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Abstract
We explain how Queffelec–Sartori’s construction of the HOMFLY-PT link polynomial can
be interpreted in terms of parabolic Verma modules for gl2n . Lifting the construction to the
world of categorification, we use parabolic 2-Verma modules to give a higher representation
theory construction of Khovanov–Rozansky’s triply graded link homology.
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1 Introduction

One of the most celebrated homology theories of knots and links in 3-space is Khovanov and
Rozansky’s glN -link homology [12] categorifying the glN -link invariant, for N > 0. Soon
after the appearance of [12], the existence of a triply-graded link homology categorifying
the HOMFLY-PT polynomial was predicted in [5] by Dunfield, Gukov and Rasmussen, who
made various conjectures about the structure of such an homology theory.

A rigorous construction of a triply-graded link homology categorifying the HOMFLY-PT
polynomial was given by Khovanov and Rozansky in [13] (see also [9] for a construction
using Hochschild homology of Soergel bimodules). The structure of this link homology
was studied by Rasmussen in [25]. Rasmussen defined a family of differentials on the KR
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HOMFLY-PT link homology and showed that, for each N > 0, these differentials give rise
to a spectral sequence starting at the KR HOMFLY-PT homology and converging to the
glN -homology.

In this paper we use parabolic Verma modules to give a new interpretation of the
HOMFLY-PT polynomial in terms of the representation theory of quantum gl2n . Using the
categorification of Verma modules from our previous work [20], we lift this procedure,
yielding a new construction of KR triply-graded link homology. We also recover a spectral
sequence, very similar to Rasmussen’s [25], from a categorical instance of the fact that we
can recover irreducible, integrable representations as quotients of parabolic Verma modules.

Summary of the paper and description of themain results

In the search for a construction of the HOMFLY-PT polynomial based on representation
theory, Queffelec and Sartori [24] provided an algebraic gadget, called the double Schur
algebra, which accommodates both the Hecke algebra and the Ocneanu trace under the same
roof. The double Schur algebra Ṡq,β(�, k) contains two copies of the Schur algebra (the cases
� = 0 and k = 0), and is defined as a quotient of idempotented quantum gl�+k , whose weight
lattice has been shifted by a formal parameter. For a link L presented as the closure of a
braid b with n strands, Queffelec and Sartori constructed an element in the double Schur
algebra. This element is a multiple of a certain idempotent and its coefficient coincides with
the HOMFLY-PT polynomial of L .

We show that the construction in [24] finds a natural place in the terms of representations
of the double Schur algebra. In this paper we extend the notion of Weyl modules to double
Schur algebras and translate Queffelec and Sartori’s results to this context. Concretely we
show that with the choice of highest weight1 β = (β, . . . , β, 0, . . . , 0) (there are n β’s and n
0’s in β), the HOMFLY-PT polynomial of L can be obtained from theWeyl moduleW (β) as
a map which is a multiple of the identity, the coefficient being the HOMFLY-PT polynomial
of L .

As representations ofUq(gl�+k), Weyl modulesW (μ) are isomorphic to parabolic Verma
modules Mp(μ) for a certain parabolic subalgebra p. The previous paragraph can then be
reformulated entirely in terms of parabolic Verma modules.

Theorem A (Theorem 2) Let L be a link presented as the closure of a braid b with n strands.
Applying the construction aboce yields an element Pp(b) ∈ EndUq (gl2n)

(
Mp(β)

)
which is

a link invariant. It is a multiple of the identity whose coefficient equals the HOMFLY-PT
polynomial of L.

For p a parabolic subalgebra of g, we recall the construction of the dg-enhanced KLR
algebras Rp in the form of diagrammatic algebras, as introduced in [20–22], as well as their
cyclotomic quotient Rμ

p . When p = g, they coincide with the usual (cyclotomic) Khovanov–
Lauda and Rouquier algebras [10,26]. Then, we explain how categories of dg-modules over
(Rμ

p , 0) categorify parabolic Verma modules, with action of the quantum group given by the
usual setup of induction/restriction along the map that add a vertical strand. We upgrade this
data into a 2-category Mp(μ), which we call a (parabolic) 2-Verma module.

The Rickard complex associated to a braid acts on the homotopy category of complexes
of the Hom-categories of Mp(β) for a certain p ⊂ gl2n (this is a lift of the usual braiding
induced by the embedding of the Hecke algebra into a Schur algebra that in turn embeds

1 We allow ourselves to harmlessly abuse notation here, which will payoff further ahead.
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canonically in a double Schur algebra). For a closure of a braid b this procedure gives a chain
complex C(cl(b)). We prove that the homotopy type of C(cl(b)) is a link invariant. This
means that an isotopy of braid closures induces an isomorphism in the homotopy category
of such complexes.

Theorem B (Propositions 4, 5, Corollary 1, Theorem 7) The homotopy type of C(cl(b)) is
invariant under the Markov moves. Its homology groups are triply-graded link invariants
and its bigraded Euler characteristic is the HOMFLY-PT polynomial of the closure of b.
Moreover, H(b) is isomorphic to Khovanov and Rozansky HOMFLY-PT homologyHKR(b),
after regrading.

Introducing a non-trivial differential dN on Rβ
p turns it into another dg-algebra. We can

then recover the usual cyclotomic quotient RΛ
gl2n

of the KLR algebra associated with gl2n , in
the sense that the former is formal and quasi-isomorphic to the latter. The work of Mackaay
and Yonezawa in [17] implies that replacing Rβ

p by RΛ
gl2n

in the construction above produces
Khovanov and Rozansky’s glN -link homology HKRN (cl(b)) for the closure of b.

Finally, we show that the differential dN descends to HKR(b) and engenders a spectral
sequence starting at HKR(b) and converging to HKRN (b).

We have tried to keep this paper self-contained while reducing major technicalities. This
way we hope to have made it readable by either topologists without a strong background
in (higher) representation theory and by (higher) representation theorists without a strong
background in topology.

2 Parabolic Vermamodules and link invariants

2.1 Link invariants

In [24] Queffelec and Sartori proposed an algebraic method to construct the HOMFLY-PT
and the Alexander polynomials of links in 3-space. They defined a generalization of the
idempotented q-Schur algebra called the doubled Schur algebra. In this section we briefly
recall the basics of the construction in [24], and explain how it fits within the theory of
parabolic Verma modules.

2.1.1 The doubled Schur algebra

In the following, we let β be a formal parameter. We write λ for qβ , and work over the ring
Z(q, λ). Let Λ

β
�,k be the set of sequences (μ−�+1, . . . , μ0, . . . , μk) ∈ (β − N0)

� × N
k
0, for

� ≥ 0 and k ≥ 0.

Remark 1 We follow this convention, slightly different from [24], because we want to relate
it later with highest weight, rather than lowest weight, parabolic Verma modules, and it will
allow us to keep the notation simple.

