.

Proposition 3.15. Functors Fn and En are exact and send projectives to projectives.

3.1.6. The categorification theorem. We now restrict to the case where k is a field of character-

istic zero. In the following,

• Zπ is Z[π]/(π2 −1),

• Zπ((q,λ)) is the ring of formal Laurent series in the variables q and λ, given by the order

0 ≺ q ≺λ,

• An -smodlf is the category of An-supermodules which have cone bounded (see §2.3),

locally finite dimension over k, with morphisms preserving the degrees.

The superalgebra An has the following properties:

8As with An we drop the prefix “super” from our terminology.
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(1) It admits a unique indecomposable projective module P(n), up to isomorphism and

grading shifts. This projective module is of locally finite dimension contained in a cone

compatible with ≺.

(2) Its (topological) Grothendieck group is aZπ((q,λ))-module freely generated by the unique

simple module.

(3) This simple module admits a projective cover given by P(n).

(4) Taking a (an infinite) projective resolution of S, it is not hard to see the Grothendieck

group is also generated by the unique indecomposable projective module.

Theorem 3.16. The functors F= ⊕
n≥0Fn and E= ⊕

n≥0En induce an action of quantum sl2 on

the Grothendieck group G0(A -smodlf). With this action there is an isomorphism

G0(A -smodlf)⊗ZπQπ/(π+1) ∼= M(λqm)

of Uq (sl2)-modules. This isomorphism sends classes of projective indecomposables to the canon-

ical basis elements and classes of simples to dual canonical elements.

3.1.7. Derived equivalences. It is also not hard to see that dn from §2.5 induces a differential on

Am and turns it into a (bigraded) DGA.

In terms of the usual generators it is given by

dn

(
· · · · · ·

)
= (−1)n−` ∑

i1+···i`=n

i1 i2 · · ·i` · · ·

dn

( )
= 0 dn

( )
= 0

Proposition 3.17. (A,dn) is quasi-isomorphic to (NHn ,0).

The story with the snake lemma repeats again here, almost vertim ...

3.2. 2-Verma modules for sl2 (optional). Since we need to work with short exact sequences of

1-morphisms, we require the Hom-categories of a 2-Verma module to be Quillen exact. Recall

that a full subcategory C of an abelian category A is closed under extensions if for all short

exact sequence 0 → A → B → C → 0 in A with A and C in C , then B is also in C . An additive

full subcategory of an abelian category, closed under extensions, is called Quillen exact.

Let β be either an integer or a formal parameter and define εβ to be zero if β ∈Z and to be 1

otherwise. Let Λβ =β−2N0 be the support.

Definition 3.18. A 2-Verma module for sl2 with highest weightβ consists of a bigraded, k-linear,

idempotent complete, (strict) 2-category M(β) admitting a parity 2-functor Π : M(β) →M(β),

where:

• The objects of M(β) are indexed by weights µ ∈β+Z.
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• There are identity 1-morphisms Idµ for each µ ∈ β+Z, as well as 1-morphisms Fµ : µ→
µ− 2 in M(β) and their grading shift. We also assume that Fµ has a right adjoint and

define the 1-morphism Eµ : µ−2 →µ as a grading shift of a right adjoint of Fµ,

Eµ = (Fµ)R〈β−µ+2,−εβ〉.

• The Hom-spaces between objects are locally additive, cone complete, Quillen exact cat-

egories.

• For each n ∈ N0 there is a differential dn on the 2-Hom spaces that turn 1-Hom spaces

into DG-categories.

On this data we impose the following conditions:

(1) The identity 1-morphism Idµ of the object µ is isomorphic to the zero 1-morphism if

µ ∉Λβ.

(2) The enriched 2-Hom, HOMM(β)(µ,µ) is cone bounded for all µ. In particular, we have

EndM(β)(β) = k.

(3) There is an exact sequence

0 −−→ FµEµ −−→EµFµ −−→Qµ〈µ−β,εβ〉⊕ ΠQµ〈µ−β,−εβ〉 −−→ 0,

where Qµ(−) :=⊕
k≥0Π Idµ(−)〈2k +1,0〉.

(4) For each k ∈N0, Fk
µ carries a faithful action of the extended nilHecke algebra Ak (µ−β).

(5) The DG 2-category (M(β),dn) is derived-equivalent to CL’s 2-category (K(n),0) seen as

a DG 2-category with trivial differential.

3.2.1. k-linear 2-Verma modules, and abelian 2-Verma modules. Following Rouquier, we now

restrict to the case of 2-Verma modules which are subcategories of the strict 2-categories of all

bigraded, k-linear, supercategories, with 1-morphisms being functors and 2-morphisms being

(bi)grading-preserving natural transformations. We will call this a k-linear 2-Verma module.

