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An approach to categorification of Verma modules

Grégoire Naisse and Pedro Vaz

Abstract

We give a geometric categorification of the Verma modules M(λ) for quantum sl2.
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1. Introduction

After the pioneer works of Frenkel–Khovanov–Stroppel [13] and Chuang–Rouquier [11], there
have been various developments in higher representation theory in different directions and with
different flavors. One popular approach consists of using structures from geometry to construct
categorical actions of Lie algebras. This is already present in the foundational papers [11,
13], where cohomologies of finite-dimensional Grassmannians and partial flag varieties play
an important role in the categorification of finite-dimensional irreducible representations of
quantum sl2. In the context of algebraic geometry Cautis, Kamnitzer and Licata [9] have
defined and studied geometric categorical sl2-actions, and Zheng gave a categorification of
integral representations of quantum groups [51] and of tensor products of sl2-modules [50].

In a remarkable series of papers, Khovanov and Lauda, and independently Rouquier,
constructed categorifications of all quantum Kac–Moody algebras [28–30, 34–36, 46] and some
of their 2-representations [46]. In Khovanov and Lauda’s formulation the categorified quantum
group is a 2-category U̇ , defined diagrammatically by generators and relations. Khovanov and
Lauda conjectured that certain quotients of U̇ categorify integrable representations of these
quantum Kac–Moody algebras. This conjecture was first proved in finite type An by Brundan
and Kleshshev [6]. Based on Khovanov and Lauda, Rouquier and Zheng’s work, Webster
gave in [49] a diagrammatic categorification of tensor products of integrable representations
of symmetrizable quantum Kac–Moody algebras and used it to categorify the Witten–
Reshetikhin–Turaev link invariant. Moreover, he proved Khovanov and Lauda’s conjecture
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on categorification of integrable representations for all quantum Kac–Moody algebras. This
was also done independently by Kang and Kashiwara in [20].

All these constructions share one common feature: they only categorify finite-dimensional
representations in the finite type (representations in other types are locally finite-dimensional
when restricted to any simple root quantum sl2). In this paper we make a step towards a
categorification of infinite-dimensional and non-integrable representations of quantum Kac–
Moody algebras. We start with the simplest case by proposing a framework for categorification
of the Verma modules for quantum sl2. This paper is the first of a series which continues
with [41], where the authors study the algebra An introduced below. Then, the construction
is generalized to all Kac–Moody algebras in [42]. In addition, in [43] the authors explain a
connexion between Verma modules and the HOMFLY-PT polynomial. Then, they use the
theory of categorified Verma modules to recover Khovanov–Rozansky link homology.

This paper was motivated by the geometric categorification of finite-dimensional irreducible
representations of sl2 by Frenkel, Khovanov and Stroppel in [13, § 6] and the subsequent
constructions in [34, 35]. In particular, the inspiration from Lauda’s description in [34, 35]
should be clear.

Here are some of the main differences to these: First we use infinite-dimensional Grass-
mannians and introduce an exterior part carrying an extra grading and a parity (this is
somehow similar to what is done to go from sln-link homology to HOMFLY-PT link homology,
see [26, 31, 32]). Moreover, we drop the biadjunction hypothesis on the functors realizing
the categorical action, keeping only an adjunction. Finally, to deal with the occurrence of a
polynomial fraction in the commutator relation we introduce a different notion of Grothendieck
group from the usual, that allow canceling infinite relations. Despite being different from the
one introduced by Achar and Stroppel in [1] we call it a topological Grothendieck group. This
notion is explained in Appendix.

Without further delays we now pass to describe our construction.

1.1. Sketch of the construction

1.1.1. Verma modules. Let b be the Borel subalgebra of sl2, and λ = qc for some c either
formal or integer. Denote by Vλ the one-dimensional Uq(b)-module of weight λ, with E acting
trivially. The universal Verma module M(λ) with the highest weight λ is the induced module

M(λ) = Uq(sl2) ⊗Uq(b) Vλ.

We follow the notation in [18] (cf. [18, §§ 2.2 and 2.4]), but in the special case when λ = qn for
an integer number n, we write M(n) instead of M(qn). The Verma module M(λ) is irreducible
unless λ = qn with n a non-negative integer. In the latter case M(n) contains M(−n− 2) as a
unique non-trivial proper submodule and the quotient M(n)/M(−n− 2) is isomorphic to the
irreducible Uq(sl2)-module V (n) of dimension n + 1. Throughout this paper, we will treat λ as
a formal parameter and we will think of M(λ) as a module over Q((q, λ)). Here Q((q, λ)) means
the field of formal Laurent series in the variables q and λ. We will also consider MA(λ) and
M∗

A(λ), where we replace the ground field Q((q, λ)) by the ring A = Q((q))[λ, λ−1]. They are
Verma modules over U̇λ, the shifted idempotented quantum sl2 defined below in § 2.1.1, and
are given, respectively, by the canonical and dual canonical basis of M(λ), also presented in
§ 2.1.1.

1.1.2. Categorification of the weight spaces of M(λq−1). We work over the field of rationals
Q and ⊗ means ⊗Q. Let Gk be the Grassmannian of k-planes in C∞ and H(Gk) its cohomology
ring with rational coefficients. It is a graded algebra freely generated by the Chern classes xk =
(x1, . . . , xk) with deg(xi) = 2i [35, § 3.1.1] (see also [15; 16, § 3] for more about cohomology of
flag varieties). The ring H(Gk) has a unique irreducible module up to isomorphism and grading
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shift, which is isomorphic to Q. Let ExtH(Gk)(Q,Q) denote the algebra of self-extensions of Q

(this can be seen as the opposite algebra of the Koszul dual of H(Gk)) and for k � 0, define

Ωk = H(Gk) ⊗ ExtH(Gk)(Q,Q).
We have

Ωk
∼= Q[xk] ⊗

∧•(sk),

which we regard as a Z × Z-graded superring, with even generators xi having degree deg(xi) =
(2i, 0), and odd generators si with deg(si) = (−2i, 2) (the first grading is quantum and the
second cohomological). We denote by 〈r, s〉 the grading shift up by r units on the quantum
grading and by s units on the cohomological grading. In the sequel we use the term bigrading
for a Z × Z-grading.

The superring Ωk has a unique irreducible supermodule up to isomorphism and (bi)grading
shift, which is isomorphic to Q and denoted Sk, and a unique projective indecomposable
supermodule, again up to isomorphism and (bi)grading shift, which is isomorphic to Ωk.

In the Appendix we develop several versions of ‘topological’ Grothendieck groups. The
topological split Grothendieck group K0(Ωk) and topological Grothendieck group G0(Ωk)
are one-dimensional modules over Zπ�q�[q−1, λ±1], where Zπ = Z[π]/(π2 − 1), and generated,
respectively, by the class of Ωk, and by the class of Sk. In another version, the topological
Grothendieck group Ĝ0(Ωk) = G0(Ωk -smodlf) is a one-dimensional module over Zπ((q, λ)),
and is generated either by [Ωk], either by [Sk].

For each non-negative integer k we define Mk = Ωk -smodlf and take Mk as a categorification
of the (λq−1−2k)-weight space.

1.1.3. The categorical sl2-action. To construct functors F and E that move between
categories Mk we look for superrings Ωk+1,k and (natural) maps

that turn Ωk+1,k into a (Ωk+1,Ωk)-superbimodule such that, up to an overall shift,

• Ωk+1,k is a free right Ωk-supermodule of bigraded superdimension

λq−k−1 − λ−1qk+1

q − q−1

• Ωk+1,k is a free left Ωk+1-supermodule of bigraded superdimension [k + 1].

Remark 1.1. The superring H(Gk,k+1) ⊗ ExtH(Gk,k+1)(Q,Q) does not have these proper-
ties.

Let Gk,k+1 be the infinite partial flag variety

Gk,k+1 = {(Uk, Uk+1)|dimC Uk = k,dimC Uk+1 = k + 1, 0 ⊂ Uk ⊂ Uk+1 ⊂ C∞}.
Its rational cohomology is a graded ring generated by the Chern classes:

H(Gk,k+1) = Q[xk, ξ], deg(xi) = 2i, deg(ξ) = 2.

The forgetful maps
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induce maps in cohomology

which make H(Gk,k+1) an (H(Gk+1), H(Gk))-superbimodule. As a right H(Gk)-supermodule,
the bimodule H(Gk,k+1) is a free, bigraded module isomorphic to H(Gk) ⊗ Q[ξ].

We take

Ωk+1,k = H(Gk,k+1) ⊗ ExtH(Gk+1)(Q,Q).

We put ψ∗
k+1 = ψk+1 ⊗ 1: Ωk+1 → Ωk+1,k and define φ∗

k : Ωk → Ωk+1,k as the map sending xi

to xi and si to si + ξsi+1:

This gives Ωk+1,k the structure of an (Ωk+1,Ωk)-superbimodule. We write Ωk,k+1 for Ωk+1,k

when seen as an (Ωk,Ωk+1)-superbimodule. It is easy to see that up to an overall shift, the
superring Ωk+1,k has the desired properties.

For each k � 0 define exact functors†Fk : Mk → Mk+1 and Ek : Mk+1 → Mk by

Fk(−) = Resk+1,k
k+1 ◦Ωk+1,k ⊗Ωk

(−)〈−k, 0〉,
and

Ek(−) = Resk+1,k
k ◦Ωk,k+1 ⊗Ωk+1 (−)〈k + 2,−1〉.

Functors (F,E) form an adjoint pair up to grading shifts, but F does not admit E as a left adjoint.
We would like to stress that this is necessary to prevent us from falling in the situation of Q-
strong 2-representations from [10]. In that case, the construction would lift to a 2-representation
of U̇ and Rouquier’s results in [46] would imply that if the functor E kills a highest weight
then its biadjoint functor would kill a lowest weight (this can be proved with a clever trick
using degree zero bubbles from [34] to tunnel from the lowest weight to the highest weight‡).
We should not expect a biadjunction between the functors E and F since it can be interpreted
as a categorification of the involution exchanging operators E and F (up to coefficients).

Denote by Ωk[ξ] the polynomial ring in ξ with coefficients in Ωk and by Qk the functor
of tensoring on the left with the (Ωk,Ωk)-superbimodule ΠΩk[ξ]〈1, 0〉, where Π is the parity
change functor. The categorical sl2-action is encoded in a short exact sequence of functors,

0 −−→ Fk−1 ◦ Ek−1 −−→ Ek ◦ Fk −−→ Qk〈−2k − 1, 1〉 ⊕ ΠQk〈2k + 1,−1〉 −−→ 0. (1)

From the work of Lauda in [34, 35] adjusted to our context it follows that for each n � 0
there is an action of the nilHecke algebra NHn on Fn and on En. As a matter of fact, there is
an enlargement of NHn, which we denote as An, acting on Fn and En, also admitting a nice
diagrammatic description (see § 1.1.6 for a sketch).

We define M as the direct sum of all the categories Mk and functors F, E and Q in the
obvious way. One of the main results in this paper is the following.

†All our functors are, in fact, superfunctors which we tend to see as functors between categories endowed
with a Z/2Z-action, whence the use of the terminology functor.

‡We thank Aaron Lauda for explaining this to us.
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Theorem 5.12. The functors F and E induce an action of quantum sl2 on the Grothendieck
groups K0(M), G0(M) and Ĝ0(M), after specializing π = −1. With this action there are
Q�q�[q−1, λ±1]-linear isomorphisms

K0(M) ∼= MA(λ), G0(M) ∼= M∗
A(λ),

of U̇λ module and a Q((q, λ))-linear isomorphism

Ĝ0(M) ∼= M(λ),

of Uq(sl2)-representations. Moreover, these isomorphisms send classes of projective indecom-
posables to canonical basis elements and classes of simples to dual canonical elements, whenever
this makes sense.

Form the 2-category M(λq−1) which is the completion under extensions of the 2-category
whose objects are the categories Mk, the 1-morphisms are cone-bounded, locally finite direct
sums (see the Appendix) of shifts of functors from {Ek, Fk, Qk, Idk} and the 2-morphisms are
(grading-preserving) natural transformations of functors. In this case the 2-category M(λq−1)
is an example of a 2-Verma module for sl2.

1.1.4. Categorification of the Verma module with integral highest weight. Forgetting the
cohomological degree on the superrings Ωk and Ωk,k+1 defines a forgetful functor into the
category of Z-graded Ωk(−1)-supermodules, where Ω(−1) is the ring Ω with the cohomological
degree collapsed. This defines a category M(−1). A direct consequence of Theorem 5.11 is that
the Grothendieck group K0(M) is isomorphic to the Verma module M(−1).

Our strategy to categorify M(n) is to first define for each n ∈ Z certain sub-superrings Ωn
k

and Ωn
k,k+1 of Ωk and Ωk,k+1, that agree with these for n = −1, and such that an immediate

application of the procedure as before results in a categorification of the Verma module M(λqn).
We then apply the forgetful functor to define a categorification of M(n).

As in the case of M, for each m � 0 there is an action of the nilHecke algebra NHm and of
its enlargement Am on Fm and on Em.

1.1.5. A categorification of the (n + 1)-dimensional irreducible representation from M(λ).
To recover the categorification of the finite-dimensional irreducible V (n) from [11, 13] we
define for each n ∈ N a differential dn on the superrings Ωk and Ωk,k+1, turning them in DG-
algebras and DG-bimodules. These DG-algebras and DG-bimodules are quasi-isomorphic to
the cohomologies of finite-dimensional Grassmannians and two-step flag manifolds in Cn, as
used in [11, 13]. Moreover, the short exact sequence (1) can be turned into a short exact
sequence of DG-bimodules that descends in the homology to the direct sums decompositions
categorifying the sl2-commutator relation in [11, 13]. This means we can also interpret our
construction as a DG-enhancement of [11, 13]. The nilHecke algebra action descends to the
usual nilHecke algebra action on integrable 2-representations of sl2 (see [10, 34, 35, 46]), and
thus we call the enlargement of the nilHecke algebra An the enhanced nilHecke algebra. The
differential dn descends to the superrings Ωk(n) and Ωk,k+1(n) yielding the same result as in
M(λ).

1.1.6. A diagrammatic presentation for the enhanced nilHecke algebra. The enhanced
nilHecke algebra An can be given a presentation in the spirit of KLR algebras [28, 34, 46] as
isotopy classes of braid-like diagrams modulo some relations.

Our diagrams are isotopy classes of KLR diagrams with some extra structure. Besides the
KLR dots we have another type of dot we call a floating dot (we keep the name dot for the
KLR dots), which lives inside the regions between instead of on the strands, with condition that
there is no floating dot in the leftmost region. Floating dots are made to satisfy the exterior
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algebra relations (see below). The enhanced nilHecke algebra is in fact a bigraded superalgebra,
where nilHecke generators are even and floating dots are odd. Moreover, regions in a diagram
are labeled with integer numbers, and crossing a strand from left to right increases the label
by 1:

Fix a base ring k. The k-superalgebra An consists of k-linear combinations of n-strand diagrams
as described above. The multiplication is given by concatenation of diagrams whenever the
labels of the regions agree and zero otherwise. The superalgebra An is bigraded with the
q-degree of the floating dot given by minus two times the label of the region containing it:

The generators are subject to the following local relations:

All other isotopies are allowed (for example, switching the relative height of a dot and a floating
dot, or a distant crossing and a floating dot). The relations above respect the bigrading as well
as the parity.

We define An(m) as the sub-superalgebra consisting of all diagrams with label m at the
leftmost region and

A(m) =
⊕
n�0

An(m).

