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ABSTRACT

We show that Rasmussen’s invariant of knots, which is derived from Lee’s variant
of Khovanov homology, is equal to an analogous invariant derived from certain other
filtered link homologies.
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1. Introduction

In [3] Khovanov introduced a completely new way to define link invariants. He
associated a bigraded cochain complex to a given link diagram and if two diagrams
represent the same link, then the associated complexes are homotopy equivalent.
Thus by taking homology a link invariant is defined. One of the first variations
on Khovanov’s construction was the theory defined by Lee [5]. Her link homology,
originally defined over Q, is only singly graded with a filtration in place of what was
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the internal degree in Khovanov’s theory. If one forgets about the filtration, then
Lee’s link homology is completely determined by the linking matrix of the link,
which makes it a rather poor invariant compared to Khovanov’s theory. However,
by using the filtration Rasmussen [6] has defined an integer invariant of knots s(K)
which has many wonderful properties. For example he showed that the s-invariant
yields a lower bound of the smooth slice genus which led to a new combinatorial
proof of the Milnor conjecture concerning the slice genus of torus knots. Another
consequence is that if the s-invariant of a knot is greater than zero, then the knot
is not smoothly slice which is particularly interesting if the knot is already known
to be topologically slice. The s-invariant was conjectured to be equal to twice the
τ -invariant in Heegaard–Floer knot homology, however this is now known to be
false in general [2]. Much of this is explained in the survey paper [7].

In [1] Bar-Natan introduced a new link homology theory defined over F2[H ]
where H has internal degree −2. Setting H = 1 defines a singly graded theory
which can be explicitly computed (see [9]) and like Lee’s theory depends only on the
linking matrix. The theory is again filtered and one can use Rasmussen’s definitions
to produce an analogous s-invariant. The question that motivated the current note
was: is Rasmussen’s original s-invariant defined using Lee theory the same as the s-
invariant defined using Bar-Natan theory? In fact working over Q or Fp, p a prime,
one can define a family of link homology theories depending on two elements h and
t, encompassing Lee’s theory and Bar-Natan’s theory. Many of these theories give
for a knot a two dimensional vector space in degree zero and for such a theory one
can define a Rasmussen-type invariant.

In Sec. 2, we define the family of link homology theories of interest to us. We
choose the ground field K to be one of Q or Fp, p a prime and the family depends on
two parameters h, t ∈ K. We present a couple of computational results and discuss
integral theories. In Sec. 3, we recall Rasmussen’s s-grading and show that this is
preserved by twist equivalence of theories and by the universal coefficient theorem.
In Sec. 4, we define Rasmussen’s s-invariant s(K, K)h,t for any theory arising from
a triple (K, h, t) for which h2 + 4t is non-zero. Letting K̃ be Q or Fp (K and K̃

possibly different) our main result is as follows.

Theorem 4.2. Let K be a knot. Let h, t ∈ K and h̃, t̃ ∈ K̃ be such that h2 + 4t �=
0 ∈ K and h̃2 + 4t̃ �= 0 ∈ K̃. Then

s(K, K)h,t = s(K, K̃)h̃,t̃.

2. A Family of Link Homology Theories

Let p be a prime and let K be Q or Fp. Recall that a Frobenius system over K is
a quadruple (A, ι, ∆, ε), where A is a commutative ring with unit 1, ι: K → A a
unital injective ring homomorphism, ∆: A → A⊗A a cocommutative coassociative
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A-bimodule map and ε: A → K a K-linear map satisfying the additional condition

(ε ⊗ Id)∆ = Id.

Khovanov has explained in [4] how a rank two Frobenius system gives rise to
a link homology theory and moreover that isomorphic Frobenius systems give rise
to isomorphic link homology theories.

Example 2.1. Let h, t ∈ K and define

Ah,t = K[x]/(x2 − hx − t)

with coproduct and counit defined by

∆(1) = 1 ⊗ x + x ⊗ 1 − h1 ⊗ 1, ∆(x) = x ⊗ x + t1 ⊗ 1
ε(1) = 0, ε(x) = 1.