When M is abelian, we will say it is an abelian 2-Verma module.

Example 3.19. Form the 2-category M′ as follows

(1) the objects are the categories Ak -smodlf,

(2) the 1-morphisms are cone bounded, locally finite direct sums of shifts of functors from

{Ek ,Fk ,Qk , Idk }, and

(3) the 2-morphisms are (bigrading preserving) natural transformations of functors.

We define M as the completion under extensions of M′ in the abelian 2-category of all functors.

A similar 2-category can be constructed using the categories M (λ)µ we have seen before (the

geometric categorification) by introducing the right shift m and this yields a 2 category whose

completion under extensions is equivalent to M′.
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3.2.2. Uniqueness of strong 2-representations: sl2.

Lemma 3.20. Let M be a k-linear 2-Verma module with highest weight β. Suppose X ∈Mβ is

projective. Then we have

gdimHOMβ−2k (Fk (X ),Fk (X )) = gdim Ak .

The k-linear 2-Verma module constructed from the category of modules over An is the es-

sentially unique k-linear 2-Verma module.

Proposition 3.21. (1) Let M be a k-linear 2-Verma module with highest weight β. For each

non zero projective X ∈Mβ there is a fully faithful functor(⊕
k≥0

Fk (X )
)
⊗A − : A -psmodlfg →M.

If M is idempotent complete and all objects of Mβ−2k are direct summands of Fk (X ) then

the functor is an equivalence.

(2) Let M be an abelian 2-Verma module with X ∈Mβ+m . Then there is a fully faithful func-

tor (⊕
k≥0

Fk (X )
)
⊗A − : A -smodlf →M.

Moreover, if Mβ−2k corresponds with the abelian category generated by Fk (X ) then this

functor becomes an equivalence.

3.3. (Quantum, symmetrizable) Kac–Moody algebras and Verma modules.

3.3.1. Quantum Kac–Moody algebras. Let (I , ·) be a Cartan datum:

• I is a finite set equipped with a symmetric bilinear form

−·− :Z[I ]×Z[I ] →Z

such that

(1) i · i ∈ {2,4, . . . }, and

(2) i · j ∈ {0,−1,−2, . . . } for all i , j ∈ I with i 6= j .

Elements of I are called simple roots. To such a Cartan datum we assign a graph Γ with ver-

tices given by I and we put an edge between i and j whenever i · j 6= 0.

A root datum of type (I , ·) is given by two freely generated abelian groups X ,Y , both con-

taining I , and a perfect pairing 〈−,−〉 : Y × X → Z such that 〈i , jX 〉 = 2 i · j
i ·i for all i ∈ I ⊂ Y and

jX ∈ I ⊂ X . We call Y the weight lattice and X the dual weight lattice.

The quantum Kac-Moody algebra g associated to the root datum (I , ·) is the unital associative

Q(q)-algebra generated by Ei ,Fi and Kγ for i ∈ I and γ ∈ Y , with relations for all γ,γ′ ∈ Y and
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i ∈ I :

K0 = 1, KγKγ′ = Kγ+γ′ ,

KγEi = q〈γ,iX 〉Ei Kγ, KγFi = q−〈γ,iX 〉Fi Kγ,

and with the sl2-commutator relation for all i , j ∈ I :

Ei F j −F j Ei = δi j
K(i ·i /2)i −K−(i ·i /2)i

qi −q−1
i

,

where qi = q (i ·i )/2, and the quantum Serre relations for i 6= j ∈ I :

∑
a+b=di j+1

(−1)a

[
di j +1

a

]
qi

E a
i E j E b

i = 0,
∑

a+b=di j+1
(−1)a

[
di j +1

a

]
qi

F a
i F j F b

i = 0,

where di j =−〈i , jX 〉 and

[
a

b

]
qi

is the quantum binomial in the variable qi .

Given a sequence i = i1 . . . im we write Fi = Fi1 . . .Fim and the same for Ei = Ei1 . . .Eim .

3.3.2. Universal Verma modules. The (standard) Borel subalgebra b of g is the subalgebra gen-

erated by Kγ and Ei for all i ∈ I and γ ∈ Y .

Let β= {βi }i∈I ∈C|I | and Cβ =Q((q,β))vβ be the Uq (b)-module defined by

Ei vβ = 0, Kγvβ = q〈β,γ〉vβ,

for all i ∈ I and γ ∈ Y . The universal Verma module is the induced representation

M(β) = g⊗bCβ.

It is an infinite dimensional Uq (g)-weight module with highest weight β.

Remark 3.22. Whenever βi ∉Zwe denote λi = qβi and treat it as a formal parameter.