The usual inclusion An(m) ↪→ An+1(m) that adds a strand at the right of a diagram from
An(m) gives rise to induction and restriction functors on A(m) -smodlf that satisfy the sl2-
relations. Our results imply that together with these functors, A(m) -smodlf categorifies the
Verma module M(λqm−1). See the following paper [41] for more details about this construction
and the combinatorics of An. The categorification of Verma modules with integral highest
weight using the algebras An follows as a consequence of our results. Moreover, we define for
each m ∈ N a differential on An(m) turning it into a DG-algebra, which is quasi-isomorphic to
a cyclotomic quotient of the nilHecke algebra.
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2. Uq(sl2) and its representations

2.1. Forms of quantum sl2

The notions below are well known and can be found, for example, in [18, 38].

Definition 2.1. The quantum algebra Uq(sl2) is the unital associative algebra over Q(q)
with generators E, F , K and K−1 subject to the relations:

KK−1 = 1 = K−1K,

KE = q2EK,

KF = q−2FK,

EF − FE =
K −K−1

q − q−1
.

We denote by Uq(b) the subalgebra of Uq(sl2) generated by E, K and K−1.

Define the quantum integer [a] = (qa − q−a)/(q − q−1), the quantum factorial [a]! = [a][a−
1]! with [0]! = 1, and the quantum binomial coefficient [ab ] = [a]!/([b]![a− b]!) for 0 � b � a,
and put {a} = qa−1[a]. For a � 0 define also the divided powers

E(a) =
Ea

[a]!
and F (a) =

F a

[a]!
.

Following [34, § 2.1 and 2.2] we now introduce some important algebra (anti)automorphisms
on Uq(sl2). Let q, ψ, τ and ρ be as follows:

(1) q is the Q-linear involution that maps q to q−1.
(2) ψ is the Q(q)-antilinear algebra automorphism of Uq(sl2) given by

ψ(E) = E, ψ(F ) = F, ψ(K) = K−1,

ψ(pX) = pψ(X), for p ∈ Q(q) and X ∈ Uq(sl2).

(3) τ : Uq(sl2) → Uq(sl2)op is the Q(q)-antilinear isomorphism given by

τ(E) = q−1K−1F, τ(F ) = q−1KE, τ(K) = K−1, (2)

and

τ(pX) = pτ(X), for p ∈ Q(q) and X ∈ Uq(sl2),

τ(XY ) = τ(Y )τ(X), for X,Y ∈ Uq(sl2).

(4) ρ is the Q(q)-linear algebra anti-involution defined by

ρ(E) = q−1K−1F, ρ(F ) = q−1KE, ρ(K) = K, (3)

and

ρ(pX) = pρ(X), for p ∈ Q(q) and X ∈ Uq(sl2),

ρ(XY ) = ρ(Y )ρ(X), for X,Y ∈ Uq(sl2).?

The inverse of τ is given by τ−1(E) = q−1FK, τ−1(F ) = q−1EK−1, and τ−1(K) = K−1.

Remark 2.2. The ρ defined above should be ψρψ in the notations from [34].
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2.1.1. Deformed idempotented Uq(sl2). For c either integer or formal parameter, the
shifted weight lattice is given by c + Z. For n ∈ Z we denote by en the idempotent corresponding
to the projection onto the (λqn)-weight space. On this weight space, K acts as multiplication
by λqn:

enK = Ken = λqnen. (4)

In the spirit of Lusztig [38, Chapter 23] we now adjoin to Uq(sl2) the idempotents en for all
n ∈ Z. Denote by I the ideal generated by the relations (4) above together with

enem = δn,men, Een = en+2E, Fen = en−2F. (5)

Definition 2.3. Define the shifted idempotented quantum sl2 as the Q(q)[λ±1]-algebra

U̇λ =

⎛⎝ ⊕
m,n∈Z

en (Uq(sl2)) em

⎞⎠ /I.

In this deformed version the main sl2-relation becomes

EFen − FEen =
λqn − λ−1q−n

q − q−1
en = [λ, n]en. (6)

In the special case λ = qn, we will see U̇λ = U̇n as a Q(q)-algebra.
The involution q and the algebra maps ψ, τ and ρ introduced above extend to U̇λ if we put

λ = λ−1, ψ(en) = en, τ(en) = en, ρ(en) = en.

The extended versions of ψ, τ and ρ then take the form

ψ(qsen+2Een) = q−sen+2Een, ψ(qsenFen+2) = q−senFen+2,

τ(qsen+2Een) = λ−1q−s−1−nenFen+2, τ(qsenFen+2) = λq−s+1+nen+2Een,

and

ρ(qsen+2Een) = λ−1qs−1−nenFen+2, ρ(qsenFen+2) = λqs+1+nen+2Een.

2.2. Representations

We only consider modules of type I in this paper and we follow the notations from [18]. As
before, we write λ = qc for c formal, and treat it as a formal parameter itself. Then there is
an infinite-dimensional Uq(sl2) highest weight-module M(λ) with the highest weight λ, called
the universal Verma module (as explained in § 1.1.1 we follow the notation in [18] for Verma
modules for quantum groups). Let b be the Borel subalgebra of sl2 and let Cλ = Q((q, λ))vλ
be a one-dimensional representation of Uq(b) with E acting trivially while Kvλ = λvλ. The
Verma module M(λ) with the highest weight λ is the induced module

M(λ) = Uq(sl2) ⊗Uq(b) Cλ.

It has basis m0,m1, . . . ,mk, . . . , such that for all i � 0

Kmi = λq−2imi,
Fmi = [i + 1]mi+1,

Emi =

⎧⎨⎩0 if i = 0,
λq−i+1 − λ−1qi−1

q − q−1
mi−1 otherwise.

(7)
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We call this basis the canonical basis of M(λ). The change of basis m′
i = [i]!mi gives M(λ) the

following useful presentation of M(λ):

Km′
i = λq−2im′

i,
Fm′

i = m′
i+1,

Em′
i =

⎧⎨⎩0 if i = 0,

[i]
λq−i+1 − λ−1qi−1

q − q−1
m′

i−1 else.

(8)

We denote by Mα the one-dimensional weight spaces of weight α. We can picture M(λ) as
the following diagram:

The Verma module M(λ) is the unique infinite-dimensional module of the highest weight
λ, and it is irreducible unless c ∈ N. To keep the notation simple we write M(n) instead of
M(qn) whenever c = n ∈ Z. In this case HomUq(sl2)(M(n′),M(n)) is zero unless n′ = n or
n′ = −n− 2, and there is a monomorphism φ : M(−n− 2) → M(n), uniquely determined up
to scalar multiples. Moreover, the quotient M(n)/M(−n− 2) is isomorphic to the irreducible
Uq(sl2)-module V (n) of dimension n + 1, and all finite-dimensional irreducibles can be obtained
this way. Under this quotient, the canonical basis of M(n) descends to a particular case of
Lusztig–Kashiwara canonical basis in finite-dimensional irreducible representations of quantum
groups introduced in [37] and independently in [24].

The Verma module M(λ) is universal in the sense that any given Verma module with
integral highest weight can be obtained from M(λ). This means that for each n ∈ Z there
is an evaluation map evn : M(λ) → M(n) which is a surjection (see [45] and also [19, 23] for
details).

Throughout this paper we will take M(λq−1) as the universal Verma module and we will
call M(λq−1+n) (n ∈ Z) the shifted Verma modules (see [45] for details). In our conventions,
evaluating M(λq−1) at n means putting λ = qn+1. The evaluation map evn is then the
composite of a shift with ev−1.

2.3. Bilinear form

The universal Shapovalov form (−,−)λ is the bilinear form on M(λq−1) such that for any
m,m′ ∈ M(λq−1), u ∈ Uq(sl2), and f ∈ Q((q, λ)) we have

• (m0,m0)λ = 1;
• (um,m′)λ = (m, ρ(u)m′)λ, where ρ is the Q(q)-linear antiautomorphism defined in

equation (3);
• f(m,m′)λ = (fm,m′)λ = (m, fm′)λ.

The involution q does not extend to Q((q, λ)) (for example,
∑

k�0 q
k would be sent to∑

k�0 q
−k which is not an element of Q((q, λ)), see Appendix A.3 for more details about

Q((q, λ))). However, when restricting the ground field to Q(q, λ) instead of Q((q, λ)) (we write
MQ(q,λ)(λq−1) in this case) there is another form we can define. We refer to it as the twisted
Shapovalov form, and it is the sesquilinear form uniquely defined by

• 〈m0,m0〉λ = 1;
• 〈um,m′〉λ = 〈m, τ(u)m′〉λ, where τ is the q-antilinear antiautomorphism defined in

equation (2);
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• f〈m,m′〉λ = 〈f̄m,m′〉λ = 〈m, fm′〉λ, where − is the Q-linear involution of Q(q, λ) which
maps q to q−1 and λ to λ−1;

for any m,m′ ∈ MQ(q,λ)(λq−1), u ∈ Uq(sl2), and f ∈ Q(q, λ).
For example,

〈Fnm0, F
nm0〉λ = λnq−n(1+n)[n]![λ,−1][λ,−2] · · · [λ,−n],

the notation [λ,m] being introduced in (6).
Evaluation of M(λq−1) at n reduces to the well-known Q(q)-valued bilinear form (see [45, 47]

for the original definition in the non-quantum context as well as a proof of uniqueness). The q-
Shapovalov form (−,−)n is the unique bilinear form on M(n) such that for any m,m′ ∈ M(n),
u ∈ Uq(sl2), and f ∈ Q(q) we have

• (v0, v0)n = 1;
• (um,m′)n = (m, ρ(u)m′)n, where ρ is the q-linear antiautomorphism defined in equa-

tion (3);
• f(m,m′)n = (fm,m′)n = (m, fm′)n.

For n � 0 the radical of (−,−)n is the maximal proper submodule M(−n− 2) of M(n), and
hence we have V (n) = M(n)/Rad(−,−)n and the q-Shapovalov form descends to a bilinear
form on V (n).

Using the Shapovalov form we define the dual canonical basis{mi}i∈N0 of M(λ) by

(m′
i,m

j)λ = δi,j .

Define [λ, j]! recursively by

[λ, 0]! = 1, [λ, j]! = [λ, j − 1]![λ, j].

Then

mk =
[k]!

[λ,−k]!λkq−k(k+1)
mk,

and the action of F , E and K on the dual canonical basis is

K±1mk = (λq−2k)±1mk,

Fmk = λq−k−λqk

q−q−1 λq−2k−1mk+1,

Emk = [k]λ−1q2k−1mk−1.

(9)

The above reduces without any changes to the case of M(n) for n /∈ N0. For n ∈ N0 the
procedure cannot be applied on M(n). However, it can be used in the finite-dimensional
quotient V (n) yielding the usual dual canonical basis of finite-dimensional representations,
up to a normalization (see, for example, the exposition in [13, § 1.2]).

Restricting the ground field to the ring Q�q�[q−1, λ±1] yields two U̇λ-modules, one given by
the basis {mk}k∈N and the other one by {mk}k∈N, which are non-isomorphic. We denote them,
respectively, MA(λ) and M∗

A(λ), where A = Q�q�[q−1, λ±1].

3. The geometry of the infinite Grassmannian

3.1. Grassmannians and their Ext algebras

Let Gk be the Grassmannian variety of k-planes in C∞. This space classifies k-dimensional
complex vector bundles over a manifold N , in the sense that there is a tautological bundle over
Gk, and every k-dimensional vector bundle over N is a pull-back of the tautological bundle by
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some map from N to Gk. Since this pull-back is invariant under homotopy we actually study
homotopy classes of maps from N to Gk. The cohomology ring of Gk is generated by the Chern
classes (see, for example, [40, Chapter 14] for details),

H(Gk) ∼= Q[x1,k, . . . , xk,k, Y1,k, . . . , Yi,k, . . .]/Ik,∞,

where Ik,∞ is the ideal generated the homogeneous components in t satisfying the equation

(1 + x1,kt + · · · + xk,kt
k)(1 + Y1,kt + · · · + Yi,kt

i + · · · ) = 1. (10)

This ring is Z-graded with degq(xi,k) = degq(Yi,k) = 2i. Note that (10) yields recursively

Yi,k = −
i∑

�=1

x�,kYi−�,k, (11)

where Yi,k = 0 if i < 0, Y0,k = 1 and xj,k = 0 for j > k. Since every Yi,k can be written as a
combination of xj,k, we have

H(Gk) ∼= Q[x1,k, . . . , xk,k].

Now let Gk,k+1 be the infinite partial flag variety

Gk,k+1 = {(Uk, Uk+1)|dimC Uk = k,dimC Uk+1 = k + 1, 0 ⊂ Uk ⊂ Uk+1 ⊂ C∞}.
As it turns out, the infinite Grassmannian Gk is homotopy equivalent to the classifying space
BU(k) of the unitary group U(k), and we have a fibration

B → BU(k) ×BU(1) → BU(k + 1)

induced by the inclusion U(k) × U(1) → U(k + 1). The fiber has the homotopy type of the
quotient U(k + 1)/(U(k) × U(1)) and corresponds to Gk,k+1 in the sense that specifying Uk ⊂
Uk+1 in C∞ corresponds to specifying Uk in C∞ and a one-dimensional Grassmannian in Uk.
As a consequence, we get that the cohomology of B, and therefore of Gk,k+1, is generated by
the Chern classes

H(Gk,k+1) ∼= Q[w1,k, . . . , wk,k, ξk+1, Z1,k+1, . . . , Zi,k+1, . . .]/Ik,k+1,∞,

with Ik,k+1,∞ given by the equation

(1 + w1,kt + · · · + wk,kt
k)(1 + ξk+1t)(1 + Z1,k+1t + · · · + Zi,k+1t

i + · · · ) = 1.

Without surprise, H(Gk,k+1) has a natural structure of a Z-graded ring with

degq(wi,k) = degq(Zi,k+1) = 2i, degq(ξk+1) = 2.

Again, we can write every Zi,k+1 as a combination of wj,k and ξk+1 to get

H(Gk,k+1) ∼= Q[w1,k, . . . , wk,k, ξk+1].

The ring H(Gk) is a graded positive noetherian ring which has a unique simple module, up
to isomorphism and grading shift, H(Gk)/H(Gk)+ ∼= Q, where H(Gk)+ is the submodule of
H(Gk) generated by the elements of non-zero degree. Let ExtH(Gk)(Q,Q) be the algebra of
self-extensions of Q, which is an exterior algebra in k variables,

ExtH(Gk)(Q,Q) ∼=
∧•(s1,k, . . . , sk,k).

It is a Z × Z-graded ring with degq(si,k) = −2i and degλ(si,k) = 2. The first grading is induced
by the grading in H(Gk) and we call it quantum, while the second grading is cohomological.
Sometimes we write degq,λ(x) for the ordered pair (degq(x),degλ(x)).

In another way of looking at this we note that H(Gk) is a Koszul algebra and there-
fore quadratic. Indeed let Vk be the Q-vector space with basis 〈x1,k, . . . , xk,k〉 and R =
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{xi,kxj,k − xj,kxi,k|1 � i, j � k}, then H(Gk) ∼= T (Vk)/(R) and the Koszul dual of H(Gk)
coincides with the quadratic dual H(Gk)! = T (V ∗

k )/(R⊥), with R⊥ = {f ∈ V ∗
k ⊗ V ∗

k |f(R) = 0}
(see [4, § 2.10]). An easy exercise shows that H(Gk)! ∼=

∧•(s1,k, . . . , sk,k), where we identify
si,k with x∗

i,k : Vk → Q. In conclusion we have an isomorphism H(Gk) ⊗H(Gk)! ∼= H(Gk) ⊗
(H(Gk)!)op ∼= H(Gk) ⊗ ExtH(Gk)(Q,Q).