Let I�,k := {−� + 1, . . . , 0, . . . , k − 1}. Let αi := (0, . . . , 0, 1,−1, 0, . . . , 0) ∈ Z
�+k ,

the entry 1 being at position i ∈ I�,k . For μi ∈ Z � (Z + β), let

[μi ]q :=

⎧
⎪⎪⎨

⎪⎪⎩

qμi − q−μi

q − q−1 , if μi ∈ Z,

λqμi−β − λ−1qβ−μi

q − q−1 , if μi ∈ Z + β,
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be the (shifted) quantum number.

Definition 1 The doubled Schur algebra Ṡq,β(�, k) is the Z(q, λ)-linear category defined by
the following data:

– Objects: 1μ for μ ∈ (β + Z)� × Z
k , together with a zero object.

– Morphisms: generated by morphisms

1μ+αi Ei1μ ∈ Hom(1μ, 1μ+αi ), 1μ−αi Fi1μ ∈ Hom(1μ, 1μ−αi ),

for i ∈ I�,k , together with the identity morphism of 1μ (denoted by the same symbol).
The morphisms are subject to the following relations:

(Ei Fj − Fj Ei )1μ = δi, j [μi − μi+1]q1μ, (1)

Ei E j1μ = E j Ei1μ, Fi Fj1μ = Fj Fi1μ, if |i − j | > 1, (2)

E2
i Ei±11μ + Ei±1E

2
i 1μ = [2]q Ei Ei±1Ei1μ,

F2
i Fi±11μ + Fi±1F

2
i 1μ = [2]q Fi Fi±1Fi1μ. (3)

and 1μ = 0 ∈ End(1μ, 1μ) whenever μ /∈ Λ
β
�,k .

We often write Ei1μ or 1μ+αi Ei for 1μ+αi Ei1μ, and similarly for Fi .

For � = 0, we recover the idempotented q-Schur algebra Ṡq(k)d , with d = μ1+· · ·+μk ,
and for k = 0, we recover Ṡq(�)d , with d = �β − (μ−�+1 + · · · + μ0). There are canonical
inclusions Ṡq(k)d ↪→ Ṡq,β(�, k) sending

1μ1,...,μk �→ 10,...,0,μ1,...,μk , Fi �→ Fi+�+1, Ei �→ Ei+�+1,

and Ṡq(�)d ↪→ Ṡq,β(�, k) sending

1μ−�+1,...,μ0 �→ 1μ−�+1,...,μ0,0,...,0, Fi �→ Fi , Ei �→ Ei .

2.1.2 Ladder diagrams

As explained in [24], the doubled Schur algebra can be given a presentation in terms of ladder
diagrams. These are generated by the ladder operators below:

1μ �→
μ−�+1

μ−�+1

· · ·
μ−1

μ−1

μ0

μ0

μ1

μ1

μ2

μ2

· · ·
μk

μk

1μ−αi Fi1μ �→
μ−�+1

μ−�+1

· · ·
μi−1

μi−1

μi

μi−1

μi+1

μi+1+1

μi+2

μi+2

· · ·
μk

μk

1μ+αi Ei1μ �→
μ−�+1

μ−�+1

· · ·
μi−1

μi−1

μi

μi+1

μi+1

μi+1−1

μi+2

μi+2

· · ·
μk

μk

Note that edges labeled with N0 are oriented upwards, while edges labeled with β − N0 are
oriented downwards. Multiplication corresponds to concatenation of diagrams, and in our
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conventions ab consists of placing the diagram of a on the top of the one for b, if the labels
match, and zero otherwise. On the Z(q, λ)-space spanned by all such webs we impose the
relations of the doubled Schur algebra from Definition 1. In particular, thanks to Eq. (2),
we can consider such ladder diagrams up to planar isotopy exchanging the height of distant
rungs.

We are interested by ladder diagrams where the weights μi are of the form β or β − 1
if i ≤ 0, and 0, 1 or 2 if i > 0. We draw edges carrying a weight 1 or β − 1 as solid, with
weight 0 or β as dotted, and with weight 2 as double solid. The edge forming the rungs of
Ei and Fi are always drawn solid. For example, we have

F1F01(β,0,0) �→

β

β−1

0

0

0

1

2.1.3 Link invariants from a doubled Schur algebra

We consider links presented in the form of closures of braids. To start with, let b ∈ Bn be a
braid diagram in n strands. For such a diagram we assign an element of Ṡq(n)n using a well
known rule originally due to Lusztig [14, Definition 5.2.1]. This extends immediately to an
element of Ṡq,β(n, n) from the embedding Ṡq(n)n ↪→ Ṡq,β(n, n). Denote by ((β −1)n, (1)n)
the label consisting of n entries equal to β − 1 and n entries equal to 1. For σi (resp. σ

−1
i )

a positive (resp. negative) crossing between the i th and the (i + 1)th strands (counting from
the left), we have:

σi �→ −Fi Ei1((β−1)n ,(1)n) + q−11((β−1)n ,(1)n),

σ−1
i �→ q1((β−1)n ,(1)n) − Ei Fi1((β−1)n ,(1)n).

In terms of pictures, we draw it locally as:

�→ −
1 1

+ q−1

1 1

�→ q

1 1

−
1 1

For a braid b ∈ Bn , let cl(b) be its closure on the left, as in the diagram below:

cl(b) := b

.

.

.

······

.

.

.

······
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To cl(b) we assign an element of Ṡq,β(n, n) obtained by adding cups and the bottom and
caps at the top, using the following pattern to get a ladder diagram:

· · · · · ·
(4)

and similar for the top of cl(b).
As explained in [24], this procedure gives an element P(b) ∈ Sq,β(n, n) which is an

endomorphism of 1((β)n ,(0)n), which in turn implies that P(b) ∈ Z(q, λ). One of the main
results in [24] is the following:

Theorem 1 [24, Theorems 3.1 and 3.8] For a braid b ∈ Bn, the element P(b) is a framed
link invariant which equals the HOMFLY-PT polynomial of the closure of b.

The proof of Theorem 1 goes by first verifying that P(b) is a braid invariant, and then
checking invariance under the Markov moves. In the process of showing that it equals the

HOMFLY-PT polynomials, it is shown that it gives the value λ−λ−1

q−q−1 for the unknot, and it
satisfies

P

⎛

⎝

⎞

⎠ = λP

⎛

⎝

⎞

⎠ ,

P

⎛

⎝

⎞

⎠ = λ−1 P

⎛

⎝

⎞

⎠ ,

and the skein relation

P

( )

− P

( )

= (q−1 − q)P

( )

.

Multiplying P(b) byλw(cl b), wherew(cl b) is thewrithe of cl(b), results in the usual, framing
independent, HOMFLY-PT polynomial.

By the usual specializations of λ, we recover the glN -polynomial (for λ = qN ) and the
Alexander polynomial (for λ = 1) of the closure of b. Note that for the latter one needs
to cut open one of the strands to avoid getting the value zero associated to the unknot, and
therefore to any link, as explained in [24, §4] (see the discussion on normalized invariants
in Sect. 2.3.1 below for further details).

2.1.4 Weyl modules

We introduce a partial order 	 on Λ
β
�,k by declaring that ν 	 μ whenever

νi − μi ≤ 0, for all i ≤ 0,

νi − μi ≥ 0, for all i > 0.