Remark 3.23. The notation Q((q,λ)) means the field of formal Laurent series in the variables

q and λi ’s (if any). It is given by formal series with degrees contained in cones compatible

with some fixed additive order ≺ on Z1+|I |. For the means of categorification, and to agree with

common conventions, we will require that this order is given by 0 ≺ q and 0 ≺ λi for all i ∈ I , so

that
1

q −q−1
=−q

1

1−q2
=−q(1+q2 +q4 + . . . ).

We will also demand q ≺λi so that

1

1−q−2
i λ2

i

= (1+q−2
i λ2

i +q−4
i λ4

i + . . . ).

Other choices could be possible and everything should work the same way with minor modifi-

cations.
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3.3.3. (Parabolic) Verma modules and finite-dimensional irreducibles.

• A (standard) parabolic subalgebra p of g is a subalgebra that contains b.

It is generated by Kγ, Ei and F j for all γ ∈ Y , i ∈ I and j ∈ I f for some fixed subset I f ⊂ I .

(1) The part given by Kγ and E j ,F j for γ ∈ Y and j ∈ I f is called the Levi factor and written l.

(2) The part generated by Ei for i ∈ Ir = I \ I f is called the nilpotent radical and denoted u.

(3) There is a decomposition p= l⊕u.

Fix a parabolic subalgebra p and choose β= {βi }i∈I ∈ C|I | such that β j = n j ∈N for all j ∈ I f .

We write N = {n j } j∈I f .

Let V (β, N ) be the unique, finite dimensional, irreducible representation of l with highest

weight β, overQ((q,β)). We extend it to a representation of p by setting u.V (β, N ) = 0.

Definition 3.24. The parabolic Verma module of highest weight β associated to p ⊆ g is the

induced module

Mp(β, N ) = g⊗pV (β, N ).

The parabolic Verma module Mp(β, N ) is a weight module with highest weight β, infinite

dimensional whenever p 6= g. We denote the highest weight vector vβ by abuse of notation.

• We think of a parabolic Verma module intuitively as a “mixture of a finite-dimensional rep-

resentation and a Verma module”, in the sense that there are simple roots for which we have a

Verma module (the subset Ir ⊆ I ), and others for which we have a finite-dimensional representa-

tion (the subset I f ⊆ I ).

Theorem 3.25. (1) If βi ∉N for all i ∈ Ir , then Mp(β, N ) is irreducible.

(2) If βi = ni ∈N0 for some i ∈ Ir , then there is a short exact sequence of g-modules

0 → Mp(β\ {qni
i }∪ {q−ni−2

i }, N ) → Mp(β, N ) → Mp⊕Fi (β\ {qni
i }, N ∪ {ni }) → 0,

where p⊕Fi is the parabolic subalgebra given by I f ∪ {i }.

(3) Given a parabolic Verma module Mp(β, N ) withβi ∉N0 for some i ∈ Ir , then for any ni ∈Z
there is a surjective map

evni : Mp(β, N )�Mp(β\ {λi }∪ {qni
i }, N ),

given by evaluating λi = qni
i .

We say that there is an arrow from irreducible Mp(β, N ) to Mp′(β′, N ′) if there is an evaluation

map evni yielding an exact sequence

0 → Mp(β\ {λi }∪ {q−ni−2
i }, N ) → evni

(
Mp(β, N )

)→ Mp′(β′, N ′) → 0.

This allows us to define a partial order on the irreducible parabolic Verma modules, saying that

Mp(β, N ) is greater than Mp′(β′, N ′) if there is a sequence of arrows from Mp(β, N ) to Mp′(β′, N ′).
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There are maximal elements given by the universal Verma module M(β) and its shifts M(βqµ),

and a collection of minimal elements given by all the finite dimensional irreducible modules

V (N ).

3.3.4. The Shapovalov form. We consider some (anti-)automorphisms of g. First let q be the

C(q)-linear involution mapping q to q−1. Then let ρ : g→ gop be the Q(q)-linear algebra anti-

involution defined by

ρ(Ei ) = q−1
i K−(i ·i /2)i Fi , ρ(Fi ) = q−1

i K(i ·i /2)i Ei , ρ(Kγ) = Kγ,

for all i ∈ I and γ ∈ Y . Let also τ : g→ gop be theQ(q)-linear anti-automorphism given by

τ(Ei ) = q−1
i K−(i ·i /2)i Fi , τ(Fi ) = q−1

i K(i ·i /2)i Ei , τ(Kγ) = K−γ,

for all i ∈ I and γ ∈ Y , and

τ(pW ) = pτ(W ), τ(W W ′) = τ(W ′)τ(W ),

for W,W ′ ∈Uq (g) and p ∈C(q).

Definition 3.26. The universal Shapovalov form

(−,−) : Mp(β, N )×Mp(β, N ) →Q((q,β))

is the bilinear form defined by

• (vβ, vβ) = 1,

• (uv, v ′) = (v,ρ(u)v ′), with u ∈ g and v, v ′ ∈ Mp(β, N ),

• f (v, v ′) = ( f v, v ′) = (v, f v ′), with f ∈Q((q,β)).