Definition 3.1. For each k ∈ N we form the bigraded rings

Ωk = H(Gk) ⊗ ExtH(Gk)(Q,Q)

and

Ωk,k+1 = H(Gk,k+1) ⊗ ExtH(Gk+1)(Q,Q).

Note that we do not use extensions of H(Gk,k+1)-modules and also Ωk is isomorphic to the
Hochschild cohomology of H(Gk). In order to fix some notation and avoid any possibility of
confusion in future computations we fix presentations of these rings as

Ωk = Q[xk, sk], and Ωk,k+1 = Q[wk, ξk+1, σk+1],

where we write tm for an array (t1,m, . . . , tm,m) of m variables and where it is abusively implied
that the variables si and σi are anticommutative.

Rings Ωk and Ωk,k+1 are in fact (supercommutative rings) superrings with an inherent
Z2-grading, called parity, given by

p(xi,k) = 0, p(si,k) = 1,

for xi,k, si,k ∈ Ωk, and

p(wi,k) = p(ξk+1) = 0, p(σi,k+1) = 1,

for wi, ξk+1 and σi ∈ Ωk,k+1.

3.2. Superbimodules

Let R be a superring. A left (respectively, right) R-supermodule is a Z2-graded left (respectively,
right) R-module. A left supermodule map f : M → N is a homogeneous group homomorphism
that supercommutes with the action of R,

f(r •m) = (−1)p(f)p(r)r • f(m),

for all r ∈ R and m ∈ M . A right supermodule map is a homogeneous right module homomor-
phism. An (R,R′)-superbimodule is both a left R-supermodule and a right R′-supermodule,
with compatible actions. A superbimodule map is both a left supermodule map and a right
supermodule map.

Then, if R has a supercommutative ring structure and if we view it as an (R,R)-
superbimodule, multiplying at the left by an element of R gives rise to a superbimodule
endomorphism.

Let M and N be, respectively, an (R′, R) and an (R,R′′)-superbimodules. One form their
tensor product over R in the usual way for bimodules, giving a superbimodule. Given two
superbimodule maps f : M → M ′ and g : N → N ′, we can form the tensor product f ⊗ g :
M ⊗N → M ′ ⊗N ′, which is defined by

(f ⊗ g)(b⊗m) = (−1)p(g)p(b)f(b) ⊗ g(m),

and gives a superbimodule map.
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Now define the parity shift of a supermodule M , denoted ΠM = {π(m)|m ∈ M}, where π(m)
is the element m with the parity inversed, and if M is a left supermodule (or superbimodule)
with left action given by

r • π(m) = (−1)p(r)π(r •m),

for r ∈ R and m ∈ M . The action on the right remains the same.
In this context, the map R → ΠR defined by r �→ π(ar) for some odd element a ∈ R is a

Z/2Z-grading-preserving homomorphism of (R,R)-superbimodules.
Let π : M → ΠM denote the change of parity map x �→ π(x). It is a supermodule map

with parity 1 and satisfies π2 = Id. The map π ⊗ π : ΠM ⊗N → M ⊗ ΠN is Z/2Z-grading-
preserving and such that (π ⊗ π)2 = − Id, thus

Π(M ⊗N) ∼= ΠM ⊗N ∼= M ⊗ ΠN

are isomorphisms of supermodules. All the above are presented with a more categorical
flavor in [12, 21] (see also [22]), showing that the supermodules and superbimodules give
supercategories. Of course, all the above extend to the case when R has additional gradings,
making it a multigraded superring.

3.3. Graded dimensions

Recall that a Z × Z-graded supermodule

M =
⊕

i,j,k∈,Z×Z×Z2

Mi,j,k

is locally of finite rank if each Mi,j,k has finite rank. The same notion applies for bigraded
vector spaces. We denote M〈r, s〉 the supermodule with the q-grading shifted up by r and the
λ-grading shifted up by s.

In the context of locally finite rank supermodules and vector spaces it makes sense to
talk about graded ranks and graded dimensions. In the cases under consideration the graded
dimension of M is the Poincaré series

gdim(M) =
∑

i,j,k∈Z×Z×Z2

πkλjqi dim(Mi,j,k) ∈ Zπ�q±1, λ±1�, (12)

where Zπ = Z[π]/(π2 − 1). For example,

gdim(Ωk) =
k∏

s=1

(1 + πλ2q−2s)(1 + q2s + q4s + · · · ).

In this case, we can view gdim(Ωk) as living inside of Zπ((q, λ)) (see Appendix A.3 for more
details about Z((q, λ))) and it gives

gdim(Ωk) =
k∏

s=1

1 + πλ2q−2s

1 − q2s
.

When we refer to the (graded) superdimension, we will mean we specialize π = −1 in the
graded dimension, giving a series in Z�q±1, λ±1�. We denote it sdim(M).

Sometimes it is useful to consider a direct sum of objects (for example, supermodules or
superbimodules) where the q-degree of each summand has been shifted by a different amount.
In this case we use the notion of shifting an object by a Laurent polynomial: given f =

∑
fjq

j ∈
N[q, q−1] we write ⊕fM or M⊕f for the direct sum over j ∈ Z of fj copies of M〈j, 0〉. In a
further notational simplification will write M〈j〉 for M〈j, 0〉 whenever convenient.
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3.4. The superbimodules Ωk,k+1

The forgetful maps

induce maps in the cohomology

(13)

given by

φk : H(Gk) → H(Gk,k+1), xi,k �→ wi,k, Yi,k �→ Zi,k+1 + ξk+1Zi−1,k+1,

and

ψk+1 : H(Gk+1) → H(Gk,k+1), xi,k+1 �→ wi,k + ξk+1wi−1,k, Yi,k+1 �→ Zi,k+1,

with the understanding that w0,k = Z0,k+1 = 1 and wk+1,k = 0.
These inclusions make H(Gk,k+1) an (H(Gk+1), H(Gk))-bimodule. As a right H(Gk)-

module, H(Gk,k+1) is a free, graded module, isomorphic to H(Gk) ⊗Q Q[ξk+1].
To get a correspondence in terms of Ωk, Ωk+1 and Ωk,k+1 we use the maps φk and ψk+1

above to construct maps φ∗
k and ψ∗

k+1 between the various rings involved, as in (13),

Let Vk,k+1 be the Q(ξk+1)-vector space with basis 〈x1,k, . . . , xk,k〉. The maps φk and ψk+1

induce Q-linear injective maps Vk → Vk,k+1 and Vk+1 → Vk,k+1. Now recall that we can
view si,k as the Q-linear map x∗

i,k : Vk → Q and si,k+1 as x∗
i,k+1 : Vk+1 → Q. They can both

be extended to Q(ξk+1)-linear maps x̃∗
i,k, x̃

∗
i,k+1 : Vk,k+1 → Q(ξk+1). We have ψk+1(xi,k+1) =

φk(xi,k) + ξk+1φk(xi−1,k), which gives φ(xi,k) =
∑i

�=0(−1)�ξ�k+1ψk+1(xi−�,k+1), and thus

x̃∗
i,k = x̃∗

i,k+1 + ξk+1x̃
∗
i+1,k+1.

Translated to the language of the elements si we get that si,k should be equivalent to si,k+1 +
ξk+1si+1,k+1. Hence we define the map φ∗

k : Ωk → Ωk,k+1 as

φ∗
k : Ωk → Ωk,k+1,

{
xi,k �→ wi,k,

si,k �→ σi,k+1 + ξk+1σi+1,k+1,
(14)

and ψ∗
k+1 : Ωk+1 → Ωk,k+1 as

ψ∗
k+1 : Ωk+1 → Ωk,k+1,

{
xi,k+1 �→ wi,k + ξk+1wi−1,k,

si,k+1 �→ σi,k+1,
(15)

with w0,k+1 = 1 and wk+1,k = 0. Since every σi,k+1 and wi,k can be obtained from si,k+1 and
xi,k, we write Ωk,k+1 in this basis as

Ωk,k+1
∼= Q[xk, ξk+1, sk+1].

We will also write Yi,k+1 for Zi,k+1 = ψ∗
k+1(Yi,k+1) in Ωk,k+1.
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Remark 3.2. Note the elements si and σi behave like the elements Y−i and Z−i with a
(supposed) negative index −i. This will be useful to recover the finite case, as we will see in
§ 7.3.

As expected, maps φ∗
k and ψ∗

k+1 give Ωk,k+1 the structure of an (Ωk,Ωk+1)-superbimodule.
Since these rings are supercommutative we can also think of Ωk,k+1 as an (Ωk+1,Ωk)-
superbimodule which we denote by Ωk+1,k. When dealing with tensor products of superbimod-
ules we simplify the notation and write ⊗k for ⊗Ωk

and ⊗ for ⊗Q.
We use the notation smod-Ωk and Ωk -smod for right and left Ωk-supermodules, respec-

tively. As a right Ωk-supermodule Ωk+1,k
∼= Q[ξk+1, sk+1] ⊗ Ωk is a free graded polynomial

supermodule, which is of graded dimension

gdimsmod-Ωk
(Ωk+1,k) =

1 + πλ2q−2k−2

1 − q2
.

As a left Ωk+1-supermodule Ωk+1,k
∼= ⊕{k+1}Ωk+1 is a free graded supermodule, with {k +

1} = 1 + q2 + · · · + q2k, using the convention from § 3.3. Thus Ωk+1,k is of graded dimension

gdimΩk+1 -smod(Ωk+1,k) = {k + 1} = 1 + q2 + · · · + q2k.

Due to the specific nature of our superrings and (super)categories, there are several notions
and results that can be borrowed unchanged from the non-super case, as the notion of
sweetness for bimodules below. Recall that a superbimodule is sweet if it is projective as a
left supermodule and as a right supermodule. Tensoring with a superbimodule yields an exact
functor that sends projectives to projectives if and only if the superbimodule is sweet. The
superbimodule Ωk,k+1 is sweet.

Let Gk,k+1,··· ,k+m be the iterated flag variety

{(Uk, Uk+1, . . . , Uk+m)|dimC Uk+i = k + i, 0 ⊂ Uk ⊂ Uk+1 ⊂ · · · ⊂ Uk+m ⊂ C∞}.
As in the cases of Gk and Gk,k+1 the cohomology of Gk,··· ,k+m has a description in terms of
Chern classes,

H(Gk,...,k+m) ∼= Q[wk, ξm],

with degq(wi,k) = 2i and degq(ξj,m) = 2. Paralleling the case of Ωk,k+1, we define the bigraded
superring

Ωk,...,k+m = H(Gk,...,k+m) ⊗ ExtH(Gk+m)(Q,Q) ∼= Q[wk, ξm, σk+m],

with degλ,q(σj,k+m) = (−2j, 2). In this case we also have maps

φ∗
k,m : Ωk → Ωk,...,k+m,

⎧⎨⎩
xi,k �→ wi,k,

si,k �→
m∑
j=0

σi+j,k+mej(ξm),

and

ψ∗
k+m,m : Ωk+m → Ωk,...,k+m,

⎧⎨⎩xi,k+m �→
i∑

j=0

wj,kei−j(ξm),

si,k+m �→ σi,k+m,

where ej(ξm) is the jth elementary symmetric polynomial in the variables ξ1, . . . , ξm.

Lemma 3.3. The superring Ωk,k+1,...,k+m is a bigraded (Ωk,Ωk+m)-superbimodule, which
is isomorphic to Ωk,k+1 ⊗k+1 Ωk+1,k+2 ⊗k+2 · · · ⊗k+n−1 Ωk+n−1,k+n.
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We can form more general superbimodules. For a sequence k1, . . . , km of non-negative integers
we define the (Ωk1 ,Ωkm

)-superbimodule

qΩk1,...,km
= Ωk1,k2 ⊗k2 Ωk2,k3 ⊗k3 · · · ⊗km−1 Ωkm−1,km

.

This superbimodule has an interpretation in terms of the geometry of partial flag varieties.
Consider the variety Gk1,...,km

consisting of sequences (Uk1 , . . . , Ukm
) of linear subspaces of C∞

such that dim(Uki
) = ki and Uki

⊂ Uki+1 if ki � ki+1 and Uki
⊃ Uki+1 if ki � ki+1. As before,

the forgetful maps

induce maps of the respective cohomology rings. Proceeding as above one can construct maps

As expected, the (Ωk1 ,Ωkm
)-superbimodules qΩk1,...,km

and Ωk1,...,km
are isomorphic.

In particular, the isomorphism from Ω0,k to qΩ0,1,...,k is explicitly given by

xi,k �→ ei(ξk), Yi,k �→ (−1)ihi(ξk), si,k �→ σi,k,

with hi(ξk) being the ith complete homogeneous symmetric polynomial in variables ξ1, . . . , ξk.

4. The 2-category ExtFlagλ

4.1. The 2-category ExtFlagλ

Let Bims denote the (super) 2-category of superbimodules, with objects given by superrings,
1-morphisms by superbimodules and 2-morphisms by degree-preserving superbimodule maps.
The superbimodules introduced in the previous section can be used to define a locally full sub
2-category† of Bims, which we now describe.

Definition 4.1. The 2-category ExtFlagλ is defined as follows:

• Objects: the bigraded superrings Ωk for each k ∈ N.
• 1-Morphisms: generated by the graded (Ωk,Ωk)-superbimodules Ωk and Ωξ

k = Ωk[ξ],
the graded (Ωk,Ωk+1)-superbimodule Ωk,k+1 and the graded (Ωk+1,Ωk)-superbimodule
Ωk+1,k, together with their bidegree and parity shifts. The superbimodules Ωk are the
identity 1-morphisms. A generic 1-morphism from Ωk1 to Ωkm

is a direct sum of bigraded
superbimodules of the form

ΠπΩkm,km−1 ⊗km−1 Ωkm−1,km−2 ⊗km−2 · · · ⊗k2 Ωk2,k1 ⊗k1 Ωk1 [ξ1, . . . , ξ�]〈s, t〉
with |ki+1 − ki| = 1 for all 1 � i � m and π ∈ {0, 1}.

• 2-Morphisms: degree-preserving superbimodule maps.

As in other instances of categorical sl2-actions, the (Ωk,Ωk)-superbimodules Ωk,k+1 ⊗k+1

Ωk+1,k and Ωk,k−1 ⊗k−1 Ωk−1,k are related through a categorical version of the commutator

†This means it induces a full embedding between the corresponding Hom-categories.
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relation (6). To make our formulas simpler when dealing with tensor products of superbimodules
we write Ωk(k+1)k instead of Ωk,k+1 ⊗k+1 Ωk+1,k and Ωk(k−1)k instead of Ωk,k−1 ⊗k−1 Ωk−1,k.

To be able to state and prove this categorical version of the commutator in ExtFlagλ, we
need some preparation.

Lemma 4.2. In Ωk,k+1, the following identities hold for all i, 
 � 0:

x�,k =
�∑

p=0

(−1)pψ∗(x�−p,k+1)ξ
p
k+1, (16)

Y�,(k+1) =
�∑

p=0

(−1)pφ∗(Y�−p,k)ξ
p
k+1, (17)

ξik+1 = (−1)i
i∑

�=0

x�,kYi−�,k+1. (18)

Proof. The three relations are obtained by induction on (14) and (15). �

Lemma 4.3. Each element of Ωk(k−1)k decomposes uniquely as a sum

(f0 ⊗k−1 g0) + (f1ξk ⊗k−1 g1) + · · · + (fk−1ξ
k−1
k ⊗k−1 gk−1)

with fi, gi ∈ ψ∗
k(Ωk).