Let Λ+ := {μ ∈ Λ
β
�,k |μi − μi+1 ≥ 0 for all i ∈ Ik,�\{0}}.
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Definition 2 For μ ∈ Λ+, we define the Weyl module

W (μ):=Ṡq,β(�, k)1μ/(ν � μ).

Here (ν � μ) is the left ideal generated by all elements of the form 1νx1μ, for some
x ∈ Ṡq,β(�, k) and ν � μ.

For � = 0, we recover the well-known Weyl modules for the q-Schur algebra
Ṡq(k)μ1+···+μk . As in the case of � = 0, it is also true that Uq(glk+�) acts on W (μ): for
Fi ∈ Uq(glk+�) and 1νx1μ ∈ W (μ) we put Fi · 1νx1μ := 1ν−αi Fi x1μ, and similarly for
Ei . Note that the Chevalley generators of Uq(glk+�) are indexed from {−� + 1, . . . , k − 1},
which is the set I�,k introduced in the definition of Ṡq,β(�, k).

Note that Ei1μ = 0 ∈ W (μ) for all i ∈ Ik,�. Thus, 1μ ∈ W (μ) is a highest weight object,
and EndW (μ)(1μ) ∼= Z(q, λ). From Sect. 2.1.3, all weights occurring in P(b) ∈ Ṡq,β(n, n)

are of the form ν 	 ((β)n, (0)n) since the only weights appearing are β, β − 1 and 0, 1, 2.
Therefore, P(b) is sent to the sameword in E’s and F’s under the quotient map Ṡq,β(n, n) →
W ((β)n, (0)n). In particular, the results in [24, Theorem 3.8] imply the following:

Proposition 1 The element λw(cl(b))P(b) acts on W ((β)n, (0)n) as an endomorphism of the
highest weight object, which is multiplication by the HOMFLY-PT polynomial of the closure
of b.

2.2 Parabolic Vermamodules

Consider g = glm with simple roots Ig = {α0, . . . , αm−1}. Let Υg = {0, . . . ,m}, and define

αi (γ ) :=

⎧
⎪⎨

⎪⎩

1, if γ = i,

−1, if γ = i + 1,

0, otherwise,

for all γ ∈ Υg and i ∈ Ig.
Recall that the quantum group Uq(g) the Q(q)-algebra generated by the Chevalley gen-

erators Ei , Fi for all i ∈ Ig and the Cartan elements K±1
γ for all γ ∈ Υg, with relations

Kγ K
−1
γ = 1 = K−1

γ Kγ , Kγ Kγ ′ = Kγ ′Kγ ,

Kγ Ei = qαi (γ )Ei Kγ , Kγ Fi = qαi (γ )Fi Kγ ,

Ei Fj − Fj Ei = δi j
K̃i − K̃−1

i

q − q−1 ,

where K̃i := Ki K
−1
i+1,

E2
i Ei±1 + Ei±1E

2
i = [2]q Ei Ei±1Ei , Ei E j = E j Ei if |i − j | > 1,

F2
i Fi±1 + Fi±1F

2
i = [2]q Fi Fi±1Fi , Fi Fj = Fj Fi if |i − j | > 1,

for all i, j ∈ Ig and γ, γ ′ ∈ Υg.
The (standard)Borel subalgebraUq(b) is theUq(g)-subalgebra generatedby 〈Ei , Ki 〉i∈Ig .

A (standard) parabolic subalgebra Uq(p) is an Uq(g)-subalgebra such that Uq(b) ⊂ Uq(p).
For any subset of simple roots Il ⊂ Ig, we can define a parabolic subalgebra Uq(p) =
〈Ei , Fj , Kγ 〉i∈Ig, j∈Il,γ∈Υg . As a matter of fact, any parabolic subalgebra is of this form for
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some choice of Il. The subalgebra Uq(l) = 〈E j , Fj , Kγ 〉 j∈Il,γ∈Υg is called the Levi factor,
and the part Uq(n) = 〈Ei 〉i∈In:=Ig\Il is the nilpotent radical.

Fix a parabolic subalgebra given by Il. We choose a weight μ = {μγ }γ∈Υg such that
μi − μi+1 ∈ N0 for each i ∈ Il, and μ j − μ j+1 ∈ β + Z for each j ∈ In. There is a unique
irreducible, integrable Uq(l)-module L(μ) over Q(q, λ = qβ) with highest weight μ. This
means L(μ) is generated by a highest weight vector vμ such that

Kγ vμ = qμγ vμ, Eivμ = 0,

for all i ∈ Ig and γ ∈ Υg . We extend V (μ) to a Uq(p)-module by setting Uq(n)L(μ) := 0.

Definition 3 The parabolic Verma module with highest μ is the induced module

Mp(μ) := Uq(g) ⊗Uq (p) L(μ).

When p coincides with the Borel subalgebra b, we recover the usual Vermamodule.When
p = g, then we get the irreducible, integrable representation L(μ). See [7, Chapter 9] for
further details on parabolic Verma modules, and [18] (and references therein) for a detailed
study of parabolic Verma modules.

2.3 Parabolic Vermamodules and link invariants

We consider g = gl�+k , and we identify Ig with I�,k , so that the Chevalley generators are
indexed by elements in I�,k . Consider the parabolic subalgebra given by Il = I�,k\{0}. Thus,
its nilpotent radical is generated by E0.

Proposition 2 For μ ∈ Λ+, the module W (μ) is isomorphic to the parabolic Verma module
Mp(μ) as modules over Uq(gl�+k).

Proof As mentioned above,Uq(glk+�) acts onW (μ) which in particular is a weight module.
Moreover, 1μ is a highest weight vector and since W (μ) is cyclic generated by 1μ, W (μ)

is a highest weight module. We see that W (μ) is a Verma module and there is a surjection
Mb(μ) � W (μ). By [7, Theorem 1.2] there are finitely many highest weight modules for
a fixed highest weight, up to isomorphism, and they are given by all the parabolic Verma
modules (including the cases p = g and p = b). Thus, it is enough to study the nilpotency
of the operator Fi for all simple root αi . By the PBW basis theorem [8, Proposition 4.16]
of Uq(glk+�), we know that Fk01μ �= 0 for all k ≥ 0. One can also see that F±i for i �= 0
acts locally nilpotently on W (μ). Indeed for i > 0, given ν 	 μ, we have νi = μi + k
for some k ≥ 0, and thus Fk+1

i 1ν = 0. Similarly, for i < 0 one has νi+1 = μi+1 − k for
some k ≥ 0, and thus Fk+1

i 1ν = 0. Therefore, we conclude that W (μ) is isomorphic to the
parabolic Verma module Mp(μ). ��
Notation. From now on, for the sake of keeping the notation simple we denote the highest
weight modules W ((β)n, (0)n) and Mp((β)n, (0)n) by W (β) and Mp(β) respectively.