This is a rank two Frobenius system which in general is not bi-graded but has a
filtration obtained by taking filtration degrees deg(x) = −1 and deg(1) = 1. This
filtration induces a filtration on the associated link homology theory. Note that
throughout we prefer to use the grading conventions in [3] rather than those in [4].
These theories are obtained from Khovanov’s theory A5 in [4] by specialisation of the
variable h and t to elements of K. When h = t = 0 the resulting theory is Khovanov’s
original link homology with coefficients in K which we denote KH∗(−; K). In this
case the theory is genuinely bi-graded. When K = Q, h = 0 and t = 1 one gets
Lee’s theory [5] and when K = F2, h = 1 and t = 0 one gets Bar-Natan’s theory
[1]. We will denote the theory defined from h, t ∈ K by U∗

h,t(L; K) for a link L.
There is one further idea from [4] that is important for us. Let A be a Frobenius

system and let θ ∈ A be an invertible element. Then we can twist A by θ to
obtain a new Frobenius system with the same product and unit map but a new
coproduct and counit map defined by ∆′(a) = ∆(θ−1a) and ε′(a) = ε(θa). We call
two Frobenius systems twist equivalent if one can be obtained from the other via an
isomorphism and a twist. Khovanov [4] showed that two Frobenius systems related
by twist equivalence give isomorphic link homology groups. It is important to note
however that twisting may ruin nice functoriality properties with respect to link
cobordisms. Actually one can repair things again by working with the projective
spaces of the homologies, because only undesirable scalar factors are caused by
twisting.

The following propositions are derived from the work of Lee [5], Shumakovitch
[8] and Khovanov [4]. For this reason we only sketch the proofs here.

Proposition 2.2. Let L be a link with n components and let h, t, h̃, t̃ ∈ K.

(i) If h2 + 4t = 0, then there is an isomorphism U∗
h,t(L; K) ∼= KH∗(L; K).

(ii) Suppose char(K) �= 2. If h2 + 4t �= 0 and h̃2 + 4t̃ �= 0, then there exists an
isomorphism U∗

h,t(L; K) ∼= U∗
h̃,t̃

(L; K).
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Proof. For (i) let x be the generator of A0,0 and y the generator of Ah,t. If
char(K) �= 2 then it can be checked by direct computation that the map defined
by 1 �→ 1, y �→ x + h

2 gives an isomorphism of Frobenius systems Ah,t → A0,0. In
characteristic two h2 + 4t = 0 if and only if h = 0, so the only non-trivial case is
when t = 1 in which case the map 1 �→ 1, y �→ x + 1 provides an isomorphism.

For (ii) suppose first that there exists a non-zero element a ∈ K such that

h̃2 + 4t̃

h2 + 4t
= a2.

Let x be the generator of Ah,t and let y be the generator of Ah̃,t̃. Let b = 1
2 (h̃−ah)

and let A′
h,t be Ah,t twisted by a−1. Then by direct computation one sees that the

map Ah̃,t̃ → A′
h,t given by 1 �→ 1, y �→ ax + b is an isomorphism of Frobenius

systems.
If

h̃2 + 4t̃

h2 + 4t
= b

is not a square in K, consider the quadratic extension K(
√

b) = K[X ]/
(
X2 − b

)
.

By the previous arguments we have

U∗
h,t(L; K(

√
b)) ∼= U∗

h̃,t̃
(L; K(

√
b)).

Since K(
√

b) ∼= K ⊕ K
√

b is a free K-module, the universal coefficient theorem
implies that we get

U∗
h,t(L; K) ⊗K K(

√
b) ∼= U∗

h̃,t̃
(L; K) ⊗K K(

√
b).

Since dimK U∗
h,t(L; K) = dim

K(
√

b) U∗
h,t(L; K(

√
b)) and similarly for h̃ and t̃ we con-

clude that

U∗
h,t(L; K) ∼= U∗

h̃,t̃
(L; K).

Note that when h = 0 and t = 1 the above result says that Lee theory over F2

is isomorphic to Khovanov’s original theory over F2, a fact that was proved in [4].

Proposition 2.3. Let L be a link with n components and h, t ∈ K. If h2 + 4t �= 0
then

dim(U∗
h,t(L; K)) = 2n.

All generators lie in even degree and for a knot both generators lie in degree zero.