Proof. From (18) we see that every element of Ωk−1,k decomposes uniquely as a sum

α0x0,k−1 + α1x1,k−1 + · · · + αk−1xk−1,k−1,

with αi ∈ ψ∗
k(Ωk). Then, sliding every xi,k−1 over the tensor product we get that every element

of Ωk(k−1)k can be written as

(h0 ⊗k−1 α0) + (h1 ⊗k−1 α1) + · · · + (hk−1 ⊗k−1 αk−1),

with hi ∈ Ωk,k−1. Moreover, by (16), every element of Ωk,k−1 can be decomposed as a sum

β0 + β1ξk + · · · + βk−1ξ
k−1
k , (19)

with βi ∈ ψ∗
k(Ωk). Using (19) to decompose every hi we get a decomposition as in the

statement. �

Proposition 4.4. In Ωk(k+1)k, the following identity holds:

k∑
�=0

(−1)�xl,k ⊗k+1 ξ
k−�
k+1 =

k∑
�=0

(−1)�ξk−�
k+1 ⊗k+1 x�,k.

Moreover, the ξk+1 slides over this sum and therefore over the tensor product:

ξk+1

k∑
�=0

(−1)�x�,k ⊗k+1 ξ
k−�
k+1 =

k∑
�=0

(−1)�x�,k ⊗k+1 ξ
k−�+1
k+1 .

Proof. The same computations as in [35, § 3.2] can be used here since the polynomial side
of Ωk(k+1)k is the cohomology of the two-step flag manifold as in the reference. �
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Definition 4.5. We construct injective superbimodule morphisms of degrees (2k, 0) by
setting

ι : Ωξ
k ↪→ Ωk(k+1)k, ξi �→ ξik+1

k∑
�=0

(−1)�x�,k ⊗k+1 ξ
k−�
k+1,

η : Ωk ↪→ Ωk(k+1)k, 1 �→
k∑

�=0

(−1)�x�,k ⊗k+1 ξ
k−�
k+1,

and extending by the (Ωk,Ωk)-superbimodule structure (14).

Note that these maps are superbimodule morphisms since the variable ξk+1 slides over the
tensor product thanks to Proposition 4.4, and thus multiplying at the left or at the right
gives the same result. Injectivity is a straightforward consequence of the fact that all our
superbimodules are free as Q-modules.

Proposition 4.6. The left inverse of ι is given by

π : Ωk(k+1)k � Ωξ
k,

{
ξik+1 ⊗k+1 ξ

j
k+1 �→ (−1)i+j−kY ξ

i+j−k,k,

ξik+1 ⊗k+1 ξ
j
k+1sk+1,k+1 �→ 0,

with Y ξ
m,k = 0 for m < 0, Y ξ

0,k = 1, and Y ξ
i,k is defined recursively by Y ξ

i,k = (−ξ)i −∑i
�=1 x�,kY

ξ
i−�,k.

Proof. We observe that for all i � 0 we have

(π ◦ ι)(ξi) = π

(
ξik+1.

k∑
�=0

(−1)�ξk−�
k+1 ⊗k+1 x�,k

)

=
k∑

�=0

(−1)ix�,kY
ξ
i−�,k = (−1)iY ξ

i,k + (−1)i
k∑

�=1

x�,kY
ξ
i−�,k

= ξi − (−1)i
i∑

�=1

x�,kY
ξ
i−�,k + (−1)i

k∑
�=1

x�,kY
ξ
i−�,k = ξi,

with the last equality coming from the fact that Yi−�,k = 0 for 
 > i and x�,k = 0 for 
 > k. �

Remark 4.7. Note that Y ξ
i,k has the same expression in xr,k as Zi,k+1 in wr,k when we

identify ξk+1 with ξ. Indeed we have

Zi,k+1 = −
i∑

�=1

(w�,kZi−�,k+1 + ξk+1w�−1,kZi−�,k+1) = (−ξk+1)i −
i∑

�=1

w�,kZi−�,k+1.

Definition 4.8. We also define a surjective morphism of degree (−2k + 2, 0) by

ε : Ωk(k−1)k � Ωk, ξik ⊗k−1 ξ
j
k �→ (−1)i+j−k+1Y(i+j−k+1),k.

Remark 4.9. We see that

(ε⊗k+1 IdΩk+1,k) ◦ (IdΩk+1,k ⊗kη) = IdΩk+1,k ,
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and

(IdΩk+1,k ⊗kε) ◦ (η ⊗k+1 IdΩk+1,k) = IdΩk+1,k ,

by a computation similar to the one in [35, Lemma 4.5].

Definition 4.10. We define a surjective superbimodule morphism of degree (2k + 2,−2)
by

μ : Ωk(k+1)k � ΠΩξ
k,

⎧⎨⎩ξ
i
k+1 ⊗k+1 ξ

j
k+1 �→ 0,

ξik+1 ⊗k+1 ξ
j
k+1sk+1,k+1 �→ (−1)i+jY ξ

i+j,k,

and extending to Ωk(k+1)k using the superbimodule structure (14).

We now define maps which allow connecting our construction to the nilHecke algebra later
on.

Definition 4.11. We define the nilHecke maps by

X− : Ωk,k+1,k+2 → Ωk,k+1,k+2,

ξik+1 ⊗k+1 ξ
j
k+2 �→

i−1∑
�=0

ξi+j−1−�
k+1 ⊗k+1 ξ

�
k+2 −

j−1∑
�=0

ξi+j−1−�
k+1 ⊗k+1 ξ

�
k+2,

X+ : Ωk+2,k+1,k → Ωk+2,k+1,k,

ξik+2 ⊗k+1 ξ
j
k+1 �→

j−1∑
�=0

ξi+j−1−�
k+2 ⊗k+1 ξ

�
k+1 −

i−1∑
�=0

ξi+j−1−�
k+2 ⊗k+1 ξ

�
k+1,

and extending using the right (for X−) and the left (for X+) supermodule structures. These
maps are both of degree (−2, 0).

Lemma 4.12. For all i, j � 0 we have

ξi ⊗k+1ξ
j =X±(ξi+1 ⊗k+1ξ

j)−X±(ξi ⊗k+1ξ
j)ξ = ξX±(ξi ⊗k+1ξ

j)−X±(ξi ⊗k+1ξ
j+1) (20)

and thus

X±(ξi+1 ⊗k+1 ξ
j+1) = ξX±(ξi ⊗k+1 ξ

j)ξ.

Proof. The proof is a direct computation, which is done in [34, Lemma 7.10]. �

Proposition 4.13. The maps X− and X+ are superbimodule morphisms.

Proof. Since by definition X− is a right supermodule morphism, we only need to prove that
it is also a left supermodule morphism. This means we have to show that

X−(xα,kξ
i
k+1 ⊗k+1 ξ

j
k+2) = xα,kX

−(ξik+1 ⊗k+1 ξ
j
k+2),

X−((sα,k+1 + ξk+1sα+1,k+1)ξik+1 ⊗k+1 ξ
j
k+2) = (sα,k+1 + ξk+1sα+1,k+1)X−(ξik+1 ⊗k+1 ξ

j
k+2),

for all i, j � 0 and α � k. Using Lemma 4.2 we compute
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X−(xα,kξ
i
k+1 ⊗k+1 ξ

j
k+2)

(16)
=

α∑
�=0

(−1)�X−(ξi+�
k+1 ⊗k+1 ξ

j
k+2xα−�,k+1)

(16)
=

α∑
�=0

α−�∑
p=0

(−1)�+pX−(ξi+�
k+1 ⊗k+1 ξ

j+p
k+2)ψ

∗(xα−�−p,k+2),

xα,kX
−(ξik+1 ⊗k+1 ξ

j
k+2)

(16)
=

α∑
�=0

(−1)�ξ�k+1X
−(ξik+1 ⊗k+1 ξ

j
k+2)xα−�,k+1

(16)
=

α∑
�=0

α−�∑
p=0

(−1)�+pξ�k+1X
−(ξik+1 ⊗k+1 ξ

j
k+2)ξ

p
k+2ψ

∗(xα−�−p,k+2).

These sums are equal by Lemma 4.12.
To prove the second relation in the statement we slide sα,k+1 and sα+1,k+1 to the right

through the tensor products ⊗k+1 to get

X−((sα,k+1 + ξk+1sα+1,k+1)ξik+1 ⊗k+1 ξ
j
k+2)

(14)
= X−(ξik+1 ⊗k+1 ξ

j
k+2)sα,k+2 + X−(ξik+1 ⊗k+1 ξ

j+1
k+2)sα+1,k+2

+ X−(ξi+1
k+1 ⊗k+1 ξ

j
k+2)sα+1,k+2 + X−(ξi+1

k+1 ⊗k+1 ξ
j+1
k+2)sα+2,k+2

(20)
= X−(ξik+1 ⊗k+1 ξ

j
k+2)sα,k+2 + X−(ξik+1 ⊗k+1 ξ

j
k+2)ξk+2sα+1,k+2

+ ξk+1X
−(ξik+1 ⊗k+1 ξ

j
k+2)sα+1,k+2 + ξk+1X

−(ξik+1 ⊗k+1 ξ
j
k+2)ξk+2sα+2,k+2

(14)
= (sα,k+1 + ξk+1sα+1,k+1)X−(ξik+1 ⊗k+1 ξ

j
k+2).

The proof for X+ is similar. �

Proposition 4.14. There is an injective superbimodule map

u : Ωk(k−1)k ↪→ Ωk(k+1)k,

preserving the degree and given by

u = (ε⊗k Id) ◦ (Id⊗k−1X
− ⊗k+1 Id) ◦ (Id⊗kη)

= (Id⊗kε) ◦ (Id⊗k+1X
+ ⊗k−1 Id) ◦ (η ⊗k Id).

Moreover, this morphism takes the form

u(ξik ⊗k−1 ξ
j
k) = −ξjk+1 ⊗k+1 ξ

i
k+1, (21)

for all i + j < k.

Proof. Thanks to Lemma 4.3, it is enough to show that the two superbimodule morphisms
(ε⊗ Id) ◦ (Id⊗X− ⊗ Id) ◦ (Id⊗η) and (Id⊗ε) ◦ (Id⊗X+ ⊗ Id) ◦ (η ⊗ Id) take the form (21).
First, we suppose that u = (ε⊗ Id) ◦ (Id⊗X− ⊗ Id) ◦ (Id⊗η) and we compute, for i < k,

u(ξik ⊗k−1 1) = −
k∑

�=0

k−�−1∑
p=0

(−1)i−pφ∗(Yi−�−p,k)ξ
p
k+1 ⊗k+1 x�,k.
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By Lemma 4.2 we have

1 ⊗k+1 ξ
i
k+1

(18),(17)
= (−1)i

i∑
�=0

i−�∑
p=0

(−1)pφ∗(Yi−�−p,k)ξ
p
k+1 ⊗k+1 x�,k.

Since Yi−�−p,k = 0 for 
 + p > i, we get u(ξik ⊗k−1 1) = −1 ⊗k ξik+1. Using this result together
with Lemma 4.2, we compute

ξik ⊗k−1 ξ
j
k

(18),(16)
= (−1)j

j∑
�=0

�∑
p=0

(−1)pψ∗(x�−p,k)ξ
i+p
k ⊗k−1 Yj−�,k,

u(ξik ⊗k−1 ξ
j
k) = −(−1)j

j∑
�=0

�∑
p=0

(−1)pφ∗(x�−p,k) ⊗k+1 ξ
i+p
k+1φ

∗(Yj−�,k)

= −(−1)j
j∑

r=0

j−r∑
s=0

(−1)sxr,k ⊗k+1 ξ
i+s
k+1φ

∗(Yj−r−s,k),

−ξjk+1 ⊗k+1 ξ
i
k+1

(18),(17)
= −(−1)j

j∑
�=0

j−�∑
p=0

(−1)px� ⊗k+1 φ
∗(Yj−�−p,k)ξ

i+p
k ,

where we have used a change of variable r = 
− p, s = p in the middle sum. Similar
computations beginning with the case 1 ⊗k−1 ξ

j
k give the same result for (Id⊗ε) ◦ (Id⊗X+ ⊗

Id) ◦ (η ⊗ Id). Finally, injectivity follows again from the fact that Ωk(k−1)k and Ωk(k+1)k are
free Q-modules. �

Thanks to the injection u we see Ωk(k−1)k as a sub-superbimodule of Ωk(k+1)k and we define
the quotient

Ωk(k+1)k

Ωk(k−1)k
=

Ωk(k+1)k

imu
.

A priori this bimodule may not belong to ExtFlagλ. However, as we will see, it is isomorphic
to some 1-morphism in ExtFlagλ.

Lemma 4.15. The maps μ and π induce surjective morphisms on the quotient

μ :
Ωk(k+1)k

Ωk(k−1)k
� ΠΩξ

k, π :
Ωk(k+1)k

Ωk(k−1)k
� Ωξ

k,

of degrees, respectively, (2k + 2,−2) and (−2k, 0).

Proof. We have to show that imu ⊂ kerμ and imu ⊂ kerπ. By Lemma 4.3, it is sufficient
to show that the maps μ and π are zero on 1 ⊗k+1 1, ξk ⊗k+1 1, . . . , ξk−1

k ⊗k+1 1, which is
immediate from the definition of these maps. �

Lemma 4.16. The morphism

ι : Ωξ
k → Ωk(k+1)k

Ωk(k−1)k
,

defined as the composite of ι with the projection on the quotient, is still injective and the
inverse of π.
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Proof. To show injectivity, we only have to prove that im ι ∩ imu = {0} which is straight-
forward, since by Lemma 4.3 there are no occurrences of ξ�k

k ⊗k+1 1 in imu. The invertibility
property is immediate. �

Lemma 4.17. The induced morphism μ is right invertible, with inverse given by

μ−1 : ΠΩξ
k ↪→ Ωk(k+1)k

Ωk(k−1)k
, ξi �→

i∑
�=0

(−1)�x�,k ⊗k+1 ξ
i−�
k+1sk+1,k+1 + imu

=
i∑

�=0

(−1)�ξi−�
k+1 ⊗k+1 x�,ksk+1,k+1 + imu.

Proof. It suffices to prove that ξk+1 slides over the tensor product, as sk+1,k+1 already
does. For i � k, this comes from Proposition 4.4. For i < k it follows from the fact that for all
X,Y ∈ Ωk and r + s < k we have

u(sk,kξrkX ⊗k−1 ξ
s
kY − (−1)p(X)+p(Y )ξrkX ⊗k−1 ξ

s
kY sk,k)

(14)
= ξskX ⊗k+1 Y ξrk+1(sk,k+1 + ξk+1sk+1,k+1)

− (−1)p(X)+p(Y )(sk,k+1 + ξk+1sk+1,k+1)ξsX ⊗k+1 Y ξrk+1

=ξsk+1X ⊗k+1 Y ξr+1
k+1sk+1,k+1 − (−1)p(X)+p(Y )ξs+1

k+1sk+1,k+1X ⊗k+1 Y ξrk+1,

since sk,k+1 commutes. In the quotient, this is zero and thus ξk+1sk+1,k+1 commutes. The
invertibility is showed by the same computations as in the proof of Proposition 4.6. �

Lemma 4.18. There is an equality of graded dimensions

gdim
Ωk(k+1)k

Ωk(k−1)k
=
(
q2k + πλ2q−2k−2

)
gdim Ωξ

k.

Proof. Let Q = gdim Q[ξ] = 1
1−q2 . We compute

gdim Ωk(k−1)k =
(gdim Ωk,k−1)2

gdim Ωk−1
=

(
Q(1 + q−2kπλ2) gdim Ωk−1

)2
gdim Ωk−1

= Q2(1 − q2k)(1 + q−2kπλ2) gdim Ωk,

and

gdim Ωk(k+1)k =
(gdim Ωk,k+1)2

gdim Ωk+1
=

(
Q(1 + q−2k−2πλ2) gdim Ωk

)2
1+q−2k−2πλ2

1−q2k+2 gdim Ωk

= Q2(1 − q2k+2)
(
1 + q−2k−2πλ2

)
gdim Ωk.