In the particular case of Mp(β), the irreducible L((β)n, (0)n) is 1-dimensional. Under
the isomorphism in Proposition 2, the element P(b) defines an endomorphism Pp(b) of the
highest weight object of the Verma module Mp(β) (seen as a linear category with objects
indexed by the weights, in the obvious way). Since Pp(b) consists of the same word in E’s
and F’s as P(b), it yields the same element in Q(q, λ). Thus, Proposition 1 translates to the
following theorem:
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Theorem 2 Let L be a link presented as the closure of a braid b ∈ Bn. The element
λw(cl(b))Pp(b) ∈ EndUq (gl2n)

(
Mp(β)

)
is a link invariant which equals the HOMFLY-PT

polynomial of L.

Taking the whole algebraUq(g) as parabolic subalgebra and a highest weight ((N )n, (0)n)
instead, the element λw(cl(b))Pg(b) gives an endormorphism of the highest weight object of
L(N ), which coincides with multiplication by the glN -polynomial. This is a well-know result
that can be explained through quantum skew-Howe duality [4].

2.3.1 Normalized link invariants

In order to be able to compute the normalizedHOMFLY-PTandglN -link invariants,we follow
the procedure described in [24, §4]. We denote clo(b) the diagram obtained by closing all but
the outermost strands of b. We can also think of it as cut opening the braid closure diagram
cl(b) into a special type of (1, 1)-tangle diagram. More precisely, we open the diagram of
cl(b) by cutting the outermost strand, following a pattern as shown in the example in Eq. (5)
below for a braid with three strands,

(5)

and similarly for the top part.
The procedure described in Sect. 2.1.3 gives an element P(b) ∈ Sq,β(n − 1, n) which is

an endomorphism of 1((β)n−1,1,(0)n−1), which in turn implies that P(b) ∈ Z(q, λ) (see [24,
§4] for details).

Theorem 3 [24, Proposition 4.6] For a braid b ∈ Bn, the element P(b) is a framed link
invariant which equals the reduced HOMFLY-PT polynomial of the closure of b.

Note that we could have opened the diagram in a different way, by choosing a different
strand to cut it open. We could have equally opened the diagram by cutting it using one of the
inner strands at the expense of adding crossings to the original diagram. In [24], it is proven
that the link invariant obtained does not depend on this choice.

In order to parallel the construction of Sect. 2.3 using a parabolic Verma module, we
consider gl2n−1 with simple roots {α2−n, . . . , αn−1} (we no longer need the root α1−n since
the braid is not completely closed on the left anymore). We form the parabolic subalgebra
Uq(p̄) given by Il = Ig\{0}. Then, we consider the parabolic Verma module

M p̄(β) = M p̄((β)n−1, 1, (0)n−1),

where the highest weight is chosen to agree with the bottom of Eq. (5):

β β 1 0 0

The method described in Sect. 2.3 defines an endomorphism P
p̄
(b) of the highest weight

object of M p̄(β). The following is an immediate consequence of the paragraphs above:
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Theorem 4 For a braid b the element λw(clo(b))P
p̄
(b) ∈ EndUq (gl2n−1)

(
M p̄(β)

)
is a link

invariant which equals the reduced HOMFLY-PT polynomial of the closure of b.

Remark 2 From now on, for the means of higher representation theory, we will consider the
parabolic Verma modules Mp and M p̄(β) over the ground field Q((q, λ)) ⊃ Q(q, λ) with
polynomial fractions viewed as formal power series. See [21, §5.3] for more about rings of
formal Laurent series in the context of categorification, see also [1] for a general discussion
about these rings.

3 Parabolic 2-Vermamodules

We recall the construction of parabolic 2-Verma modules (i.e. categorified Verma modules)
from [20], using dg-enhanced KLR algebras.

We fix a unital commutative ring k. Also, in our convention, a Z
n-graded dg-k-algebra

(A, d), where A = ⊕
(h,g)∈Z×Zn Ah

g , is a dg-algebra carrying an extraZ
n-grading and having

a differential of degree −1 w.r.t. the homological grading and that preserves the Z
n-grading:

d(Ah
g) ⊂ Ah−1

g .

3.1 Dg-enhanced KLR algebras

Fix a parabolic subalgebra p of gln , obtained from a subset of simple roots Il ⊂ Ig.

Definition 4 The p-KLR algebra Rp(m) on m strands is the diagrammatic k-algebra where
elements are k-linear combinations of braid-like diagrams on m-strands, read from bottom
to top, such that:

– strands are labeled by a simple root in Ig;
– two strands can only intersect transversely;
– strands can be decorated by dots;
– multiplication is given by gluing diagrams on top of each other, where ab means we put

a on top of b, if the labels of the strands agree, and is zero otherwise;
– the region immediately at the right of the left-most strand can be decorated with a floating

dot (written as a hollow dot), if its label is in In:

i1 i2

. . .

im

for i1 ∈ In;
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– diagrams are taken modulo braid-like planar isotopy and the following local relations:

i j

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = j,

i j

if |i − j | > 1,

i j

+
i j

if |i − j | = 1,

(6)

for all i, j ∈ Ig,

i j

=
i j i j

=
i j

(7)

i i

=
i i

+
i i

,

i i

=
i i

+
i i

(8)

for all i �= j ∈ Ig,

i kj

−

i kj

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i �= k or |i − j | > 1,

ji i

otherwise,
(9)

for all i, j, k ∈ Ig,

j i

+

j i

= 0,

i

= 0, (10)

for all i, j ∈ In.

Note that Rg(m) is exactly the usual KLR algebra, as defined in [10,26].
As the cyclotomic quotients of KLR algebras categorify the irreducible, integrable mod-

ules, certain quotients of the p-KLR algebras categorify the parabolic Verma modules. Fix a
weight μ as in Sect. 2.2.
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Definition 5 The μ-cyclotomic p-KLR algebra Rμ
p (m) is the Z

2-graded dg-algebra given by
taking the quotient of Rp(m) by the two-sided ideal generated by the elements:

j

μ j−μ j+1

i1

. . .

im−1

for all j ∈ Il, and grading

deg

⎛

⎜
⎝

i j

⎞

⎟
⎠ :=

⎧
⎪⎨

⎪⎩

q−2, if i = j,

1, if |i − j | > 1,

q, if |i − j | = 1,

, deg

⎛

⎜
⎝

i

⎞

⎟
⎠ := q2,

deg

⎛

⎜
⎝

j

⎞

⎟
⎠ = q2(μ j−μ j+1)h,

where qk1λk2hk3 is our notation for degree (k1, k2) for the Z
2-grading, and in degree k3 for

the homological grading (in particular, 1 means it is in degree 0 for all gradings). Note that
μ j − μ j+1 is in β + Z for j ∈ In and so, a floating dot carries a non-trivial λ-degree. We
denote (Rμ

p (m), 0) the dg-algebra obtained by equipping Rμ
p (m) with a trivial differential.

Note that Rμ
g (m) is the usual cyclotomic quotient of the KLR algebra, as in [10].