The C(q)-linear involution q extends toQ(q,β) (but not toQ((q,β))!) by sending λi to λ−1
i for

all i ∈ Ir .

3.3.5. Bases for Mp(β, N ). Any parabolic Verma module admits at least one natural basis (the

F ’s basis) {mµ}µ∈supp(Mp(β,N )) generated by the action of the Chevalley generators {Fi }i∈I on the

highest weight vector. Namely each element can be written as aQ((q,β))-linear combination of

the various F br
ir

. . .F b1
i1

vβ for some i1, . . . , ir ∈ I and b1, . . . ,br ∈N.

Of course we do not have all possible combinations of words in the Fi ’s because of the Serre

relations and the fact that for some i ∈ I f the Fi ’s act nilpotently.

Replacing each F b
i by the divided power F (b)

i = F b
i /([b]qi !) gives an another useful basis de-

noted {m′
µ}µ∈supp(Mp(β,N )) that we refer to as divided power basis. For each such basis there is

a dual basis {mµ}µ∈supp(Mp(β,N )) and {m′µ}µ∈supp(Mp(β,N )) defined respectively by the relations

(mµ,mν) = δµ,ν and (m′
µ,m′ν) = δµ,ν.
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3.4. p-KLR algebras. Let k be a commutative unital ring (later we will need it to be a field of

characteristic 0).

Fix a Cartan datum (I , ·), a root datum and a parabolic subalgebra p given by I f ⊂ I . Using the

notations from Khovanov and Lauda, we write for ν ∈N[I ]:

ν= ∑
i∈I
νi · i , νi ∈N,

with |ν| =∑
i νi and Supp(ν) = {i |νi 6= 0}. We put di j =−2 i · j

i ·i =−〈i , jX 〉 ∈N.

We also fix a choice of scalars Q as introduced by Rouquier. Following the conventions

in Cautis-Lauda, the set Q consists of:

• ti j ∈ k× for all i , j ∈ I ,

• s t v
i j ∈ k for i 6= j , 0 ≤ t < di j and 0 ≤ v < d j i ,

• ri ∈ k× for all i ∈ I ,

respecting

• ti i = 1,

• ti j = t j i whenever di j = 0,

• s t v
i j = sv t

j i .

For t (i ·i )+v( j · j ) 6= −2(i · j ), or t < 0, or v < 0, we put s t v
i j = 0. Thus we have spq

i j = 0 for p > di j or

q > d j i . We will also write s
di j 0
i j = ti j and s

0d j i

i j = t j i . Hence if i · j = 0 we get s00
i j = s00

j i = ti j = t j i .

Remark 3.27. A usual choice is given by ri =±1, ti j = 1 and s t v
i j = 0 for t 6= di j or v 6= d j i .

3.4.1. KLR algebras and their cyclotomic quotients. Consider the collection of braid-like dia-

grams on the plane connecting |ν| points on the horizontal axis R× {0} to |ν| points on the hor-

izontal line R× {1}, admitting no critical point when projected onto the y-axis, so that a strand

can never turn around.

• We allow strands to intersect each other without triple intersection points.

• Each strand is labeled by a simple root, with νi strands labeled i , and they can carry

dots.

• A non-negative integer k ∈ N next to a dot means there are k consecutive dots on the

strand.

• These diagrams are taken up to regular isotopy which does not create critical points.

Definition 3.28. Let R(ν) be the k-algebra generated by the diagrams described above with

multiplication given by gluing diagrams on top of each other whenever the labels of the strands

agree, and zero otherwise. We read diagrams from bottom to top by convention and so ab

means we stack a atop of b. The diagrams are subjected to the local relations (10) to (13) below.
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i j

=



0 if i = j ,

∑
t ,v

s t v
i j

i

t

j

v if i 6= j ,
(10)

where the sum is restricted to the finite number of pairs t , v ∈ N such that t (i · i )+ v( j · j ) =
−2(i · j ),

i j

=
i j i j

=
i j

if i 6= j ,(11)

(12)

i i

−
i i

= ri

i i

=
i i

−
i i

ji k

−

ji k

=



0 if i 6= k,

ri
∑
t ,v

s t v
i j

∑
r+s=t−1

j

v

i

r

i

s otherwise.
(13)

Remark 3.29. We also remark that, whenever i · j = 0 we have t = v = 0 and the sums in in (10)

give ti j . Also in this case, the sums over t , v in (13) vanish since we must have v = 0.

The algebra R(ν) is graded and generated by (we indicate the grading below the diagrams)

i

i · i

i j

−i · j

Definition 3.30. R = ⊕
ν∈N[I ]

R(ν).