Therefore,

gdim
Ωk(k+1)k

Ωk(k−1)k
= gdim Ωk(k+1)k − gdim Ωk(k−1)k

= Q
(
q2k + πλ2q−2k−2

)
gdim Ωk,

as stated. �
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Lemma 4.19. The equalities

μ ◦ ι = 0 and π ◦ μ−1 = 0

hold.

Proof. It suffices to consider the occurrences of sk+1,k+1 in the image of ι and μ−1, and the
claim follows. �

Theorem 4.20. There is a degree-preserving isomorphism

Ωk(k+1)k

Ωk(k−1)k

∼= ΠΩξ
k〈−2k − 2, 2〉 ⊕ Ωξ

k〈2k, 0〉,

given by μ⊕ π with inverse μ−1 ⊕ ι.

Proof. The Lemmas 4.15–4.19 above imply that μ⊕ π is a split surjection with inverse
μ−1 ⊕ ι and that the dimensions agree, and thus it is an isomorphism. �

Remark 4.21. We do not have a direct sum decomposition

Ωk(k+1)k � Ωk(k−1)k ⊕ ΠΩξ
k〈−2k − 2, 2〉 ⊕ Ωξ

k〈2k, 0〉
because there is no surjective morphism Ωk(k+1)k → Ωk(k−1)k. As a matter of fact, there is no
injective morphism Ωk → Ωk(k−1)k either.

Definition 4.22. Define the shifted superbimodules

Ωk+1,k = Ωk+1,k〈−k, 0〉, Ωk,k+1 = Ωk,k+1〈k + 2,−1〉, Ω
ξ

k = ΠΩk[ξ]〈1, 0〉.

In terms of these superbimodules the isomorphism in Theorem 4.20 takes the form (the
notation Ωk(k+1)k and Ωk(k−1)k should be clear)

Ωk(k+1)k

Ωk(k−1)k

∼= Ω
ξ

k〈−2k − 1, 1〉 ⊕ ΠΩ
ξ

k〈2k + 1,−1〉. (22)

Note that by (22) we get

gdim Ω
ξ

k = − π

q − q−1
gdim Ωk,

gdim
Ωk(k+1)k

Ωk(k−1)k

= −πq−2k(λq−1) + q2k(λq−1)−1

q − q−1
gdim Ωk,

which agrees with the commutator relation (6) for λq−1 and e−2k when specializing π = −1.
We now arrive to the main result in this section as a corollary of Theorem 4.20.

Corollary 4.23. There is a short exact sequence

0 → Ωk(k−1)k → Ωk(k+1)k → Ω
ξ

k〈−2k − 1, 1〉 ⊕ ΠΩ
ξ

k〈2k + 1,−1〉 → 0. (23)

The following result will be useful in the sequel.

Proposition 4.24. The superbimodules Ωk(k+1)k and Ωk(k−1)k are sweet and decompose
as left Ωk-modules as

Ωk(k+1)k

Ωk -smod∼= ⊕[k+1] (Ωk〈k + 2,−1〉 ⊕ ΠΩk〈−k, 1〉) ⊗ Q[ξ],
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Ωk(k−1)k

Ωk -smod∼= ⊕[k] (Ωk〈k + 1,−1〉 ⊕ ΠΩk〈−k + 1, 1〉) ⊗ Q[ξ],

and as right Ωk-modules, as

Ωk(k+1)k

smod-Ωk∼= ⊕[k+1] (Ωk〈k + 2,−1〉 ⊕ ΠΩk〈−k, 1〉) ⊗ Q[ξ],

Ωk(k−1)k

smod-Ωk∼= ⊕[k] (Ωk〈k + 1,−1〉 ⊕ ΠΩk〈−k + 1, 1〉) ⊗ Q[ξ],

Proof. By Lemma 4.2, there are decompositions as left supermodules

Ωk+1,k

Ωk -smod∼= ⊕{k+1}Ωk+1,

Ωk,k+1

Ωk -smod∼= (1 + sk+1,k+1)Ωk ⊗ Q[ξ],

such that

Ωk+1,k

smod-Ωk∼= ⊕[k+1]Ωk+1,

Ωk,k+1

smod-Ωk∼= (Ωk〈k + 2,−1〉 ⊕ ΠΩk〈−k, 1〉) ⊗ Q[ξ].

We conclude by combining these two decompositions. The proof is similar for the decomposition
as right supermodules. �

Remark 4.25. The decompositions as a left and as a right supermodule are similar but the
splitting maps are not superbimodule maps (c.f. Remark 4.21).

4.2. nilHecke action

The nilHecke algebra NHn, which appears in the context of cohomologies of flag varieties and
Schubert varieties (see, for example, [33, § 4]), is an essential ingredient in the categorification
of quantum groups and has become quite ubiquitous in higher representation theory. Recall
that it is the unital, associative k-algebra freely generated by xj for 1 � j � n and ∂j for
1 � j � n− 1 with relations

xixj = xjxi,

∂ixj = xj∂i if |i− j| > 1, ∂i∂j = ∂j∂i if |i− j| > 1,

∂ixi = xi+1∂i + 1, ∂2
i = 0,

xi∂i = ∂ixi+1 + 1, ∂i∂i+1∂i = ∂i+1∂i∂i+1.

(24)

Here k is a ring which, unless stated otherwise, we will take as Q.

Proposition 4.26. There is an action of the nilHecke algebra NHn on Ωm,m+n.

Proof. We view Ωm,m+n as Ωm,m+1 ⊗ · · · ⊗ Ωm+n−1,m+n using Lemma 3.3. Let ∂i act as the
operator X− : Ωm+i−1,m+i ⊗ Ωm+i,m+i+1 → Ωm+i−1,m+i ⊗ Ωm+i,m+i+1 and xi as multiplica-
tion by ξm+i in Ωm+i−1,m+i. We get all the relations in (24) from the superbimodule structure
of the morphism X− together with Lemma 4.12, except for the last two on the second column,
which can be checked through computations similar to those in [34, Lemma 7.10]. �

As a matter of fact, there is an enlarged version of the nilHecke algebra acting on Ωm,m+n, and
therefore on Ωm+n,m. From the proof of Proposition 4.13 we see that the nilHecke algebra NHn
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as defined above acts on the ring Q[xn, ωn] = Q[xn] ⊗∧•(ωn), where ωj is odd and has bidegree
degλ,q(ωj) = (−2(j + m), 2). More precisely, ωj is identified with sm+j,m+j ∈ Ωm+j−1,m+j .

Definition 4.27. We define the bigraded (super)algebra An(m) as the quotient of the
product algebra of NHn with

∧•(ωn) by the kernel of the action of NHn on Q[xn, ωn].

The algebra An inherits many of the features of NHn, like the fact that it is left and right
noetherian and is free as a left supermodule over Q[xn, ωn] and Q[xn], of ranks n! and 2nn!,
respectively. It can be given an explicit presentation as a smash product as follows.

Proposition 4.28. As an abelian group An(m) = NHn ⊗
∧•(ωn), where NHn and

∧•(ωn)
are subalgebras and

xiωj = ωjxi, ∂iωj =

{
ωj∂i if i �= j,

ωi∂i + ωi+1 (∂ixi+1 − xi+1∂i) if i = j.

Proof. Only the last relation calls for a proof. We have

X−(xsk,k ⊗k y) = X−(x⊗k (sk,k+1 + ξk+1sk+1,k+1)y)

= X−(x⊗k y)sk,k+1 + X−(x⊗k y(ξk+1sk+1,k+1))

= sk,kX
−(x⊗k y) −X−(x⊗k y)ξk+1sk+1,k+1 + X−(x⊗k y(ξk+1sk+1,k+1)),

for any x ∈ Ωk−1,k and y ∈ Ωk,k+1 with p(x) + p(y) = 0. The case with parity one is similar.
Take k = m + i− 1 and we get the relation. Faithfulness comes from the basis constructed in
Proposition 8.1. �

5. Categorification of the Verma module M(λ)

Following the explanations in the Appendix A.3, in order to define the field of formal Laurent
series Q((q, λ)), we need to choose an additive order on Z × Z. By convention, we use 0 ≺ q ≺ λ,
with the abuse of notation explained in Example A.48.

5.1. Categories of modules

Each of the superrings Ωk is a noetherian Z × Z-graded local superring whose degree (0,0)
part is isomorphic to Q. Then every graded projective supermodule (not necessarily finitely
generated) is a free graded supermodule [7, Proposition 1.5.15], and Ωk has (up to isomorphism
and grading shift) a unique graded indecomposable projective supermodule.

Let Ωk -smodlf be the abelian Z × Z-graded category of locally finite-dimensional, cone-
bounded Ωk-supermodules, together with the grading-preserving supermodule maps. These
are graded supermodules which are finite-dimensional in each degree. Explicitly a bigraded
supermodule M = ⊕i,jMi,j is cone-bounded if there exist a cone C ⊂ R2 compatible with the
fixed order ≺ and m,n ∈ Z, such that Mi+m,j+n = 0 whenever (i, j) /∈ C. In other words, it is
cone-bounded if its graded dimension is in Q≺((q, λ)).

Every graded projective supermodule P of Ωk is of the form P ∼= Ωk ⊗A where A is a
graded abelian group. The superring Ωk has (up to isomorphism and grading shift) a unique
simple supermodule Sk = Ωk/(Ωk)+ (here (Ωk)+ denotes the submodule of Ωk generated by
the elements of non-zero bidegree).
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Every cone-bounded graded Ωk-supermodule has a projective cover [8, Theorem 2]. As a
matter of fact, it is not hard to construct such a projective cover. For cone-bounded Ωk-
supermodule M form the non-trivial graded abelian group M/((Ωk)+M) ∼= Q ⊗Ωk

M and form
P = Ωk ⊗ Q ⊗Ωk

M . Then P is a projective cover of M with the surjection p : P → M given by
a⊗ b⊗m �→ aσ(b⊗m) where σ is a section of the canonical projection M → M/((Ωk)+M) ∼=
Q ⊗Ωk

M .
The graded dimension of Ωk is contained in the cone in R2 generated by (2,0) and (−2k, 2).

Hence it is a special case of Example A.50 (with some minor adjustments for the ‘super’).
Therefore, Ωk -smodlf possesses the local Jordan–Hölder property and we get the following:

Proposition 5.1. The topological Grothendieck group G0(Ωk -smodlf) is a one-dimensional
module over the ring Zπ((q, λ)) with the (q, λ)-adic topology, freely generated by either the class
of the simple object Sk or the projective object Ωk.

Consider the full subcategory of Ωk -smodlf generated by modules with λ-grading bounded
above and below. We write it Ωk -smodλ

lf and it possesses the local Jordan–Hölder property, with
a topological Grothendieck group having (q)-adic topology. We get the following proposition.

Proposition 5.2. The topological Grothendieck group G0(Ωk -smodλ
lf) is a one-dimensional

topological module over the ring Zπ�q�[λ±1, q−1] with the (q)-adic topology, freely generated
by the class of the simple object Sk.

Now consider the full subcategory Ωk -psmodλ
lfg ⊂ Ωk -smodλ

lf consisting of locally finitely
generated, cone-bounded projective modules. For the q-grading, it is a cone complete, locally
Krull–Schmidt category, and we get the following.

Proposition 5.3. The topological split Grothendieck group K0(Ωk -psmodλ
lfg) is a one-

dimensional module over the ring Zπ�q�[λ±1, q−1] with the (q)-adic topology, freely generated
by the class of the projective object Ωk.

5.2. The Verma categorification

Set Mk = Ωk -smodlfg and Mk+1,k = Ωk+1,k -smodlfg and for k � 0 consider the functors

Indk+1,k
k : Mk → Mk+1,k, Resk+1,k

k : Mk+1,k → Mk,

Indk+1,k
k+1 : Mk+1 → Mk+1,k, Resk+1,k

k+1 : Mk+1,k → Mk+1.

It is sometimes useful to arrange them using a diagram as follows.

Since Ωk+1,k is sweet the functors Indk+1,k
k and Indk+1,k

k+1 are exact.
For each k � 0 define exact functors Fk : Mk → Mk+1 and Ek : Mk+1 → Mk by

Fk = Resk,k+1
k+1 ◦ Indk,k+1

k 〈−k, 0〉 and Ek = Resk,k+1
k ◦ Indk,k+1

k+1 〈k + 2,−1〉.
Using the language of bimodules, Fk and Ek can also be written as

Fk(−) = (Ωk+1 ⊗k+1 Ωk+1,k ⊗k (−)) 〈−k, 0〉,
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and

Ek(−) = (Ωk ⊗k Ωk,k+1 ⊗k+1 (−)) 〈k + 2,−1〉,
where Ωk+1,k is seen as a (Ωk+1,k,Ωk)-superbimodule and Ωk,k+1 as a (Ωk,Ωk,k+1)-
superbimodule.

Proposition 5.4. Up to a grading shift the functors (Fk,Ek) form an adjoint pair of
functors.

Proof. The superbimodule maps η and ε from Definitions 4.5 and 4.8 induce, respectively,
natural transformations 1k → EkFk and FkEk → 1k+1 which are the unit and counit of the
adjunction Fk � Ek by Remark 4.9. �

The functor F does not admit E as a left adjoint. As explained in § 1.1.3 this is necessary to
categorify infinite-dimensional highest weight sl2-modules.

We denote by Qk the functor Mk → Mk of tensoring on the left with the shifted (Ωk,Ωk)-
superbimodule Ω

ξ

k. In this context , Corollary 4.23 reads as follows.

Proposition 5.5. For each k ∈ N0 we have an exact sequence

0 −−→ Fk−1 ◦ Ek−1 −−→ Ek ◦ Fk −−→ Qk〈−2k − 1, 1〉 ⊕ ΠQk〈2k + 1,−1〉 −−→ 0

of endofunctors on Mk.

Since the superbimodules used to construct Fk and Ek are sweet, see Proposition 4.24, we
have the following.

Corollary 5.6. For every M ∈ Mk we have an isomorphism

Ek ◦ Fk(M) ∼= Fk−1 ◦ Ek−1(M) ⊕ Qk(M)〈−2k − 1, 1〉 ⊕ ΠQk(M)〈2k + 1,−1〉.

Define the functor Kk as the endofunctor of Mk which is the auto-equivalence that shifts
the bidegree by (−2k − 1, 1)

Kk : Mk → Mk, Kk(−) = (−)〈−2k − 1, 1〉.
We have isomorphisms Kk ◦ Ek

∼= Ek ◦ Kk+1〈2, 0〉 and Kk+1 ◦ Fk
∼= Fk ◦ Kk〈−2, 0〉. Moreover,

since Π ◦ Qk
∼= Qk ◦ Π we have ΠQk ◦ Kk

∼= Qk ◦ ΠKk.

Definition 5.7. Define the category M and the endofunctors F, E, K and Q, as

M =
⊕
k�0

Mk, E =
⊕
k�0

Ek, F =
⊕
k�0

Fk, K =
⊕
k�0

Kk, Q =
⊕
k�0

Qk.

All the above add up to the following.

Theorem 5.8. We have natural isomorphisms of functors

K ◦ K−1 ∼= IdM ∼= K−1 ◦ K,

K ◦ E ∼= E ◦ K〈2, 0〉, K ◦ F ∼= F ◦ K〈−2, 0〉,
and an exact sequence

0 −−→ F ◦ E −−→ E ◦ F −−→ Q ◦ (K ⊕ ΠK−1
) −−→ 0.
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Remark 5.9. Theorem 5.8 is suggestive from the point of view of categorification of the
deformed version U̇λ of quantum sl2 from § 2.1.1 if we identify Mk with the (λq−1−2k)-weight
space.