3.2 Categorical Uq(g)-action

For ν = ∑
i∈Ig νi ·i with∑

i νi = m, we write Seq(ν) for the set of sequences i = i1i2 · · · im
with ik ∈ Ig such that each i ∈ Ig appear exactly νi times in i . We write Seq(m) for the
set of sequences i = i1i2 · · · im with ik ∈ Ig . For i = i1i2 · · · im ∈ Seq(m), we define the
idempotent of Rμ

p (m) given by

1i :=
i1 i2

. . .

im

We define Rμ
p (ν) := ⊕

i, j∈Seq(ν) 1 j R
μ
p (ν)1i , and Rμ

p := ⊕
ν Rμ

p (ν).

We consider categories (Rμ
p (m), 0) -mod of Z

2-graded left dg-modules over (Rμ
p (m), 0).

For such a (dg-)module M , we write qk1λk2M[k3] for its grading shift up by (k1, k2) in theZ
2

grading, and up by k3 in the homological grading. Note that the grading shift in homological
degree twists by a sign the action of (Rμ

p (m), 0), : x · m[1] := (−1)degh(x)(x · m)[1].
For each i ∈ Ig, there is a non-unital map of dg-algebras Rμ

p (ν) → Rμ
p (ν + i) given by

adding a vertical strand with label i at the right:

j1 j2 . . . jm

D �→
j1 j2 . . . jm

D

i
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This gives rise to induction and restriction functors

Indν,i
ν : (Rμ

p (ν), 0) -mod → (Rμ
p (ν + i), 0) -mod,

Resν,i
ν : (Rμ

p (ν + i), 0) -mod → (Rμ
p (ν), 0) -mod,

which are adjoint. We put αi (ν) = 2νi − νi−1 − νi+1. We define

Fi :=
⊕

ν

Indν,i
ν , Ei :=

⊕

ν

q1+αi (ν)−(μi−μi+1) Resν,i
ν ,

where qβ = λ.

Proposition 3 [20, §5.4] The endofunctors Ei : (Rμ
p , 0) → (Rμ

p , 0) and Fi : (Rμ
p , 0) →

(Rμ
p , 0) are exact.

Let 1ν be the identity functor on (Rμ
p (ν), 0) -mod. Let us also introduce the endofunctors

⊕[k]q (−) :=
k−1⊕

�=0

q1−k+2�(−),

and

⊕[β+k]q (−) :=
⊕

�≥0

q1+2�
(
λ−1q−k(−) ⊕ λqk(−)[1]

)
.

Theorem 5 [20, Theorem 5.17 and Proposition 5.19] There is a natural short exact sequence

0 → FiEi1ν → EiFi1ν → ⊕[(μi−μi+1)−αi (ν)]q1ν → 0, (11)

for all i ∈ In, and there are natural isomorphisms

EiFi1ν
∼= FiEi1ν ⊕[(μi−μi+1)−αi (ν)]q 1ν, ifμi − μi+1 − αi (ν) ≥ 0,

FiEi1ν
∼= EiFi1ν ⊕[αi (ν)−(μi−μi+1)]q 1ν, ifμi − μi+1 − αi (ν) ≤ 0,

(12)

for all i ∈ Il. Furthermore, we have a natural isomorphism

FiE j ∼= E jFi , (13)

for all i �= j ∈ Ig. Finally, we have natural isomorphisms

E2i Ei±1 ⊕ Ei±1E
2
i

∼= ⊕[2]q EiEi±1Ei ,

F2i Fi±1 ⊕ Fi±1F
2
i

∼= ⊕[2]q FiFi±1Fi ,

EiE j ∼= E jEi ,

FiF j ∼= F jFi ,
if |i − j | > 1 (14)

for all i, j ∈ Ig.

Let us explain diagrammatically the maps involved in the short exact sequence Eq. (11).
For this, we draw Rμ

p (m) (viewed as Rμ
p (m)-Rμ

p (m)-bimodule) as a box labeled by m

Rμ
p (m) =

. . .

. . .

m

and⊗m := ⊗Rμ
p(m) becomes stacking boxes on top of each other.We do the same for Rμ

p (ν).

Moreover, we draw Ei R
μ
p (m + 1) and Fi R

μ
p (m) respectively as

i. . .

. . .

m + 1
i

. . .

. . .

m + 1
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and so on. Also, the strands can be labeled by an element in Ig, fixing an idempotent.

Remark 3 In order to have a graded picture, we can say that:

deg

(

j1 j2 jm i

. . .
)

= q1+αi ( j)−(μi−μi+1), deg
(

. . .
)

= 1,

for all j = j1 j2 · · · jm ∈ Seq(m).

Then, the injection FiE j1ν → E jFi1ν in Eq. (11), as well as the similar maps in Eq. (12)
and in Eq. (13), are given by adding a crossing as follows:

j

i

. . .

m

. . .

m

. . .

ui j�−−→

j

i

. . .

m

. . .

m

. . .

⊂

i

j

m + 1

. . .

. . .

Moreover, the map EiFi → ⊕[(μi−μi+1)−αi (ν)]q1ν in Eq. (11) is given by projection on
diagrams of the form:

i

i

m + 1

. . .

. . .

�
⊕

�≥0

i

�

i

m

. . .

. . .

⊕

i

�

i. . .

. . .

. . .

m

(15)

Remark 4 There exist functors E(a)
i categorifying the action of the divided power Ea

i /[a]q !,
which are given exactly as in [10, §2.5]. In particular, Eq. (14) becomes

E(2)
i Ei±1 ⊕ Ei±1E

(2)
i

∼= EiEi±1Ei ,

F(2)
i Fi±1 ⊕ Fi±1F

(2)
i

∼= FiFi±1Fi ,
(16)

for all i ∈ Ig.

Since the results of Theorem 5 need to take into consideration infinite direct sums, we
need a refined version of Grothendieck group to decategorify (Rμ

p , 0). This can be done using
the asymptotic Grothendieck groups K 0, as introduced in [19], and requiring k to be a field.
Then, as explained in [20, §6], one can take a certain subcategory Dl f (Rμ

p , 0) of the derived
category of (Rμ

p , 0), such that K 0(Dl f (Rμ
p , 0)) ∼= Mp(μ), as Uq(g)-module with action of

Ei , Fi induced by Ei , Fi .

Remark 5 One can define the functors Ei , Fi using derived version of the induction and
restriction functor instead. Conceptually, it would be more accurate. However, it requires a
much more technically difficult framework to make sense of an exact triangle of functors
(see [20, §7]).
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3.3 Recovering cyclotomic KLR

Forμ = {μi }, letμ be given by specializing all β to N inμi . Similarly, we can specialize the
degree λ in Rμ

p (m) to qN for any N ∈ Z, giving a Z-graded dg-algebra (Rμ
p (m), 0). Then, if

μ j −μ j+1 ∈ N0 for all j ∈ In, we can equip Rμ
p (m) with a non-trivial differential dN given

by

dN

⎛

⎜
⎝

i j

⎞

⎟
⎠ = dN

⎛

⎜
⎝

i

⎞

⎟
⎠ = 0, dN

⎛

⎜
⎝

j

⎞

⎟
⎠ = (−1)μ j−μ j+1

j

μ j−μ j+1

and extending using the graded Leibniz rule. It is not hard to check this is well defined.