3.4.2. Cyclotomic KLR algebras. Let Λ = {Λi }i∈I be an integral dominant weight. Define the

cyclotomic ideal IΛ(ν) ⊂ R(ν) as the 2-sided ideal generated by the diagrams

j

Λ j

i1

· · ·
im−1

with j i1 . . . im−1 ∈ Seq(ν) and j ∈ I .
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Definition 3.31. The cyclotomic KLR algebra RN (λ) is the quotient

RΛ(ν) = R(ν)/IΛ(ν).

We put

RΛ = ⊕
ν∈N[I ]

RΛ(ν).

• The cyclotomic KLR algebra RΛ categorifies the irreducible V (Λ) in the sense that there

is a g-action on categories of modules of RΛ that descend to the Grothendieck groups,

yielding isomorphisms of g-modules

G0(RΛ -gmod) ∼=V (Λ), K0(RΛ-pmod) ∼=V (Λ).

3.4.3. Extended KLR superalgebras: p-KLR superalgebras. We introduce below KLR-like super

algebras associated to a pair (p,g), where g is a quantum Kac-Moody algebra and p ⊆ g a par-

abolic subalgebra. These algebras can be thought as a mix between the KLR algebras R(ν) the

algebras An .

Consider the collection of KLR diagrams where regions can be decorated with floating dots,

drawn as hollow dots .

• Floating dots are labeled by simple roots in Ir as a subscript, together with a non-negative

integer as a superscript. By convention, we do not write the superscript of a floating dot

whenever it is 0.

• Two floating dots are not allowed to be at the same height in a diagram.

• These diagrams are taken up to the isotopies allowed for KLR diagrams that preserve the

relative height of floating dots.

• We assign a parity to these diagrams by declaring that floating dots are odd while cross-

ings and dots are even.

An example of such a diagram is given below, for i , j ,k ∈ I with i ,k ∈ Ir ,

(14)

i j j k i

2i
2
k

=

i j j k i

0
i

2
k

.

Definition 3.32. Let Rp(ν) be the k-super algebra generated by the KLR diagrams together with

the floating dots, with multiplications as defined in the KLR algebra.
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The diagrams are subjected to the KLR relations together with the local relations (15)-(19)

involving floating dots, where we suppose all subscripts are in Ir :

· · ·
a
i b

j

= − ·· ·a
i

b
j ,(15)

i

a
i

i

−

i

a
i

i

=

i

a
i

i

−

i

a
i

i

,(16)

i

a
j =


i

a −1
i −

i

a −1
i if i = j and a > 0 ,

∑
t ,v (−1)v sv t

j i

i

ta + v
j otherwise,

(17)

i j

a
j =

i j

a
j +∑

t ,v
s t v

i j

∑
r+s=v−1

(−1)r

i

t

j

sa + r
j if i 6= j ,(18)

for all a,b ∈N and i , j ,k ∈ I . Moreover, we also demand a floating dot in the leftmost region to

be zero:

j k `

· · ·a
i = 0.(19)

We put

Rp =
⊕

ν∈N[I ]
Rp(ν),

and call it the extended KLR algebra associated to the pair (p,g) (p-KLR algebra for short). Taking

p= g recovers the usual KLR algebra.

Definition 3.33. Rp = ⊕
ν∈N[I ]

Rp(ν).

Remark 3.34.

• Relation (15) means that, up to a sign, floating dots can move freely within regions.

• It also means that a diagram containing two floating dots with the same subscript and

superscript in the same region is zero.

• Relation (19) implies the diagram in (14) is zero since the floating dot with subscript i

slides to the left over the strand with label j by (17), and reaches the leftmost region.
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• Whenever i · j = 0 we have t = v = 0 and the sums in (17) give ti j , so that the floating dot

jumps over the strand at the cost of multiplying by an invertible scalar. Also in this case

the sums over t , v in (18) vanish, since we must have v = 0.

The algebra Rp(ν) is multigraded and the degree of a floating dot is not defined locally: it

depends on the strands at its left. In order to still be able to write equations in a compact form,

we introduce for each diagram a function that takes a region and spits a |I |-tuple K = ∑
ki · i

where ki ∈N is the number of strands labeled i at its left.

Concretely, when we write a local relation with a K placed somewhere in a region, it means it

is embedded in a diagram where there are ki strands labeled i at the left of this region.

For a fixed K it will be sometimes useful to also consider KX = ∑
i∈I ki · iX ∈ X . This allows

compact notations such as 〈i ,KX 〉 = −∑
j∈I k j di j . In particular |K | counts the total number of

strands at the left of the considered region. We will also abuse notation and write K − i instead

of K −1 · i .

For example, we can now write relation (19) as a local relation

a
i

K
= 0 whenever |K | = 0.