5.2.1. NilHecke action. In § 4.2 we have constructed an action of the nilHecke algebra NHn

on the superbimodules Ωk,k+n and Ωk+n,k. The definition of Fk and Ek imply the following.

Proposition 5.10. The nilHecke algebra action on Ωk,k+n descends to an action on Fn and
on En.

5.2.2. Grothendieck groups. For the sake of simplicity we write K0(Mk) =
K0(Ωk -psmodλ

lfg), G0(Mk) = G0(Ωk -smodλ
lf) and Ĝ0(Mk) = G0(Ωk -smodlf). We also

write

K0(M) =
⊕
k�0

K0(Mk) ⊗Z Q, G0(M) =
⊕
k�0

G0(Mk) ⊗Z Q, Ĝ0(M) =
⊕
k�0

Ĝ0(Mk) ⊗Z Q.

Regarding the behavior of tensoring with Q[ξ] we have the following.

Lemma 5.11. The functor of tensoring with Ωk[ξ] descends to multiplication by 1/(1 − q2)
on the different Grothendieck groups K0(M), G0(M) and Ĝ0(M).

Proof. This follows from the fact that, since the variable ξ commutes with the variables
used to construct Ωk, we get Ωk[ξ] ∼=

⊕
i�0 Ωk{2i} and thus [Ωk[ξ]] = (1 + q2 + · · · )[Ωk] =

1/(1 − q2)[Ωk]. �

The categorical sl2-action on projective supermodules is very nice, the functors Fk, Ek and
Qk satisfy

Fk(Ωk) = ⊕[k+1]Ωk+1, Ek(Ωk+1) = QkΩk〈−k − 1, 1〉 ⊕ ΠQkΩk〈k + 1,−1〉.
On the Grothendieck groups we have

[Fk(Ωk)] = [k + 1]q[Ωk+1], (25)

and

[Ek(Ωk+1)] = −π(λq−1)q−k + (λq−1)−1qk

q − q−1
[Ωk]. (26)

Here we have used the notation [−]q for quantum integers to avoid confusion with the notation
for equivalence classes in the Grothendieck groups. The action on simples can also be computed
to be

Fk(Sk) = Q[x1,k+1, sk+1,k+1]〈−k, 0〉, Ek(Sk+1) = ⊕{k+1}Sk〈k + 2,−1〉.
On the Grothendieck group G0(M) (and thus on Ĝ0(M)) we have

[Fk(Sk)] = [Q[x1,k+1, sk+1,k+1]〈−k, 0〉] = −π(λq−1)q−k + (λq−1)−1qk

q − q−1
λq−2k−2[Sk+1], (27)

and

[Ek(Sk+1)] = [⊕{k+1}Sk〈k + 2,−1〉] = [k + 1]qλ−1q2k+2[Sk]. (28)

We can now state the main result of this section.
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Theorem 5.12. The functors F and E induce an action of quantum sl2 on the Grothendieck
groups K0(M), G0(M) and Ĝ0(M), after specializing π = −1. With this action there are
Q�q�[q−1, λ±1]-linear isomorphisms

K0(M) ∼= MA(λ), G0(M) ∼= M∗
A(λ),

of U̇λ-modules, with A = Q�q�[q−1, λ±1], and a Q((q, λ))-linear isomorphism

Ĝ0(M) ∼= M(λ),

of Uq(sl2)-representations. Moreover, these isomorphisms send classes of projective indecom-
posables to canonical basis elements and classes of simples to dual canonical elements, whenever
this makes sense.

Proof. By exactness and Theorem 5.8, the action of the functors F, E and K descend to an
action on the Grothendieck groups that satisfies the sl2-relations.

Propositions 5.2 and 5.3 yield two isomorphisms K0(M) ∼= MA(λ) and G0(M) ∼= M∗
A(λ) as

Q�q�[q−1, λ±1]-modules by sending, respectively, [Ωk] to mk and [Sk] to mk.
Proposition 5.1 gives an isomorphism Ĝ0(M) ∼= M(λ) of Q((q, λ))-vector spaces. Comparing

the action of E and F on the canonical basis (7) with (25) and (26), and on the dual canonical
basis (9) with (27) and (28), concludes the proof. �

We finish this section with a categorification of the Shapovalov forms defined in § 2.3. For
M,N ∈ M denote by Mop the right module given by acting with the opposite algebra. Then
we consider the bigraded (super)vector space

Mop ⊗(⊕kΩk) N.

Since both M and N are cone-bounded, locally finite-dimensional, we get

sdimMop ⊗(⊕kΩk) N ∈ Q((q, λ)).

For the sake of keeping the notations short, we will write ⊗M for ⊗(⊕kΩk).

Theorem 5.13. In the Grothendieck groups,

([M ], [N ])λ = sdimMop ⊗M N,

where (−,−)λ is the universal Shapovalov from § 2.3.

Proof. Let Q be the unique projective indecomposable in Ω0 -smodlfg. We have ([Q], [Q])λ =
sdim Q ⊗Ω0 Q = 1. Moreover, by construction

(FX)op ⊗M Y ∼= ((⊕kΩk+1,k〈−k, 0〉) ⊗M X)op ⊗M Y

∼= Xop ⊗M (⊕kΩk,k+1〈−k, 0〉) ⊗M Y

∼= Xop ⊗M (⊕k (Ωk,k+1〈k + 2,−1〉) 〈−2k − 1, 1〉) 〈−1, 0〉 ⊗M Y

∼= Xop ⊗M (KEY 〈−1, 0〉)
∼= Xop ⊗M (ρ(F)Y ),

for any X,Y ∈ M. Finally, the bilinearity is obvious from the behavior of the dimension with
respect to direct sum and tensor product. �
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For, M,N ∈ M, denote by

HOMM(M,N) =
⊕

i,j,k∈Z×Z×Z/2Z

HomM(M,ΠkN〈i, j〉)

the enriched Hom-spaces. They consist of Z × Z-graded Q-(super)vector spaces of morphisms.

Theorem 5.14. In the Grothendieck groups, whenever HOMM(M,N) has a locally finite
cone-bounded dimension, we have

〈[M ], [N ]〉λ = sdim HOMM(M,N),

where 〈−〉λ is the twisted Shapovalov from § 2.3.

Proof. We have 〈[Q], [Q]〉λ = sdim HOMM0(Q,Q) = 1 by construction. It follows from
Proposition 5.4 that for any X,Y ∈ M,

HOMM(FX,Y ) ∼= HOMM(X,KEY 〈−1, 0〉) ∼= HOMM(X, τ(F)Y ).

Finally, qmλn〈Fi[Q],Fj [Q]〉λ = 〈q−mλ−nFi[Q],Fj [Q]〉λ = 〈Fi[Q], qmλnFj [Q]〉λ, is a consequence
of the definition of the (enriched) Hom spaces in a bigraded category. �

5.3. 2-Verma modules

As explained in §§ 1.1.3 and 5.2, the functors (F,E) are adjoint (up to grading shifts)
but not biadjoint. In order to accommodate our construction to the concept of strong
2-representations and Q-strong 2-representations (in the sense of Rouquier [46] and Cautis-
Lauda [10], respectively) we adjust their definitions into the notion of a 2-Verma module
for sl2.

Since we need to work with short exact sequences of 1-morphisms, we require the Hom-
categories of a 2-Verma module to be Quillen exact [44, § 2] (see also [25, Appendix A]).
Recall that a full subcategory C of an abelian category A is closed under extensions if for
all short exact sequence 0 → A → B → C → 0 in A with A and C in C, then B is also in C.
An additive full subcategory of an abelian category, closed under extensions, is called Quillen
exact.

All results from §A.2 apply for Quillen exact categories if the category admits unions and
intersections of admissible objects. That is whenever there are short exact sequences

0 → A1 → B → C1 → 0, 0 → A2 → B → C2 → 0

in C then there are also short exact sequences

0 → A1 ∩A2 → B → X → 0, 0 → A1 ∪A2 → B → Y → 0

in C.

Definition 5.15. Let c be either an integer or a formal parameter and define εc to be zero
if c ∈ Z and to be 1 otherwise. Let Λc = c− 2N0 be the support. A 2-Verma module for sl2
with the highest weight qc consists of a bigraded k-linear idempotent complete, 2-category M
admitting a parity 2-functor Π : M → M, where

• the objects of M are indexed by weights μ ∈ Λc;
• there are identity 1-morphisms 1μ for each μ, as well as 1-morphisms F1μ : μ → μ− 2 in

M and their grading shift. We also assume that F1μ has a right adjoint and define the
1-morphism E1μ−2 : μ− 2 → μ as a grading shift of a right adjoint of F1μ,

E1μ−2 = (F1μ)R〈μ + 2 − c,−εc〉.
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• the Hom-spaces between objects are locally additive, cone complete, Quillen exact
categories.

On this data we impose the following conditions:

(1) The identity 1-morphism 1μ of the object μ is isomorphic to the zero 1-morphism if
μ /∈ Λc.

(2) The enriched HOMM(1μ,1μ) is cone-bounded for all μ.
(3) There is an exact sequence

0 −−→ FE1μ −−→ EF1μ −−→ Qμ〈−c + μ, εc〉 ⊕ ΠQμ〈c− μ,−εc〉 −−→ 0,

where Qμ :=
⊕

k�0 Π1μ〈2k + 1, 0〉.
(4) For each k ∈ N0, Fk1μ carries a faithful action of the enlarged nilHecke algebra.

Let C0 be a full subcategory of an abelian category A. For all i � 0, define recursively Ci+1 as
the full subcategory of A containing all the objects of Ci and all B for all short exact sequence
0 → A → B → C → 0 in A with A and C in Ci. We call

⋃
i Ci the completion under extensions

of C0 in A. It is clear that if C0 is also additive, then its completion under extension is Quillen
exact.

Form the 2-category M′(λq−1) whose objects are the categories Mk, the 1-morphisms are
locally finite, cone-bounded direct sums of shifts of functors from {Ek, Fk, Qk, Idk} and the
2-morphisms are (grading-preserving) natural transformations of functors. We define M(λq−1)
as the completion under extensions of M′(λq−1) in the abelian category of all functors. In this
case M(λq−1) is a 2-Verma module for sl2. Now take the cone completion of ExtFlagλ from
§ 4.1, namely add the cone-bounded, locally finite coproduct of Ωk. Then the completion under
extensions of this 2-category in Bims is also a 2-Verma module, equivalent to M(λq−1).

6. Categorification of the Verma modules with integral highest weight

In this section we give a categorical interpretation of the evaluation map evn : M(λq−1) →
M(n) for n ∈ Z.

6.1. Categorification of M(−1)

Forgetting the λ-gradings of the superrings Ωk and Ωk,k+1 from § 3.1 results in single graded
superrings that we denote Ωk(−1) and Ωk,k+1(−1), respectively. We write 〈s〉 for the shift of
the q-grading up by s units.

Define Mk(−1) = Ωk(−1) -smodlf and Mk+1,k(−1) = Ωk+1,k(−1) -smodlf with the functors

Fk : Mk(−1) → Mk+1(−1),

Ek : Mk+1(−1) → Mk(−1),

Qk : Mk(−1) → Mk(−1),

Kk : Mk(−1) → Mk(−1),

as in § 5. Denote also M(−1) = ⊕k�0Mk(−1).
Since the q-grading in Ωk(−1) and Ωk+1,k(−1) is bounded from below and both superrings

have one-dimensional lowest degree part, all the results in § 5 can be transported to the singly
graded case. Note that either Ωk(−1) and Ωk+1,k(−1) are the product of a graded local ring
with degree zero part isomorphic to Q with a finite-dimensional superring.

The (topological) Grothendieck group G0(Mk(−1)) is one-dimensional and generated either
by the class of the projective indecomposable, either by the class of the simple object, both
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unique up to isomorphism and grading shift. Also note that K0(Mk(−1)) is generated by
the unique projective and it is homeomorphic to G0(Mk(−1)). However, we prefer to use
G0(Mk(−1)) which seems to be a more natural choice since the dual canonical basis in K0

only exists as a formal power series.
Define the 2-category M(−1) like M(λq−1) but with the Mk(−1)s as objects. Collapsing

the λ-grading defines a forgetful 2-functor U : M(λq−1) → M(−1). It is clear that M(−1) is a
2-Verma module.

Having the forgetful 2-functor U at hand, our strategy is to first categorify the shifted
universal Verma module M(λqn) for arbitrary n and then to apply U to get a categorification
of the Vermas with integral highest weight.

Remark 6.1. While this approach yields a categorification of M(n), it is interesting
challenge to construct one where the sl2-commutator relation is given in the form of a finite
direct sum.

6.2. Categorification of the shifted Verma module M(λqn) for n ∈ Z

Let n ∈ Z, n < 0 be fixed and let G−n−1,k and G−n−1,k,k+1 the varieties of partial flags in C∞

G−n−1,k = {(U−n−1, Uk)|dimC U−n−1 = −n− 1,dimC Uk = k, 0 ⊂ U−n−1 ⊂ Uk ⊂ C∞},
and

G−n−1,k,k+1 = {(U−n−1, Uk, Uk+1)|dimC U−n−1 = −n− 1,dimC Uk = k,dimC Uk+1 = k + 1,

0 ⊂ U−n−1 ⊂ Uk ⊂ Uk+1 ⊂ C∞}.
Their cohomologies are generated by the Chern classes

H(G−n−1,k) ∼= Q[x1,k, . . . , x−n−1,k, z1,k, . . . , zk,k],

with degq(xi,k) = 2i, degq(zi,k) = 2i, and

H(G−n−1,k,k+1) ∼= Q[x1,k+1, . . . , x−n−1,k+1, z1,k+1, . . . , zk,k+1, ξk+1],

with degq(xi,k+1) = 2i, degq(zi,k+1) = 2i and degq(ξk+1) = 2.
The forgetful map G−n−1,k → Gk gives H(G−n−1,k) the structure of a

(H(Gk), H(G−n−1,k))-superbimodule and similarly for H(G−n−1,k,k+1), which becomes
a (H(Gk,k+1), H(G−n−1,k,k+1))-bimodule under the forgetful map G−n−1,k,k+1 → Gk,k+1.
Tensoring on the left with H(G−n−1,k) (over H(Gk)) and with H(G−n−1,k,k+1) (over
H(Gk,k+1)) gives exact functors from H(Gk) -smodlfg to H(G−n−1,k) -smodlfg and from
H(Gk,k+1) -smodlfg to H(G−n−1,k,k+1) -smodlfg, respectively.

For each j ∈ N0 put

X−n−1,j =
{
H(G−n−1,j) ⊗ ExtH(Gj)(Sj , Sj) if j � −n− 1
0 else,

and

X−n−1,j,j+1 =
{
H(G−n−1,j,j+1) ⊗ ExtH(Gj+1)(Sj+1, Sj+1) if j � −n− 1
0 else,

and for all k ∈ N0 define the superrings

Ωn
k = X−n−1,−n−1+k ⊗k Ω−n−1+k,

Ωn
k,k+1 = X−n−1,−n−1+k,−n+k ⊗k,k+1 Ω−n−1+k,−n+k.