Proof. Suppose char(K) �= 2. If there exists a non-zero element γ ∈ K such that
h2 + 4t = γ2, we can change basis to write Ah,t = K{α, β} where

α = x − 1
2
(h − γ),

β = x − 1
2
(h + γ).
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Courtesy of the condition h2 + 4t = γ2 �= 0 this change of basis diagonalises the
multiplication:

α2 = γα, β2 = −γβ, αβ = βα = 0.

The rest of the proof is identical to Lee’s proof in [5] in which the details of the
special case K = Q, h = 0, t = 1 and γ = 2 are provided.

If h2 + 4t = b is not a square in K, then the arguments above prove the claim
for

U∗
h,t(L; K(

√
b)) ∼= U∗

h,t(L; K) ⊗K K(
√

b),

which shows that the claim holds for U∗
h,t(L; K) as well, because

dimK U∗
h,t(L; K) = dim

K(
√

b) U∗
h,t(L; K(

√
b)).

In characteristic two, if h = 1 and t = 0 then the basis change which diagonalizes
the Frobenius system is α = x and β = x + 1 which was used in [9]. If h = t = 1,
then K′ = F2[y]/(y2 + y + 1) is a quadratic extension of F2 since y2 + y + 1 is
irreducible modulo 2. In this case

α = x + y,

β = x + y2

diagonalizes the Frobenius system A1,1 with coefficients in K′. As above it follows
from Lee’s work that dimK′U1,1(L, K′) = 2n. Since K′ ∼= F2 ⊕ F2y is a free F2-
module, we get, by the universal coefficient theorem,

U∗
1,1(L, K′) ∼= U∗

1,1(L, F2) ⊗F2 K′,

and hence dimF2 U∗
1,1(L, F2) = dimK′ U∗

1,1(L, K′) = 2n, which proves the claims in
the proposition for this case too.

The statement about the degree of the generators follows once again from Lee’s
proof.

Khovanov’s original link homology was defined integrally and each of the the-
ories discussed so far also has an integral version. Indeed, the Frobenius system in
Example 2.1 can also be defined over Z resulting in the link homology we denote
by U∗

h,t(L; Z).

Proposition 2.4. Let L be a link with n components and let h, t ∈ Z satisfy
h2 + 4t �= 0.

(i) There is an isomorphism

U∗
h,t(L; Z) ∼= Z ⊕ · · · ⊕ Z︸ ︷︷ ︸

2n

⊕T ∗

where T ∗ is all torsion.
(ii) If h, t < p and h2 + 4t �= 0 mod p where p is a prime, then U∗

h,t(L; Z) has no
p-torsion.
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Proof. If A is the Frobenius system giving U∗
h,t(−; Z) then A⊗Z Q is the Frobenius

system giving U∗
h,t(−; Q). By the construction of link homology this means that each

chain group in the rational theory is the integral chain group tensored with Q. Thus
the universal coefficient theorem gives

U i
h,t(L; Q) ∼= U i

h,t(L; Z) ⊗Z Q ⊕ TorZ(U i+1
h,t (L; Z), Q)

= U i
h,t(L; Z) ⊗Z Q.

Thus by Proposition 2.3

dim(U∗
h,t(L; Z) ⊗Z Q) = dim(U∗

h,t(L; Q)) = 2n

from which part (i) follows.
For part (ii) we will prove by induction on i that U i

h,t(L; Z) has no p-torsion
under the hypotheses given. Suppose that U i

h,t(L; Z) has no p-torsion for i ≤ N and
now claim the same holds true for i = N + 1. Note that U i

h,t(L; Z) is non-trivial
only for finitely many values of i so the induction has a base case. By the universal
coefficient theorem we have

UN
h,t(L; Fp) ∼= UN

h,t(L; Z) ⊗Z Fp ⊕ TorZ(UN+1
h,t (L; Z), Fp).

If N is odd, then the left-hand side is trivial since it follows from Proposition 2.3
that all generators are in even homological degree. Hence TorZ(UN+1

h,t (L; Z), Fp) = 0
showing there is no p-torsion in UN+1

h,t (L; Z). If N is even, by Proposition 2.3 we
know the number of copies of Fp on the left and moreover that the same number
occurs in the first summand on the right, so the Tor group is again trivial and
UN+1

h,t (L; Z) does not have p-torsion.