We introduce a multigrading on Rp(ν) consisting of a quantum grading q and |Ir |homological

gradings λ = {λi }i∈Ir . We write the degree of an element as a pair (r,L) with r ∈ Z being the q-

degree, and L =∑
i∈Ir `i · i ∈Z|Ir | being the homological multigrading.

We fix the degree of the generators by

K

i

(i · i ,0)

a
i

K

((1+a −〈i ,KX 〉+ki )i · i ,2 · i )

i j

K

(−i · j ,0)

Relations (10-19) above are clearly homogeneous for this multigrading, and Rp(ν) becomes a

multigraded superalgebra (recall dots and crossings are even and floating dots are odd). To

keep the notation simple we will write grading shifts by monomials in variables q and λi s, and

the parity shift by Π.

• Rp(ν) contains the KLR algebra R(ν) as a graded subalgebra if we extend its q-grading to

a multigrading trivially.

• If I = Ir = {i } with i · i = 2 we recover the algebra An . In this case, a floating dot with

nonzero subscript is a linear combination of floating dots with zero subscript with coef-

ficients being (partially symmetric) polynomials on dots.
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• In general for p ⊂ p′, with I f ⊂ I ′f , we can obtain Rp′(ν) as a quotient (or resp. a sub-

algebra) of Rp(ν) by killing floating dots with subscript in I ′f \ I f (resp. by restricting to

floating dots with subscript in I ′r ⊂ Ir ).

• As in the case of the KLR algebras and An the algebras Rp(ν) act faithfully on a super-

commutative ring.

3.4.4. Tight floating dots and a basis for Rp. Contrary to the algebra An , in general we cannot

slide all floating dots to the bottom (or to the top) of a diagram from Rp. This implies that the

basis of An in Proposition 3.8 do not extend to basis of Rp(ν) unless ν = νi · i . This is different

from situation in KLR algebras where we have a basis given by diagrams split in two regions,

one containing all crossings (labelled by elements of S|ν|) and one containing dots:

• considering diagrams of Rp(ν) that are split in three regions (containing crossings, dots

and floating dots respectively) does not give a basis of Rp(ν).

Definition 3.35. We say that a floating dot is tight if it has superscript 0 and it is placed directly

at the right of the leftmost strand.

By (19), for a tight floating dot not to be zero, it must have the same subscript as the strand at

its left and so we will always assume it is the case. For example,

i j j i ii

i

Thanks to relations (17), (18) and (19) these can be brought to the region immediately at the

right of the first strand, and this shows that any diagram of Rp(ν) can be written as a k-linear

combination of diagrams involving only KLR generators and tight floating dots. Moreover, we

can also construct a basis in terms of these type of diagrams.

Proposition 3.36. There is a basis of Rp(ν) given in terms of KLR generators and involving only

tight floating dots.

This basis generalizes the basis of An in Proposition 3.11, it is defined combinatorially and its

particular form is not important for this lectures (see [19, §3.3]).

3.4.5. Semi-cyclotomic p-KLR algebras. Fix β and N = {n j } j∈I f as before.

Define the semi-cyclotomic ideal I N (ν) ⊂ Rp(ν) as the 2-sided ideal generated by the diagrams

j

n j

i1

· · ·
im−1

with j i1 . . . im−1 ∈ Seq(ν) and j ∈ I f .
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Definition 3.37. The semi-cyclotomic p-KLR algebra RN
p (ν) is the quotient

RN
p (ν) = Rp(ν)/I N (ν).

We put

RN
p = ⊕

ν∈N[I ]
RN
p (ν).

By taking p= g we recover the usual cyclotomic KLR algebras.

3.4.6. Categorical g-action. Adding a vertical strand labeled i at the right of a diagram from

Rp(ν) defines a homomorphism Rp(ν) → Rp(ν+ i ). Define the functors

Qi =
∐
a≥0

q2a+1
i Π : RN

p (ν)-smod → RN
p (ν)-smod,

and

Fi = Indν+i
ν : RN

p (ν)-smod → RN
p (ν+ i )-smod,

Ei =


q1+〈i ,νX 〉

i λ−1
i Resν+i

ν : RN
p (ν+ i )-smod → RN

p (ν)-smod if i ∈ Ir ,

q1−ni+〈i ,νX 〉
i Resν+i

ν : RN
p (ν+ i )-smod → RN

p (ν)-smod otherwise.

We write 1ν for the identity functor of Rp(ν)-smod.