Now take n ∈ N0. Let also Ωn
k ⊂ Ωk and Ωn

k,k+1 ⊂ Ωk,k+1 be the sub-superrings

Ωn
k = Q[x1,k, . . . , xk,k, s−n,k, . . . , sk−1−n,k],
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and

Ωn
k,k+1 = Q[w1,k, . . . , wk,k, ξk+1, σ−n,k+1, . . . , σk−n,k+1],

where we compute si,k and σi,k+1 for i � 0 recursively with the formulas

si,k = −
k∑

�=1

x�,ksi+�,k, σi,k+1 = −
k∑

�=1

(x�,k + ξk+1x�−1,k)σi+�,k+1.

After a suitable change of variables we can write

Ωn
k = Q[x1,k, . . . , xk,k, s̃1,k, . . . , s̃k,k]

Ωn
k,k+1 = Q[x1,k, . . . , xk,k, ξk+1, s̃1,k+1, . . . , s̃k+1,k+1],

(29)

with degq,λ,q(s̃i,k) = degq,λ(s̃i,k+1) = (2n− 2i, 2).
In order to define the analogous of the category M from § 5 note that we get

φ∗
k(xi,k) = xi,k+1, φ∗

k(s̃i,k) = s̃i,k+1 + ξk+1s̃i+1,k+1, (30)

ψ∗
k(xi,k+1) = xi,k+1 + ξk+1xi−1,k+1, ψ∗

k+1(s̃i,k+1) = s̃i,k+1. (31)

As in Definition 4.22, we define the shifted superbimodules.

Definition 6.2. For n ∈ Z and k ∈ N0 we put

Ω
n

k+1,k = Ωn
k+1,k〈−k, 0〉, Ω

n

k,k+1 = Ωn
k,k+1〈k − n + 1,−1〉,

and define

Ω
n

k(k±1)k = Ω
n

k,k±1 ⊗k±1 Ω
n

k±1,k, Ω
ξ,n

k = ΠΩn
k [ξ]〈1, 0〉.

The analogue of Corollary 4.23 reads as below.

Lemma 6.3. There are short exact sequences of (Ωn
k ,Ω

n
k )-superbimodules

0 −→ Ω
n

k(k−1)k −→ Ω
n

k(k+1)k −→ Ω
ξ,n

k 〈n− 2k, 1〉 ⊕ ΠΩ
ξ,n

k 〈2k − n,−1〉 −→ 0.

Proof. For n < 0 we regard Ωn
k and Ωn

k,k+1 as algebras over Ω−n−1 and apply the analysis
leading to Corollary 4.23. For n � 0 we use the presentations of Ωn

k and Ωn
k,k+1 in equation (29)

and apply again the analysis leading to Corollary 4.23. In both cases the claim follows by tracing
carefully the bidegrees in the homomorphisms in § 4.1. �

We now define categories Mn
k = Ωn

k -smodlfg and Mn = ⊕k�0Mn
k as we did M in § 5. We

also define M(λqn) as the 2-category with objects Mn
k , for k ∈ N0. The 1-morphisms of M(λqn)

are direct sums of grading shifts of the functors

Fk : Mn
k → Mn

k+1 Fk(−) = Resk,k+1
k+1 ◦ (Ωn

k+1,k ⊗k (−)
) 〈−k, 0〉,

Ek : Mn
k+1 → Mn

k Ek(−) = Resk,k+1
k ◦ (Ωn

k,k+1) ⊗k+1 (−)
) 〈k − n + 1,−1〉,

Qk : Mn
k → Mn

k Qk(−) = Ωn
k [ξ] ⊗k (−)〈1, 0〉,

Kk : Mn
k → Mn

k Kk(−) = (−)〈n− 2k, 1〉,



34 GRÉGOIRE NAISSE AND PEDRO VAZ

and the 2-morphisms are (grading-preserving) natural transformations between these functors.
As before, we put

E =
⊕
k�0

Ek, F =
⊕
k�0

Fk, K =
⊕
k�0

Kk, and Q =
⊕
k�0

Qk.

The analogs of Theorems 5.8 and 5.12 follow as in § 5 using Lemma 6.3. We state them below
for the record.

Theorem 6.4. We have natural isomorphisms of exact endofunctors of Mn

K ◦ K−1 ∼= IdM ∼= K−1 ◦ K,

K ◦ E ∼= E ◦ K〈2, 0〉, K ◦ F ∼= F ◦ K〈−2, 0〉,
and an exact sequence

0 −−→ F ◦ E −−→ E ◦ F −−→ Q ◦ (K ⊕ ΠK−1
) −−→ 0.

All the above imply that M(λqn) is a 2-Verma module for sl2.

Theorem 6.5. The three Grothendieck groups G0(Mn), K0(Mn) and Ĝ0(Mn), together
with the action induced by functors F and E, are, respectively, isomorphic with the U̇λ-modules
M∗

A(λqn) and MA(λqn), and with the Uq(sl2)-module M̂(λqn).

6.3. Categorification of the Verma module M(n) for n ∈ Z

As before, we apply the map that forgets the λ-grading on the superrings Ωn
k and Ωn

k,k+1

to obtain singly graded superrings Ωk(n) and Ωk,k+1(n). In this case we still have that the
q-grading in Ωk(n) and Ωk+1,k(n) is bounded from below and both superrings have one-
dimensional lowest degree part, and we can use all the results in § 5. Note that again both
Ωk(n) and Ωk+1,k(n) are the product of a graded local ring with degree zero part isomorphic
to Q with a finite-dimensional superring.

Denote by M(n) the image of Mn under the forgetful functor. We keep the notation Fk,
Ek, Qk and Kk for U(Fk), U(Ek), U(Qk) and U(Kk). The 2-categories M(n) constructed in the
obvious way, yield 2-Verma modules.

It is easy to see that

FkΩn
k
∼= ⊕[k+1]Ωn

k+1,

and

EkΩn
k+1

∼= QkΩn
k 〈n− k〉 ⊕ ΠQkΩn

k 〈k − n〉,
which means that in the Grothendieck group we have

[F][Ωn
k ] = [k + 1]q[Ωn

k+1], [E][Ωn
k+1] = [n− k + 1]q[Ωn

k ] (32)

after specializing π = −1.
We now proceed to analyze the cases n < 0 and n � 0 separately.

6.3.1. The case n < 0. The arguments in the proof of Theorem 5.12 can be applied almost
unchanged to get the following.

Theorem 6.6. For n < 0 the Grothendieck groups G0(M(n)) and K0(M(n)), together
with the action induced by functors F and E, are isomorphic with the Verma module M(n).
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The composite of the functor on Mk obtained by tensoring with the appropriate superbimod-
ules Xn−1,k and Xn−1,k,k+1 with the forgetful functor U defines a 2-functor EV−|n| : M →
M(n) which is exact, takes projectives to projectives, and categorifies the evaluation map
ev−|n| : M(λq−1) → M(n).

The categorification of M(n) using M(n) for n < 0 is not minimal, in the sense that there
is a smaller category with the same properties we now describe. Note that Ωk(−|n|) and
Ωk,k+1(−|n|) have presentations

Ωk(−|n|) = Q[xn−1, sn−1][z1, . . . , zk, sn, . . . , sn+k],

and

Ωk,k+1(−|n|) = Q[xn−1, sn−1][z1, . . . , zk+1, ξk+1, sn, . . . , sn+k+1],

where zi and ξk+1 are even with degq(zi) = 2i, degq(ξk+1) = 2 and si is odd with degq(si) = −2i
(recall that Q[xn−1, sn−1] = Ωk).

Let Jk ⊂ Ωk(−|n|) and Jk,k+1 ⊂ Ωk,k+1(−|n|) be the two-sided ideals generated by
(xn−1, sn−1) and define the 2-category Mmin(−|n|) as before but using the quotient superrings

Ωmin
k (−|n|) = Ωk(−|n|)/Jk,

and

Ωmin
k,k+1(−|n|) = Ωk,k+1(−|n|)/Jk,k+1,

instead. We get functors Fmin, Emin, Qmin and Kmin with the same properties as in Theorem 6.4
while the Grothendieck group of Mmin(n) is still isomorphic to M(n). Using the surjection
from Ωk(−|n|) to Ωmin

k (−|n|) we can construct an obvious functor Ψ from M(n) to Mmin(n)
that sends Mk(n) to Mmin

k (−|n|) and (Fk,Ek,Qk,Kk) to (Fmin
k ,Emin

k ,Qmin
k ,Kmin

k ). Moreover,
Ψ sends projectives to projectives, simples to simples, is exact, full and bijective on objects.

6.3.2. The case n � 0. We have to be a bit careful for this case, as the dual canonical basis
does not exist for M(n). Indeed, in G0(M(n)) we get the equality

[Ωn
n+1] =

n+1∏
i=1

1 + πq2n−2i+2

1 − q2i
[Sn

n+1]

and thus after specializing to π = −1, it gives [Ωn
n+1] = 0. Of course, the element (1 + π) is not

invertible in Zπ�q�[q−1] and thus we cannot use the projective resolution of Sn
n+1 to generate

it with the projective Ωn
n+1 neither. In fact, we have [Fn] = 0, and G0(M(n)) contains V (n)

as a submodule. The action of Uq(sl2) on G0(M(n))/V (n) is trivial with E = F = 0.
Therefore, the Grothendieck group G0(M(n)) is not the way we want to decategorify M(n)

and we will work only with K0(M(n)), which is freely generated by the classes or projectives
[Ωn

k ]. Again comparing the action on the canonical basis and (32) gives the following theorem.

Theorem 6.7. For each n � 0 the Grothendieck group K0(M(n)), together with the action
induced by functors F and E, is isomorphic to the Verma module M(n).

7. Categorification of the finite-dimensional irreducibles from the Verma categorification

7.1. The ABC of the DG world

We start by recollecting some basic facts about DG-algebras and their (derived) categories of
modules following closely the exposition in [5, § 10].
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A differential graded algebra (DG-algebra for short) (A, d) is a Z-graded associative unital
algebra A with 1 in degree zero, equipped with an additive endomorphism d of degree −1
satisfying

d2 = 0, d(ab) = d(a)b + (−1)deg aad(b), d(1) = 0.

A homomorphism between DG-algebras (A, d) and (A′, d′) is a homomorphism φ : A → B of
algebras intertwining the differentials, φ ◦ d = d ◦ φ.

A left DG-module M over A is a Z-graded left A-module with a differential dM : Mi → Mi−1

such that, for all a ∈ A and all m ∈ M ,

dM (am) = d(a)m + (−1)deg(a)adM (m).

We have the analogous notion for right A-modules and bimodules. Denote by (A, d) -mod the
abelian category of (left) DG-modules over A. We say P ∈ (A, d) -mod is projective if for every
acyclic M in (A, d) -mod the complex HomA(P,M) is also acyclic. The homology H(M) of a
DG-module over A is the usual homology of the chain complex M . It is a graded module over
the graded ring H(A). We say that A is formal if it is quasi-isomorphic to H(A), that is if
there exists a map A → H(A) or H(A) → A inducing an isomorphism on the homology.

Two morphisms f, g : M → N in (A, d) -mod are homotopic if there is a degree one map
s : N → M such that f − g = sdM + dNs. The homotopy category KA, which is a triangulated
category, is obtained from (A, d) -mod by modding out by null-homotopic maps. Inverting
quasi-isomorphisms results in the derived category D(A), which is triangulated and idempotent
complete.

The localization functor gives an isomorphism from the full subcategory of KA consisting of
projective objects to the derived category D(A). We say M is compact if the canonical map

⊕i∈I HomD(A)(M,Ni) → HomD(A)(M,⊕i∈INi)

is an isomorphism for every arbitrary direct sum of DG-modules. Note that A is compact
projective. Let Dc(A) be the full subcategory of D(A) consisting of compact modules. It is also
idempotent complete.

For a homomorphism of DG-algebras φ : A → B the derived induction functor is the derived
functor associated with the bimodule BBA,

IndB
A = B ⊗L

A (−) : D(A) → D(B).

The derived restriction functor is given by taking the derived Hom-functor:

ResBA = RHomB(BA,−) : D(B) → D(A).

The forgetful functor via the map φ is exact and therefore, lifts trivially to the derived setting.
This lift coincides with the derived restriction functor. The above functors are adjoint:

HomD(B)(IndB
A(M), N) ∼= HomD(A)(M,ResBA(N)).

If φ is a quasi-isomorphism then IndB
A and ResBA are mutually inverse equivalences of categories.

We define the Grothendieck group of A as the Grothendieck group of the triangulated
category Dc(A). As Khovanov pointed out in [27], if A is formal and (graded) noetherian
we can describe the Grothendieck group of A via finitely generated H(A)-modules.

Of course, all the above generalize easily to the case where A has additional gradings and
where the differential is graded over Z/2Z. In this case we speak of graded (or bigraded)
DG-algebras, graded (or bigraded) homomorphisms and graded versions of all the categories
above.
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7.2. The differentials dn

We next introduce differentials on Ωk and Ωk,k+1 turning them into DG-algebras for the parity
degree. Recall from § 3.1 that the rings Ωk and Ωk,k+1 have presentations

Ωk = Q[x1,k, . . . , xk,k, s1, . . . , sk] and Ωk,k+1 = Q[x1,k, . . . , xk,k, ξk+1, s1,k+1, . . . , sk+1,k+1].

Definition 7.1. Define maps dkn : Ωk → Ωk and dk,k+1
n : Ωk,k+1 → Ωk,k+1 of bidegree 〈2n +

2,−2〉 and parity −1 by

dkn(xr,k) = 0, dkn(sr,k) = Yn−r+1,k,

and

dk,k+1
n (xr,k) = 0, dk,k+1

n (ξk+1) = 0, dk,k+1
n (sr,k+1) = Yn−r+1,k+1,

respecting the Leibniz rule

dkn(ab) = dkn(a)b + (−1)p(a)adkn(b) dk,k+1
n (ab) = dk,k+1

n (a)b + (−1)p(a)adk,k+1
n (b).

From now on we use dn to denote either dkn and dk,k+1
n whenever the k or the k, k + 1 are

clear from the context. The maps dn satisfy dn ◦ dn = 0 and therefore Ωk and Ωk,k+1 become
DG-algebras with dn of bidegree 〈2n + 2,−2〉 which we denote (Ωk, dn) and (Ωk,k+1, dn). These
algebras are bigraded and differential graded with respect to the Z/2Z-grading (also known as
the parity).

Lemma 7.2. For k > n, the DG-algebras (Ωk, dn) and (Ωk,k+1, dn) are acyclic.

Proof. Let k > n. Then dkn(sn+1,k) = Y0,k = 1 and dk,k+1
n (sn+1,k+1) = 1. �

Remark 7.3. For n = 0 the DG-algebra (Ωk,k+1, d0) is acyclic for all k and the DG-algebra
(Ωk, d0) is acyclic unless k = 0 and in this case (Ω0, d0) ∼= Q.

The DG-rings (Ωk, dn) and (Ωk,k+1, dn) have a nice geometric interpretation.

Proposition 7.4. The DG-rings (Ωk, dn) and (Ωk,k+1, dn) are formal. (1) The DG-ring
(Ωk, dn) is quasi-isomorphic to the cohomology of the Grassmannian variety H(Gk;n) of k-
planes in Cn. (2) The DG-ring (Ωk,k+1, dn) is quasi-isomorphic to the cohomology of the
partial flag variety H(Gk,k+1;n) of k, k + 1-planes in Cn.

Proof. Let (dn(sk)) denote the two-sided ideal of Q[xk] generated by dn(s1,k), . . . , dn(sk,k)
and let (dn(σk+1)) denote the two-sided ideal of Q[xk, ξk+1] generated by
dn(σ1,k+1), . . . , dn(σk+1,k+1). If we equip the quotient rings

Q[xk]/(dn(sk)) and Q[xk, ξk+1]/(dn(σk+1)),

with the zero differential, an easy exercise shows that the obvious surjections Ωk �
Q[xk]/(dn(sk)) and Ωk,k+1 � Q[xk, ξk+1]/(dn(σk+1)), are quasi-isomorphisms.