Theorem 6 [20, Theorem5.20]TheZ-graded dg-algebra (Rμ
p (m), dN ) is formalwith homol-

ogy H(Rμ
p (m), dN ) ∼= Rμ

g (m).

Furthermore, by considering (derived) induction and restriction functors over (Rμ
p (ν), dN ),

we obtain endofunctors ENi , FNi onD(Rμ
p , dN ). The short exact sequence Eq. (11) becomes a

short exact sequence of dg-bimoduleswith the infinite direct sum (⊕[(μi−μi+1)−αi (ν)q ]1ν, dN )

equipped with a non-trivial differential. This infinite direct sum is quasi-isomorphic to the
finite direct sum ⊕[(μi−μi+1)−αi (ν)]q (1ν, 0). Also, the short exact sequence induces a long
exact sequence in homology, which truncates and yields half the maps needed to construct
the corresponding direct sum isomorphisms Eq. (12) for Rμ

g . See [20, §5.2] for more details.

4 Link homology

We fix p and g as in Sect. 2.3, and highest weight β = ((β)n, (0)n). We consider the 2-
categoryMp(β)where objects are the categories (Rβ

p , 0) -mod and hom spaces are categories
of functors between them.

Let U̇(sln) denote Khovanov–Lauda and Rouquier’s 2-Kac–Moody algebra from [11,26]
(which are the same by [2]). The following result is immediate, thanks to Theorem 5 and the
fact that Ei and Fi are adjoint.

Lemma 1 There is a 2-action of U̇(sln × sln) onMp(β).

The lemma implies that, in particular, the categorified q-Schur algebra S(0, n) from [15]
acts on Mp(β).

4.1 Braiding

By awell-known construction due to Cautis [3], we know how to associate a chain complex in
the 2-category Kom(U̇(sln)) of complexes in the Hom-categories of U̇(sln), called a Rickard
complex, which satisfies the braid relations up to homotopy.

In our context, the Rickard complex is always truncated. For a positive crossing between
the i th and (i + 1)th strands, it is given by the mapping cone

σi �→ Cone
(
FiEi1ν

εi−→ q−11ν

)
,
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where εi is the counit of the adjunction 1(1,1)Fi � q−1Ei1(1,1). For a negative crossing, it is
given by

σ−1
i �→ Cone

(
q1ν

ηi−→ EiFi1ν

)
[−1],

with ηi being the unit of the adjunction Fi1(1,1) � q1(1,1)Ei .

Remark 6 Note that for i �= 0, Ei and Fi are biadjoint (up to degree shift). We also have
FiEi1(1,1) ∼= EiFi1(1,1), and thus we can use the unit and counit for the other adjunction to
build the mapping cone corresponding to the crossings.

Diagrammatically, we can picture the maps εi and ηi as the following:

i

i

. . .

ν

. . .

ν

. . .

εi�−−→

. . .

ν

. . .

ν

. . .

⊂ ν

. . .

. . .

and

. . .

. . .

ν
ηi�−−→

i

i

. . .

. . .

ν ⊂
i

i

. . .

. . .

ν + i

Following Cautis’s construction in [3], we associate a Rickard complex C ′(b) in the 2-
category Kom(Mp(β)) of complexes in theHom-categories ofMp(β), to each braid diagram
b on n strands. This gives a braiding on the homotopy category of Kom(Mp(β)).

4.2 Invariance under theMarkovmoves

Closing the diagram for b consists of precomposingC ′(b)with the appropriate word on func-
tors F−n+1, . . . , Fn−1, and composing it with the appropriate word from E−n+1, . . . , En−1,
following the patterns in Eq. (4). This results in a chain complex C ′(cl(b)) in Kom(Mp(β)),
which is a complex of endofunctors of the block corresponding to the highest weight in
Mp((β)n, (0)n), that is, a complex of Z

2-graded k-vector spaces.

Lemma 2 The homotopy type of the chain complex C ′(cl(b)) is invariant under isotopy of
ladder diagrams:

1 0

∼=

1 0 10

∼=

10

Proof These are straightforward consequences of Eq. (12), since they give EiFi1(1,0) ∼= 1(1,0)
and FiEi1(0,1) ∼= 1(0,1). ��
Proposition 4 The homotopy type of the chain complex C ′(cl(b)) is invariant under the
Markov of type I.
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Proof We want to show that

11

σ±1
i

······ ∼=

11

σ±1
i−1

······ , (17)

where σ±1
i denote the mapping cones defined in Sect. 4.1, and similarly for downward

oriented strands, and for the bottom part of the braid closure. Then, the first Markov move
can be decomposed in a sequence of moves of the following form:

−1−1

σ±1
1

11

······ ∼=

11−1−1

σ±1
−1

······ , (18)

(to avoid cluttering we have dropped the β’s from the pictures, since it is clear where to
place them), and similar for the bottom part of the closure.

Relation Eq. (17) requires an isomorphism of 1-morphisms inMp(β)

EiEi−1EiFi1(...,0,1,1,... ) ∼= Ei−1Fi−1EiEi−11(...,0,1,1,... ) (19)

which is proved in [23, Lemma3.19], after applyingLemma2, and usingLemma1.Moreover,
the computations in [23, Lemma 3.19] also implies that the diagrams

EiEi−1EiFi1(...,0,1,1,... ) Ei−1Fi−1EiEi−11(...,0,1,1,... )

qEiEi−11(...,0,1,1,... )

(19)

εi εi−1

commute, and thus we obtain Eq. (17) for σi . The case for σ−1
i is similar.

We write E± instead of E±1, and the same for F±. To prove relation Eq. (18) we write

L := E0E+E−E0F+E+1(β−1,β−1,1,1)

R := E0E+E−E0F−E−1(β−1,β−1,1,1)

By Eq. (13) we have the following isomorphism

L = E0E+E−E0F+E+1(β−1,β−1,1,1)

∼= E0E+F+E−E0E+1(β−1,β−1,1,1),

and by Eq. (12) we have

E+F+1(β,β−1,1,0) ∼= 1(β,β−1,1,0) ⊕ F+E+1(β,β−1,1,0)

∼= 1(β,β−1,1,0)
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since E+1(β,β−1,1,0) ∼= 0 by weight reasons. Therefore, we obtain

L ∼= E0E−E0E+1(β−1,β−1,1,1)

(16)∼= E(2)
0 E−E+1(β−1,β−1,1,1),

since again E(2)
0 E+1(β−1,β−1,1,1) ∼= 0 by weight reasons. Similarly, we obtain

R = E0E+E−E0F−E−1(β−1,β−1,1,1)

∼= E0E+E0E−1(β−1,β−1,1,1)

∼= E(2)
0 E+E−1(β−1,β−1,1,1).