Theorem 3.38. Functors Qi ,Fi ,Ei are exact and send projectives to projectives. Moreover, there

are natural, non-split, short exact sequences

0 → FiEi 1ν→EiFi 1ν→ q−〈i ,νX 〉
i λiQi 1ν⊕q〈i ,νX 〉

i λ−1
i ΠQi → 0,

for all i ∈ Ir , and natural isomorphisms

E jF j 1ν ∼= F jE j 1ν⊕[n j−〈 j ,νX 〉]q j
1ν if n j −〈 j ,νX 〉 ≥ 0,

F jE j 1ν ∼=E jF j 1ν⊕[〈 j ,νX 〉−n j ]q j
1ν if n j −〈 j ,νX 〉 ≤ 0,

for all j ∈ I f . There are also natural isomorphisms

FiE j 1ν ∼=E jFi 1ν

and

b(di j+1)/2c⊕
a=0

[
di j +1

2a

]
qi

F2a
i F jF

di j+1−2a
i 1ν ∼=

bdi j /2c⊕
a=0

[
di j +1

2a +1

]
qi

F2a+1
i F jF

di j−2a
i 1ν,

b(di j+1)/2c⊕
a=0

[
di j +1

2a

]
qi

E2a
i E jE

di j+1−2a
i 1ν ∼=

bdi j /2c⊕
a=0

[
di j +1

2a +1

]
qi

E2a+1
i E jE

di j−2a
i 1ν,

for all i , j ∈ I with i 6= j .
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Choosing p= g (and thus Ir =;) in the theorem above yields the direct sums decompositions

used to prove the Khovanov-Lauda cyclotomic categorification conjecture, which was proven

by Kang-Kashiwara [6] and Webster [22].

3.4.7. Rb and RN
p as a DGAs.

(1) The case p= b: Choose a subset I f ⊂ I and consider the corresponding parabolic subalgebra

p. Fix also some N = {n j } j∈I f . We will see below that RN
p can be obtained as the homology of Rb

with respect to a differential dN .

We equip Rb(ν) with the differential dN below. Firstly, it acts trivial on KLR generators,

dN

(
i

)
= 0, dN


i j

= 0,

for all i , j ∈ I .

To define dN on floating dots we decompose it into diagrams involving only tight floating

dots and put

(20) dN (ω j ) = (−1)n j x
n j

1 ,

for j ∈ I f and ω j supposed to be tight, that is in a region with K = 1 · j .

Remark 3.39. There is an explicit formula for the action of dN on an arbitrary floating dot [19].

In this case dN returns a linear combination of partially symmetric polynomials.

Remark 3.40. The case p= b gives the cyclotomic KLR algebra RN .

Proposition 3.41. The algebra Rb(ν) equipped with dN forms a formal DG algebra (Rb(ν),dN )

whose homology is isomorphic to the cyclotomic quotient RN
p (ν). Moreover, if 〈 j ,νX 〉 > n j +ν j for

j ∈ I ′f then (Rb(ν),dN ) is acyclic.

This results fits the idea that a parabolic Verma module is a mix between a finite-dimensional

representation and a Verma module.

(2) The case of general p: Suppose that I f and p are fixed.

• Choose a subset I f ( I ′f ⊂ I such that p( p′.
• For each j ∈ I ′f \ I f , choose a non-negative integer n j ∈N.

• Write N ′ = {n j | j ∈ I ′f \ I f }.

The same formulas as before endow RN
p (ν) with a differential dN ′ .

Proposition 3.42. (RN
p ,dN ′) is a formal DG algebra and

H∗(RN
p ,dN ′) ∼= RN∪N ′

p′ (ν).
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The following diagram summarizes the several extended KLR DG algebras and differentials.

Rb(ν)
dN RN

p (ν)
dN ′
 RN∪N ′

p′ (ν)
dN ′′
 RN∪N ′∪N ′′

(ν)

We have various (commutative) ways of going from Rb(ν) to RN ′′
(ν).

3.4.8. New bases for cyclotomic KLR algebras. Under Proposition 3.42, the basis in Proposi-

tion 3.36 give new basis of cyclotomic KLR algebras (for all types). It would be interesting to

know if in type A these are related to the Hu–Matthas graded cellular bases [5].

3.5. Categorification of Verma modules. Let

• RN
p (ν)-psmodlfg be the category of cone bounded, locally finitely generated projective,

left RN
p (ν)-supermodules.

These are the projective modules generated by a collection of elements such that the (infi-

nite) sum of the monomials corresponding to their degrees gives an element of Z((q,β)). This

category is cone complete (i.e. it contains all cone bounded, locally finite coproducts), and pos-

sesses the local Krull-Schmidt property. Indeed, the indecomposable projectives have all locally

finite dimensions contained in cones compatible with≺, and their part in minimal degree is iso-

morphic to k. The topological split Grothendieck group K 0(RN
p (ν)) is a free Zπ((q,β))-module,

with Zπ =Z[π]/(π2 −1), generated by the classes of indecomposable projective modules, up to

shift.