For integral Bar-Natan theory one can do slightly better. The change of basis
α = x, β = x − 1 in fact diagonalises the theory so in this case T ∗ is trivial. For
integral Lee theory part (ii) above shows that the only possible torsion is 2-torsion.

3. Rasmussen’s s-Grading

As we noted above the theories we are concerned with are not in general bi-graded
but instead possess a filtration. Let C∗(L) be the complex formed using the Frobe-
nius system Ah,t over K, i.e. whose homology is U∗

h,t(L; K). As above K is one of Q

or Fp for p a prime and we are assuming h2 + 4t �= 0.
Define p: C∗(L) → Z as follows. Set p(1) = 1 and p(x) = −1 and for any element

w = w1⊗w2⊗· · ·⊗wm ∈ C∗(L), where wi ∈ {1, x}, set p(w) = p(w1)+ · · ·+p(wm).
An arbitrary w ∈ C∗(L) is not homogeneous with respect to p but can be written
as w = w1 + w2 + · · · + wl, where wj is homogeneous for all j. We define

p(w) = min
{
p(wj) | j = 1, . . . , l

}
.
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Now for any w ∈ Ci(L), define

q(w) = p(w) + i + c+ − c−,

where c+ and c− are the numbers of positive and negative crossings respectively
in L. The filtration grading of an element w is q(w).

As Rasmussen explains in [6] this determines a grading s on the homology. For
α ∈ U∗

h,t(L; K) define

s(α, K)h,t = max{q(w) |w ∈ C∗(L), [w] = α} .

If there is no confusion we will supress h and t from the notation writing s(α, K)
for s(α, K)h,t. Note that we can define the linear subspaces

FmU∗
h,t(L; K) =

{
α ∈ U∗

h,t(L; K) | s(α) ≥ m
}

,

which form a filtration

0 ⊆ F iU∗
h,t(L; K) ⊆ F i−1U∗

h,t(L; K) ⊆ · · · ⊆ F jU∗
h,t(L; K) = U∗

h,t(L; K),

where i and j are the maximal and the minimal s-value respectively.
For integral theories we define s(α, Z) in a similar manner by restricting the

definition to classes α in the torsion-free part of U∗
h,t(L; Z).

The s-grading satisfies some important properties given in the following two
propositions.

Proposition 3.1. Suppose char(K) �= 2. If h2 + 4t �= 0 and h̃2 + 4t̃ �= 0 then there
exists an isomorphism

U∗
h,t(L; K) ∼= U∗

h̃,t̃
(L; K)

which preserves the s-grading.

Proof. Case I : there exists a non-zero element a ∈ K such that

h̃2 + 4t̃

h2 + 4t
= a2.

In this case we can use the isomorphism in the proof of Proposition 2.2(ii). Recall
that if x is the generator of Ah,t and y is the generator of Ah̃,t̃, then the isomorphism
is induced by twisting Ah,t by a−1 and using the isomorphism of Frobenius systems
Ah̃,t̃ → A′

h,t defined by 1 �→ 1, y �→ ax + b where b = 1
2 (h̃− ah). The latter induces

an isomorphism ψ∗: U∗
h̃,t̃

(L; K) → U∗
h,t(L; K).

It is clear that the twist preserves s so we only need to consider ψ∗. Let C∗
h,t(L)

be the complex whose homology is U∗
h,t(L; K) and similarly let C∗

h̃,t̃
(L) be the

complex giving U∗
h̃,t̃

(L; K). Let ψ: C∗
h̃,t̃

(L) → C∗
h,t(L) be induced by the isomorphism

of Frobenius systems above. We claim that ψ preserves the filtration degree q. We
can write w ∈ C∗

h̃,t̃
(L) as

w =
∑

λIεI(y)
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where each εI(y) = ε1 ⊗ ε2 ⊗ · · · with εj ∈ {1, y}. By the definition of ψ we have

ψ(εI(y)) = ar(I)εI(x) + terms of higher filtration

where r(I) is the number of y’s in εI(y). From this it follows that q(ψ(w)) = q(w)
since any term εI with q(εI) = q(w) also appears in ψ(w).