Thus, L ∼= R. Moreover, since the isomorphisms L ∼= E(2)
0 E−E+1(β−1,β−1,1,1) and R ∼=

E(2)
0 E+E−1(β−1,β−1,1,1) are obtained from similar operations on diagrams (exchanging the
role of the colors 1 and −1), it means we obtain a commutative diagram:

L R

E0E+E−E01(β−1,β−1,1,1)

�

ε+ ε−

Thus, we obtain the wanted isomorphism in Eq. (18). The proofs for the bottom part and for
σ−1

±1 are similar. ��

Proposition 5 The homotopy type of the chain complex C ′(cl(b)) is invariant under the
Markov of type II, up to a global λ-degree shift.

Proof Consider diagrams D0 and D+
1 that differ as below:

D+
1 = D0 =

The complex for D+
1 is

C ′(D+
1 ) ∼= Cone

(
E0F1E1F01(β−0,0,1)

ε1−−−→ q−1E0F01(β−0,0,1)

)
,

where we need to think of (β − 0, 0, 1) as living inside a bigger ν depending on the global
diagram.

We obtain an isomorphism (note that in this case F0E01(β−0,1,0) is zero)

E0F1E1F01(β−0,0,1)

(13)∼= F1E0F0E11(β−0,0,1)

(11)∼= ⊕[β−1]q F1E11(β−0,0,1)

(12)∼= q2λ−1(
k[ξ ] ⊗ 1(β−0,0,1)

) ⊕ λ
(
k[ξ ] ⊗ 1(β−0,0,1)

)[1],

(20)

with deg(ξ) = q2.
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This means we can think of the diagrams in E0F1E1F01(β−0,0,1) as being all of the form:

i

�

i

ν

. . .

. . .

1

1

i

�

i

1

1
. . .

. . .

. . .

ν

(21)

for � ≥ 0, and where 1(β−0,0,1) ∼= Rβ
p (ν). Moreover, we identify ξ� with a dot with label �.

Applying the short exact sequence Eq. (11) to the term on the right gives

q−1E0F01(β−0,0,1) ∼= λ−1(
k[ξ ] ⊗ 1(β−0,0,1)

) ⊕ λ
(
k[ξ ] ⊗ 1(β−0,0,1)

)[1].

In terms of diagrams, we get from Eq. (15) that E0F01(β−0,0,1) has a basis given by:

i

�

i

ν

. . .

. . .

1 i

�

i

1

1
. . .

. . .

. . .

ν

(22)

for all � ≥ 0.
Because of Eq. (6), applying ε1 onEq. (21) gives thatC ′(D+

1 ) is isomorphic to the complex

C ′(D+
1 ) ∼=

(
q2λ−1(k[ξ ] ⊗ 1(β−0,0,1))

λ(k[ξ ] ⊗ 1(β−0,0,1))[1]
)

ψ−−→
(

λ−1(k[ξ ] ⊗ 1(β−0,0,1))

λ(k[ξ ] ⊗ 1(β−0,0,1))[1]
)

,

with differential

ψ :=
(

ξ ⊗ 1 + 1 ⊗ f 0
0 1,

)
.

for some map f : q21(β−0,0,1) → 1(β−0,0,1). After the removal of all acyclic subcomplexes,
we get that C ′(D+

1 ) is homotopy equivalent to the complex

C ′(D+
1 ) ∼= 0 → λ−1

k1(β−0,0,1).

Therefore, we have that the complexes C ′(D+
1 ) and λ−1C ′(D0) are homotopy equivalent.

Similarly for a diagram D−
1 containing a negative crossing, we first show that

E0E1F1F01(β−0,0,1)[−1]
(12)∼= E0F1E1F01(β−0,0,1)[−1]
(20)∼= q2λ−1(k[ξ ] ⊗ 1(β−0,0,1))[−1] ⊕ λ(k[ξ ] ⊗ 1(β−0,0,1).
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This means that E0E1F1F01(β−0,0,1)[−1] is given by diagrams of the form:

i

�

i

1

1

1

ν

. . .

. . .

i

�

i

1

1

1

1
. . .

. . .

. . .

ν

(23)

for all � ≥ 0. Moreover, we observe that in E0E1F1F01(β−0,0,1)[−1] we have

i

�

i

1

1

ν

. . .

. . .

1

=

i

�

i

1

1

1

ν

. . .

. . .

(24)

because of Eq. (9), and the fact that two consecutive strands labeled by 1 must be zero at
this position (this is a consequence of the fact that F1F11(β−0,1,0) ∼= 0 by weight reasons).
We also have

i

�

i

1

1

1

1
. . .

. . .

. . .

ν
(24)=

i

�

i

1

1

1

1
. . .

. . .

. . .

ν

≡

i

�+1

i

1

1

1

1
. . .

. . .

. . .

ν

where the symbol ≡ means equality up to adding terms with less than � + 1 dots next to the
floating dot, or of the form in Eq. (23) left. This equality follows from applying Eq. (6), and
then a sequence of Eq. (7) and Eq. (8) to slide down the newly spawned dot on the i-strand.
Furthermore, as before, qE0F01(β−0,0,1)[−1] is given by the same diagrams as in Eq. (22).
Thus, applying η1 on them gives an isomorphism of complexes

D−
1 = qE0F01(β−0,0,1)[−1] η1−→ E0E1F1F01(β−0,0,1)[−1]

∼=
(
q2λ−1(k[ξ ] ⊗ 1(β−0,0,1))[−1]

q2λ(k[ξ ] ⊗ 1(β−0,0,1))

)
ψ̄−−→

(
q2λ−1(k[ξ ] ⊗ 1(β−0,0,1))[−1]

λ(k[ξ ] ⊗ 1(β−0,0,1))

)
,

where

ψ̄ :=
(
1 g′
0 ξ ⊗ 1 + 1 ⊗ g

)
,

for some g : q21(β−0,0,1) → 1(β−0,0,1) and g′ : q2λ(k[ξ ] ⊗ 1(β−0,0,1)) → q2λ−1(k[ξ ] ⊗
1(β−0,0,1))[−1]. The last complex is homotopy equivalent to the complex

0 → λ1(β−0,0,1),

so that C ′(D−
1 ) and λC ′(D0) are homotopy equivalent. ��

Define the normalized chain complex C(cl(b)) := λn+−n−C ′(cl(b)) where as usual, n±
is the number of positive/negative crossings in cl(b).
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Corollary 1 The homology groups H(b) of C(cl(b)) are triply-graded link invariants, and
their bigraded Euler characteristic is the HOMFLY-PT polynomial of the closure of b.

4.3 H(b) is isomorphic to the Khovanov–Rozansky HOMFLY-PT link homology

We now show that our link homology is equivalent to the HOMFLY-PT link homology by
Khovanov and Rozansky [9,13], by proving that H(b) is isomorphic to Rasmussen’s version
of HOMFLY-PT homology in [25].

Theorem 7 For every braid b the homology, H(b) is isomorphic to Khovanov–Rozansky
HOMFLY-PT link homology HKR(b), after regrading.