We consider also

• RN
p,µ(ν)-smodlf, the category of cone bounded, locally finite dimensional RN

p (ν)-modules.

Here, the graded dimension of the modules seen as k-vector spaces are in Z((q,β)). It is also

cone complete and possesses the local Jordan-Hölder property. Therefore its topological Gro-

thendieck group G0(RN
p (ν)) is also a Zπ((q,β))-module, freely generated by the classes of simple

modules. When specializing the parameter π=−1 and extending the scalars toQ, we write

G̃0(RN
p (ν)) =G0(RN

p (ν))⊗ZπQ[π]/(π+1),

and the same for K̃ 0(RN
p (ν)).

Taking projective resolutions of the simple objects yields a change of basis, and G̃0(RN
p (ν)) is

also freely generated by the classes of projective modules. This justifies the choice q ≺λi in the

order chosen to define Z((q,β)).

The functor Qi descends onto the Grothendieck groups as

[Qi M ] =−qi (1+q2
i +q4

i + . . . )[M ] = 1

qi −q−1
i

[M ],

explaining the choice 0 ≺ q .
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Example 3.43. Take a simple object S = Q and projective RN
p (i ) ∼= Q[ξ]⊗∧•〈ω〉 with deg(ξ) =

(2i · i ,0) and deg(ω) = (−2i · i ,2 · i ), viewed as modules over RN
p (i ). Then S admits a projective

resolution yielding

[S] = (1−q2
i )(1−πq−2

i λi +q−4
i λ4

i − . . . )[RN
p (i )].

We want to take (1+q−2
i λi +q−4

i λ4
i + . . . ) as the inverse of (1−q−2

i λ2
i ).

Theorem 3.44. The functors {Ei ,Fi }i∈I induce an action of g on G̃0(RN
p ). In particular there is an

isomorphism of g-modules

G̃0(RN
p ) ∼= Mp(λq−1, N )

sending classes of indecomposable projective modules to divided canonical basis elements and

classes of simple modules to dual canonical basis elements.

Here (λq−1)i is λi q−1
i if i ∈ I f or ni if i ∈ I \I f .

Similarly, {Ei ,Fi }i∈I induce an action of g on K̃ 0(RN
p, ) and we have an isomorphism of g-

modules K̃ 0(RN
p ) ∼= Mp(λq−1, N ). However in this case dual canonical basis elements are only

given by formal power series of the classes of projectives.

The Shapovalov form admits a nice interpretation in term of graded (super)dimensions of

some vector spaces.

Proposition 3.45. For each M , N ∈ RN
p -smodlf we have

([M ], [N ]) = sdim Mψ⊗RN
p

N ,

where (−,−) is the universal Shapovalov form, and Mψ is the right RN
p -module given by the anti-

involution on RN
p that reverses diagrams along the horizontal axis.

The induction and restriction functors Ei ,Fi have their derived counterparts given by replac-

ing objects with their bar resolution, so that Dl c (RN
p ,dN ′) and Dl f (RN

p ,dN ′) are equipped with a

categorical action of g. This categorical action induces in turn an action of g on both topological

Grothendieck groups.

Theorem 3.46. There are equivalences of triangulated categories

Dlc (RN
p ,dN ′) ∼=Dlc (R(N∪N ′)

p′ ,0), Dl f (RN
p ,dN ′) ∼=Dl f (R(N∪N ′)

p′ ,0).

Corollary 3.47. There are isomorphisms of g-modules

K 0(Dlc (RN
p ,dN ′))⊗Q∼= K 0(Dlc (R(N∪N ′)

p′ ,0))⊗Q∼= K̃ 0(R(N∪N ′)
p′ ) ∼= Mp′(Λ′, N ∪N ′),

and

K 0(Dl f (RN
p ,dN ′))⊗Q∼= K 0(Dl f (R(N∪N ′)

p′ ,0))⊗Q∼= G̃0(R(N∪N ′)
p′ ) ∼= Mp′(β′, N ∪N ′),

where β′ = {βi |i ∈ I ′r }.
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We view this result as a categorification of the order on the parabolic Verma modules.

Remark 3.48. Note that equipping RN
p with a trivial differential and passing to the derived cat-

egory yields a natural way to specialize π=−1 in the Grothendieck group.

3.6. An axiomatic definition of (strong) 2-Verma modules and uniqueness. This works the

same way as in sl2, but we require a family of differentials corresponding to the order projection

of parabolic Verma modules and finite-dimensional irreducibles. Uniqueness work as in the

case of sl2.

3.7. References for Lecture III.

[17] G. Naisse and P. Vaz, On 2-Verma modules for quantum sl2, 2017,

math.RT/1704.08205.

[19] G. Naisse and P. Vaz, 2-Verma modules, arXiv:1710.06293 [math.RT] (2017).
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