Next we claim that ψ∗ preserves s, i.e. for α ∈ U∗
h̃,t̃

(L; K)

s(α, K)h̃,t̃ = s(ψ∗(α), K)h,t. (3.1)

Let w ∈ C∗
h̃,t̃

(L) such that [w] = α and q(w) = s(α, K)h̃,t̃. Then ψ(w) represents
ψ∗(α) and so

s(ψ∗(α), K)h,t ≥ q(ψ(w)) = q(w) = s(α, K)h,t.

Conversely, let v ∈ C∗
h,t(L) be such that [v] = ψ∗(α) and q(v) = s(ψ∗(α), K)h,t.

Then ψ−1(v) represents α so

s(α, K)h̃,t̃ ≥ q(ψ−1(v)) = q(v) = s(ψ∗(α), K)h,t.

proving (3.1).
Case II : the element

h̃2 + 4t̃

h2 + 4t
= b

is not a square in K. In this case we will show

FmU∗
h,t(L; K)/Fm+1U∗

h,t(L; K) ∼= FmU∗
h̃,t̃

(L; K)/Fm+1U∗
h̃,t̃

(L; K)

for all m ∈ Z.
Case I above shows that there exists an isomorphism

U∗
h,t(L; K(

√
b)) ∼= U∗

h̃,t̃
(L; K(

√
b)) (3.2)

which preserves the s-grading.
Let us now show that the inclusion

ι: U∗
h,t(L; K) → U∗

h,t(L; K(
√

b)) (3.3)

preserves the s-grading. The map ι is induced by the inclusion

ι: Z∗(L, K) → C∗(L, K) ⊗ K(
√

b) = C∗(L, K(
√

b))

given by

ι(w) = w ⊗ 1,

which clearly preserves the q-values. Let α ∈ U∗
h,t(L; K) and let w ∈ Z∗(L, K) be

such that α = [w] with s(α) = q(w). Then we have

s(α, K) = q(w) = q(w ⊗ 1) ≤ s(ι(α), K(
√

b)).

Conversely, let u ∈ C∗(L, K(
√

b)) be such that ι(α) = [u] and s(ι(α), K(
√

b)) = q(u).
Then [π(u)] = α, where π is induced by the projection K(

√
b) ∼= K ⊕ K

√
b → K
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which is the left inverse of the inclusion. Clearly q(u) ≤ q(π(u)), so we get

s(ι(α), K(
√

b)) = q(u) ≤ q(π(u)) ≤ s(α, K).

Thus we have s(ι(α), K(
√

b)) = s(α, K), showing that ι preserves the s-grading.
It follows now that ι induces inclusions on filtration quotients

FmU∗
h,t(L; K)/Fm+1U∗

h,t(L; K) → FmU∗
h,t(L; K(

√
b))/Fm+1U∗

h,t(L; K(
√

b))

and hence inclusions

[FmU∗
h,t(L; K)/Fm+1U∗

h,t(L; K)] ⊗ K(
√

b)

→ FmU∗
h,t(L; K(

√
b))/Fm+1U∗

h,t(L; K(
√

b)).

Thus by taking dimensions (of K-modules) we have

2 dimK[FmU∗
h,t(L; K)/Fm+1U∗

h,t(L; K)]

≤ dimK[FmU∗
h,t(L; K(

√
b))/Fm+1U∗

h,t(L; K(
√

b))].

Now if L has n components then by Proposition 2.3, we have
∑
m

2 dimK[FmU∗
h,t(L; K)/Fm+1U∗

h,t(L; K)] = 2n+1

and
∑
m

dimK[FmU∗
h,t(L; K(

√
b))/Fm+1U∗

h,t(L; K(
√

b))] = 2n+1.

Thus we can conclude

2 dimK[FmU∗
h,t(L; K)/Fm+1U∗

h,t(L; K)]

= dimK[FmU∗
h,t(L; K(

√
b))/Fm+1U∗

h,t(L; K(
√

b))].

Similar equations hold using h̃ and t̃ and combining these with (3.2) gives

dimK FmU∗
h,t(L; K)/Fm+1U∗

h,t(L; K) = dimK FmU∗
h̃,t̃

(L; K)/Fm+1U∗
h̃,t̃

(L; K),

for any m ∈ Z, which proves the proposition.