The theorem above gives us an equivalence in aweak sense.We conjecture the equivalence
is in fact stronger, in the following sense. The Soergel category SCn from [6] acts onMp(β),
in particular, on its ((β − 1)n, (1)n)-weight space (this action goes through the categorified
q-Schur algebra S(n, n), see [15, §6], which also acts on Mp(β), as explained at the start
of Sect. 4. Composing with the operation of closing the braid on the top with the correct
sequence of Ei ’s, following the pattern in Eq. (4), gives a functor Φ from SCn to the category
Abh,q,λ of triply-graded abelian groups. Note that the same pattern, but with Fi ’s, has to be
used on the bottom of the diagram to create the weight on which SCn acts.
Conjecture 1 The functor Φ is isomorphic to the Hochschild homology functor.

We now prove Theorem 7. We assume the reader is familiar with [25]. Let L be a link
presented as the closure of a braid b in n strands. Recall that the process of closing b amounts
to composing a word in Ei ’s with the Rickard complex for b (after adding n parallel strands
at its right) and with a word in Fi ’s. Of course, the closure procedure extends canonically to
webs. Let S be the (polynomial) ring in the dots on the F0’s used to form the closure of a
web Γ .

Lemma 3 For every web Γ , H(Γ ) is a free module over S.

Proof The proof follows the same reasoning as the proof of Rasmussen of an analogous
result usingmatrix factorizations [25, Proposition 4.8] which is based on an induction scheme
introduced by Wu [30, §3]. The only thing we need to check are the MOY relations 0 to III
from [25, §4.2]. MOY relations II and III are already satisfied in U̇(sln), and MOY relations
0 and I are a direct consequence of the short exact sequence Eq. (11), when applied to the
weights (. . . , β − 0, 0, . . . ) and (. . . , β − 0, 1, . . . ), since one of the terms in the exact
sequence always act as the zero functor on these weights. ��
Proof of Theorem 7 Since both our construction and the one in [25, Proposition 4.8] satisfy
the MOY relations, the underlying spaces of the complexes C ′(cl(b)) and of HKR(b) are
isomorphic byLemma3.Moreover, the braiding in both constructions is theRickard complex,
and thus the complexes are equivalent. The regrading is given by identifying the (i, j, k)-
grading of [25] as q = i, λ = j and h = ( j − k)/2. ��

4.4 Khovanov–Rozansky’s glN-link homologies

Using the 2-representation of gl2n , constructed from the cyclotomic KLR algebra R((N )n ,(0)n)
g

as input instead of a 2-category similar toMp(β), results in Khovanov and Rozansky’s glN -
link homology HN (L) from [12]. This follows at once from the work of Mackaay and
Yonezawa [17].
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4.5 Reduced homologies

Amodification of our construction could be used to give a construction of the reduced version
of KR HOMFLY-PT link homology. Using the parabolic subalgebra p̄ ⊆ Uq(gl2n−1) and
the highest weight β̄ = ((β)n−1, 1, (0)n−1) gives a 2-Verma module Mp̄(β̄). Constructing
Rickard complexes with it should result in reduced versions H of H . All the results in the
preceding sections have analogues for the case of reduced homology, and should be proven
essentially in the same way as above. However, there is one subtlety to take into account
when claiming the equivalence with reduced Khovanov–Rozansky homology. Recall that in
the case of the reduced versions from [12,13,25] the abelian groups H(L, i) and HN (L, i)
are invariants of the link L together with a marked component i . With our choice of cutting
out and open a diagram of a braid closure in Sect. 2.3.1, the outermost strand in our version
(the one that is cut) corresponds to the preferred component i of cl(b) (as described in [25])
under the isomorphism between our reduced homologies and Khovanov–Rozansky’s. Using
the cyclotomic KLR algebra R((N )n−1,1,(0)n−1) for gl2n−1 should result in a reduced version
HN of Khovanov–Rozansky’s glN -link homology HN .

4.6 HOMFLY-PT to glN spectral sequence

We explain how to construct a spectral sequence from HOMFLY-PT homology to glN -
homology in our context, for N > 0, akin to Rasmussen’s spectral sequence in [25].

Recall from Sect. 3.3 that the functors ENi and FNi are given by derived induction and
restriction. Thus, they are adjoint and give rise to Rickard complexes of dg-bimodules (in
other words, the maps ηi and εi from Sect. 4.1 are maps of dg-bimodules). Thus, we obtain
a bicomplex (C(L), dr , dN ), where dr is the Rickard differential.

To a bicomplex (M, d ′, d ′′) one can associate two spectral sequences {E I
� , d I

� } and
{E I I

� , d I I
� }, which are induced by the two canonical filtrations. Moreover, we have that

E I
2 = H(H(M, d ′′), d ′) and E I I

2 = H(H(M, d ′), d ′′), and if the double complex is
bounded, then both spectral sequences converge to the total homology H(M, d ′ + d ′′).
We will also use the fact that if H(M, d ′′) (resp. H(M, d ′)) is concentrated in a single d ′′-
degree (resp. d ′-degree), then E I (resp. E I I ) converges at the second page, meaning that
E I
2

∼= H(M, d ′′ + d ′) (resp. E I I
2

∼= H(M, d ′ + d ′′)).
For a link L presented in the form of a closure of a braid b, we form the bounded double

complex (C(L), dr , dN ). Let {E I
� , d I

� } and {E I I
� , d I I

� } be respectively the spectral sequences
induced by the N -filtration and r -filtration.

Recall that a strongly projective (see [27] or [20] for a precise definition) left (A, dA)-dg-
module (P, dP ) is such that for any right (A, dA)-dg-module (M, dM ) we have

H
(
(M, dM ) ⊗(A,dA) (P, dP )

) ∼= H(M, dM ) ⊗H(A,dA) H(P, dP ).

By [20, Proposition 5.15],weknow that (Rβ
p (ν+i), dN ) is strongly projective as (Rβ

p (ν), dN )-
module. Thus, Theorem 6 tells us that H(C(L), dN ) is concentrated in a single dN -degree.
As a consequence, E I converges at the second page. Thus, we know that

H(C(L), dN + dr ) ∼= H(H(C(L), dN ), dr ) ∼= HKRN (L),

thanks to Sect. 4.4. Thus, {E I
r , d I

r } is a spectral sequence whose E1-page is H(C(L), dr ) ∼=
HKR(L), which converges to HKRN (L).

Note that the spectral sequence in [25] is constructed for the reduced case, and that we can
also introduce a dN on the reduced homology in Sect. 4.5 to fall in the same case. Then both
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spectral sequences share similar properties: they start from the same underlying spaces (up
to isomorphism), with a E1-page being (reduced) HKR(L) in one direction and converging
at the second page in the other direction to (reduced) HKRN (L).

4.7 Colored link homology

A version of Mp(β) for divided powers of the Fi ’s and Ei ’s could be used to construct a
version of HOMFLY-PT homology for links colored by minuscule representations of glN , as
the one constructed by Mackaay–Stošić–Vaz [16] and Webster-Williamson [28]. Moreover,
the differential dN would give rise to a spectral sequence to colored glN -Khovanov–Rozansky
link homology, as the one constructed by Wedrich in [29]. However, proving a version of the
first exact sequence from Theorem 5 for divided powers might be a nontrivial problem.
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