The next property involves the maps in the universal coefficient theorem. Recall
that the universal coefficient theorem provides a short exact sequence

0 �� U∗
h,t(L; Z) ⊗Z K

φ �� U∗
h,t(L; K) �� TorZ(U∗+1

h,t (L; Z), K) �� 0 .

Proposition 3.2. If h, t ∈ Z are such that h2 + 4t �= 0 in K then

φ: U∗
h,t(L; Z) ⊗Z K → U∗

h,t(L; K)

is an isomorphism that preserves the s-grading.
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Proof. It is an isomorphism since the Tor group is trivial: over Q always and over
Fp courtesy of part (ii) of Proposition 2.4.

Recall that φ is induced by the inclusion

φ: Z∗(L, Z) ⊗ K → C∗(L, Z) ⊗ K = C∗(L, K)

which clearly preserves the filtration grading q.
To show φ preserves s we must show that given α ∈ U∗

h,t(L; Z)/Tors we have

s(α, Z) = s(φ(α ⊗ 1), K). (3.4)

Let w ∈ Z∗(L, Z) be a representative of α such that q(w) = s(α, Z). Then
φ(w ⊗ 1) represents φ(α ⊗ 1) and so

s(φ(α ⊗ 1), K) ≥ q(φ(w ⊗ 1)) = q(w) = s(α, Z).

Conversely, let u ∈ Z∗(L, K) represent φ(α ⊗ 1) such that q(u) = s(φ(α ⊗ 1), K).
We may write u =

∑
vi ⊗ λi ∈ Z∗(L, Z) ⊗ K. When K = Q let λ be the least

common multiple of the denominators of the λi and when K = Fp let λ = 1. Define
v ∈ Z∗(L, Z) by

λ
∑

vi ⊗ λi = v ⊗ 1 ∈ Z∗(L, Z) ⊗ K.

Note that q(v) = q(u) and moreover that since φ is an isomorphism [v] = λα. We
also have s(λα, Z) = s(α, Z) and so

s(α, Z) = s(λα, Z) ≥ q(v) = q(u) = s(φ(α ⊗ 1), K)

proving (3.4) and hence the claim.

4. Rasmussen’s Invariant

Let K be one of Q or Fp and let h, t ∈ K satisfy h2 + 4t �= 0 ∈ K. Let K be a knot
and define

smin(K, K)h,t = min{s(α, K)h,t |α ∈ U∗
h,t(K; K), α �= 0}

and

smax(K, K)h,t = max{s(α, K)h,t |α ∈ U∗
h,t(K; K), α �= 0}.

Rasmussen’s s-invariant for the theory U∗
h,t(−; K) is defined as follows. The

original definition in [6] is for the case K = Q.

Definition 4.1.

s(K, K)h,t =
smin(K, K)h,t + smax(K, K)h,t

2
.
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For integral theories we may make an analogous definition by using s(α, Z)
which we recall restricts its definition to the the torsion-free part of U∗

h,t(K; Z).
Here is our main result. Let K and K̃ be Q or Fp (K and K̃ possibly different).

Theorem 4.2. Let K be a knot. Let h, t ∈ K and h̃, t̃ ∈ K̃ be such that h2 + 4t �=
0 ∈ K and h̃2 + 4t̃ �= 0 ∈ K̃. Then

s(K, K)h,t = s(K, K̃)h̃,t̃.

Proof. If K = K̃ = Q then by Proposition 3.1

s(K, Q)h,t = s(K, Q)h̃,t̃.

If K = Fp and K̃ = Q then we lift h and t to Z and apply Proposition 3.2 to give

s(K, K)h,t = s(K, Z)h,t.

Applying Proposition 3.2 once more and then Proposition 3.1 gives

s(K, Z)h,t = s(K, Q)h,t = s(K, Q)h̃,t̃

which proves the result in this case.
If K = Fp and K̃ = Fq then in a similar way to the above we can apply

Propositions 3.1 and 3.2 to get

s(K, K)h,t = s(K, Z)h,t = s(K, Q)h,t = s(K, Q)h̃,t̃ = s(K, Z)h̃,t̃ = s(K, K̃)h̃,t̃.

In particular s(K, F2)1,0 = s(K, Q)0,1 holds true, showing that the s-invariant
from Bar-Natan’s characteristic two theory is equal to Rasmussen’s original s-
invariant defined using Lee theory over Q.
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