Formula (11) together with the definition of the differential show that Yn−k+r,k ∈ (dn(sk))
for all r � 1 and thus give a presentation

Q[xk]/(dn(sk)) ∼= Q[xk, Y (n−k)]/Ik,n,

with Ik,n the ideal generated by the homogeneous terms in the equation

(1 + x1,kt + · · · + xk,kt
k)(1 + Y1,kt + · · · + Y(n−k),kt

n−k) = 1,
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which is a presentation for the cohomology ring H(Gk;n) and thus proves part (1). The second
claim is proved in the same way. �

7.3. A category of DG-bimodules

Proposition 7.5. The maps φ∗
k and ψ∗

k+1 from § 3.4 commute with the differentials dn.

Proof. From the definitions and the Leibniz rule we have that the diagrams

and

commute. The statement now follows using the Leibniz rule recursively. �

In the following we write DG (k, s)n-bimodule for a ((Ωk, dn), (Ωs, dn))-bimodule. From the
proposition, (Ωk,k+1, dn) is a DG (k + 1, k)n-bimodule. The (Ωk,Ωk)-bimodules Ωk,k+1 ⊗k+1

Ωk+1,k and Ωk,k−1 ⊗k−1 Ωk−1,k get structures of DG (k, k)n-bimodules with dn satisfying the
Leibniz rule dn(a⊗ b) = dn(a) ⊗ b + (−1)p(a)a⊗ dn(b).

Define the DG (k + 1, k)n-bimodule

(qΩk+1,k, dn) = (Ωk+1,k, dn)〈0, 0〉 = (Ωk+1,k, dn)〈−k, 0〉,

and the DG (k, k + 1)n-bimodule

(qΩk,k+1, dn) = (Ωk,k+1, dn)〈−n, 1〉 = (Ωk,k+1, dn)〈k + 1 − n, 0〉.

Note that some of the maps in § 4.1 do not extend to the various DG-bimodules above, for
example, π from Proposition 4.6. However, we can equip Ωξ

k ⊕ ΠΩξ
k〈−2k − 2〉 with a differential

given by dn(ξi ⊕ 0) = 0 and

dn(0 ⊕ Y ξ
j,k) = π(Yn−k,k+1 ⊗ ξjk+1) ⊕ 0 =

n−k∑
p=k−j

Y ξ
p−k+j,kYn−k−p,k ⊕ 0,

for all i, j � 0, such that it becomes a DG-bimodule over (Ωk, d
k
n). This differential commutes

with π + μ, as dk,k+1
n does with u, and by consequence we get a short exact sequence of

(k, k)n-bimodules

0 → (Ωk(k−1)k, dn
)→ (Ωk(k+1)k, dn

)→ (Ωξ
k〈2k, 0〉 ⊕ ΠΩξ

k〈−2k − 2, 2〉, dn
)
→ 0.
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By the snake lemma, it descends to a long exact sequence of H(Ωk, dn) ∼= H(Gk;n)-bimodules

Proposition 7.4 tells us the homology of (Ωk(k+1)k, dn) is concentrated in parity 0 and thus we
have a long exact sequence

For n− 2k � 0, we get that dn(0 ⊕ 1) is a polynomial with a dominant monomial ξn−2k
k+1 and

dn(0 ⊕ Y ξ
j,k) �= 0. It means the homology of (Ωξ

k〈2k, 0〉 ⊕ ΠΩξ
k〈−2k − 2, 2〉, dn) is concentrated

in parity 0 and given by
⊕

{n−2k} q
2kH(Gk;n). Therefore we get the following short exact

sequence:

0 → H(Gk,k−1;n) ⊗H(Gk−1;n) H(Gk−1,k;n)

↪→ H(Gk,k+1;n) ⊗H(Gk+1;n) H(Gk+1,k;n) �
⊕

{n−2k}
q2kH(Gk;n) → 0.

For n− 2k � 0, we get dn(0 ⊕ Y ξ
j,k) = 0 for j < 2k − n and dn(0 ⊕ Y ξ

2k−n,k) = 1 ⊕ 0. Thus the
homology is concentrated in parity 1 and isomorphic to

⊕
{2k−n} q

−2k−2λ2ΠH(Gk;n). After
shifting by the degree of the connecting homomorphism, it yields the short exact sequence

0 →
⊕

−{2k−n}
q2kH(Gk;n) ↪→ H(Gk,k−1;n) ⊗H(Gk−1;n) H(Gk−1,k;n)

� H(Gk,k+1;n) ⊗H(Gk+1;n) H(Gk+1,k;n) → 0.

It is not hard to see that both short exact sequences split, with an obvious splitting morphism
for the projection in the first one and an obvious left inverse for the injection in the second
one, obtained by the same kind of expressions as ι and π.

In conclusion, we recover the well-known commutator of the categorical sl2 action using
cohomology of the finite Grassmannians and two-step flag varieties, which is employed in the
categorification of the irreducible finite-dimensional sl2-modules.

Proposition 7.6. We have quasi-isomorphisms of bigraded DG (k, k)n-bimodules

(qΩk,k+1 ⊗k+1
qΩk+1,k, dn) ∼= (qΩk,k−1 ⊗k−1

qΩk−1,k, dn) ⊕[n−2k] Ωdn

k , if n− 2k � 0,

(qΩk,k−1 ⊗k−1
qΩk−1,k, dn) ∼= (qΩk,k+1 ⊗k+1

qΩk+1,k, dn) ⊕[2k−n] Ωdn

k , if n− 2k � 0.
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7.4. A categorification of V (n)

Let Vk(n) (respectively, Vk,k+1(n)) be the derived category of bigraded, left, compact (Ωk, dn)
modules (respectively, bigraded, left, compact (Ωk,k+1, dn)-modules) and define the functors

Indk+1,k
k : Vk(n) → Vk+1,k(n), Resk+1,k

k : Vk+1,k(n) → Vk(n),

Indk+1,k
k+1 : Vk+1(n) → Vk+1,k(n), Resk+1,k

k+1 : Vk+1,k(n) → Vk+1(n).

For each k � 0 define the functors

Fk(−) = Resk,k+1
k+1 ◦

(
Ωdn

k+1,k ⊗L
k (−)

)
〈−k, 0〉,

and

Ek(−) = Resk,k+1
k ◦

(
Ωdn

k,k+1 ⊗L
k+1 (−)

)
〈k + 1 − n, 0〉,

where Ωdn

k+1,k is seen as a DG (Ωk+1,k,Ωk)n-bimodule and Ωdn

k,k+1 as a DG (Ωk,Ωk,k+1)n-
bimodule.

Proposition 7.7 and Theorem 7.8 are a direct consequence of Propositions 7.4 and 7.5,
together with well-known results: see, for example, [13, § 6.2; 36, §§ 3.4 and 5.3] (see also [11,
§ 5.3] for the ungraded case). There is an equivalence of triangulated categories between Vk(n)
and the bounded derived category Db(H(Gk;n) -mod).

Proposition 7.7. The functors Fk and Ek are biadjoint up to a shift. Moreover we have
natural isomorphisms of functors

Ek ◦ Fk
∼= Fk−1 ◦ Ek−1 ⊕[n−2k] Idk, if n− 2k � 0,

and

Fk−1 ◦ Ek−1
∼= Ek ◦ Fk ⊕[2k−n] Idk, if n− 2k � 0.

Theorem 7.8. Define the category V(n) =
⊕
k�0

Vk(n). We have a Z[q, q−1]-linear isomor-

phism of Uq(sl2)-modules, K0(V(n)) ∼= V (n), for all n � 0.

All the above can be applied without difficulty to Ωm
k and Ωm

k,k+1 in M(λqm), with m �
0. After passing to the derived category we get a category isomorphic to V(n + m + 1). In
particular if we take m = N and d0, this yields a differential on M(N) with q-grading 2.

7.5. nilHecke action

Recall the ring Ωk,k+1,...,k+s = Q[xk, ξs, sk+s] from § 3.4. It has the structure of a DG-algebra
with differential dn given by

dn(xr) = 0, dn(ξr) = 0, dn(sr) = Yn−r+1.

and Yi such that

(1 + x1t + · · · + xkt
k)(1 + ξ1t + · · · + ξst

s)(1 + Y1t + · · · + Yit
i + · · · ) = 1.

It is a DG (k, k + s)n-bimodule quasi-isomorphic to

(Ωk,k+1 ⊗k+1 Ωk+1,k+2 ⊗k+2 · · · ⊗k+n−1 Ωk+n−1,k+n, dn).

As explained in § 4.2, the nilHecke algebra NHm acts on the ring Ωk,...,k+m as endomorphisms
of (Ωk+m,Ωk)-bimodules. We now show this action extends to the DG context.
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Proposition 7.9. The nilHecke algebra NHm acts as endomorphisms of the DG (k, k +
m)n-bimodule (Ωk,...,k+m, dn) and of the DG (k + m, k)n-bimodule (Ωk+m,...,k, dn).

Proof. It is sufficient to verify that the action of the ∂is from NHm commute with the
differential dn on (Ωk,...,k+m, dn) since the action of xi, which comes to multiplying by ξi,
obviously commutes from the definition dn(ξi) = 0. The commutation with the action of ∂i
follows from the fact that X− is a bimodule morphism with parity 0 and that the differential is
a bimodule endomorphism. Indeed, suppose f is a polynomial in xi,k and ξ

m
, then X−(dn(f)) =

0 = dn(X−(f)). Suppose now recursively that f ∈ Ωk,k+m respects such a relation. From the
bimodule structure, we get

dn(X−(fsi,k+m)) = dn(X−(f)si,k+m) = dn(X−(f))si,k+m + (−1)p(f)X−(f)dn(si,k+m)

= X−(dn(f))si,k+m + (−1)p(f)X−(f)Yn−i+1,

X−(dn(fsi,k+m)) = X−(dn(f)si,k+m) + (−1)p(f)X−(fdn(si,k+m))

= X−(dn(f))si,k+m + (−1)p(f)X−(f)Yn−i+1,

which is enough to conclude the proof since we can express every si,k+j as a combination of
si,k+m and ξk+i. �

Corollary 7.10. The nilHecke algebra NHs acts as endomorphisms of Es and of Fs.

This action coincides with the one from Lauda [34] and Chuang–Rouquier [11].

8. Verma categorification and a diagrammatic algebra

In § 4.2 we have constructed an extended version of the nilHecke algebra which acts on Ωk,k+n.
In this section we study this algebra more closely and give it a diagrammatic version in the
same spirit as the KLR algebras [28, 34, 46], as isotopy classes of diagrams modulo relations.

8.1. The superalgebra An

Consider the collection of braid-like diagrams on the plane connecting n points on the horizontal
axis R × {0} to n points on the horizontal line R × {1} with no critical point when projected
onto the y-axis, such that the strands can never turn around. We allow the strands to intersect
each other without triple intersection points. We can decorate the strands with (black) dots
and the regions with (white) dots, called floating dots, except the leftmost one. Moreover, we
equip the diagram with a height function such that we cannot have two floating dots on the
same height. Also, the regions are labeled by integers such that each time we cross a strand
from left to right the label increases by1:

From this rule, it is enough to write a label for the leftmost region of a diagram. Furthermore,
these diagrams are taken up to isotopy which does not create any critical point and preserves
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the relative height of the floating dots as well as the labeling of the regions. An example of
such diagram is

Fix a field k and denote by An the k-superalgebra obtained by the linear combinations of
these diagrams together with multiplication given by gluing diagrams on top of each other
whenever the labels of the regions agree and zero otherwise. In our conventions ab means
stacking the diagram for a atop the one for b, whenever they are composable. Our diagrams
are subjected to the following local relations:

(33)

(34)

(35)

(36)

(37)

We turn An into bigraded superalgebras by setting the parity

and the Z × Z-degrees as

One can check easily that all relations preserve the bidegree and the parity.
We write An(m) for the sub-superalgebra consisting of diagrams with a label m on the

leftmost region. This superalgebra is generated by the diagrams
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There is an obvious canonical inclusion of the nilHecke algebra NHn into An(m), the former
seen as a superalgebra concentrated in parity zero. Note that An(m) coincides with the
superalgebra introduced in § 4.2.

Proposition 8.1. The superalgebra An(m) admits a basis given by the elements

xk1
1 . . . xkn

n ωδ1
1 . . . ωδn

n ∂ϑ

for all reduced word ϑ ∈ Sn, ki ∈ N and δi ∈ {0, 1}, with

∂ϑ = ∂i1 . . . ∂ir

for ϑ = τi1 . . . τir , τi being the transposition exchanging i with i + 1.

Proof. Using the relations (35)–(37) we can push all dots and floating dots to the top of the
diagrams. By the relations (33), we can have a maximum of one floating dot on the immediate
right of a strand, on the top of each diagram. By relations (34) we get the decomposition in ∂w
as in the nilHecke algebra (see [28, § 2.3], for example). Thus the family above is generating. The
action described in the section below shows easily they act as linearly independent operators,
concluding the proof. �

8.2. The action of An(m) on polynomial rings

The superalgebra An(m) acts on Q[xn] ⊗∧•(ωn) with xi and ωi acting by left multiplication
while the action of ∂i is defined by

∂i(1) = 0, ∂i(xj) =

⎧⎨⎩1 if j = i,
−1 if j = i + 1,
0 otherwise,

∂i(ωj) =
{−ωj+1 if j = i,

0 otherwise,

together with the rule

∂i(fg) = ∂i(f)g + f∂i(g) − (xi − xi+1)∂i(f)∂i(g), (38)

for all f, g ∈ Q[xn] ⊗∧•(ωn).

Proposition 8.2. Formulas above define an action of An(m) on Q[xn] ⊗∧•(ωn).

Proof. The commutation relations produced by isotopies are immediate from ∂i being zero
on xj and ωj for j /∈ {i, i + 1} together with the rule (38). The relation ∂2

i = 0 can easily be
proved by induction. It is straightforward on 1 from the definition. Let f, g ∈ Q[xn] ⊗∧•(ωn)
be such that ∂2

i (f) = ∂2
i (g) = 0 and compute

∂2
i (fg)

(38)
= ∂i (∂i(f)g + f∂i(g) − (xi − xi+1)∂i(f)∂i(g))

(38)
= 0.

The Reidemeister III relation (34) is proved in a same way, we leave the details for the reader.
The nilHecke relations (35) and (36) are easy computations. Indeed we have

∂i(xi+1f) + f
(38)
= −f + xi+1∂i(f) + (xi − xi+1)∂i(f)

= xi∂i(f),

∂i(xif)
(38)
= f + xi∂i(f) − (xi − xi+1)∂i(f)

= xi+1∂i(f) + f,
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for all f ∈ Q[xn] ⊗∧•(ωn). The second to last relation is direct from ∂i acting as zero on ωi+1.
Finally, computing

∂i(ωif)
(38)
= −ωi+1f + ωi∂i(f) + (xi − xi+1)ωi+1∂i(f)

(35)
= ωi∂i(f) + ∂i(xi+1ωi+1f) − ωi+1xi+1∂i(f)

gives (37). �

8.3. Symmetric group action

The action of NHn on Q[xn] with xi acting by multiplication and ∂i by divided difference
operators

∂i(f) =
f − si(f)
xi − xi+1

,

induces an action of NHn on Q[xn] ⊗∧•(ωn). This action goes through an action of the
symmetric group Sn on Q[xn] ⊗∧•(ωn), given by

si(xj) =

⎧⎨⎩xi+1 if j = i,
xi if j = i + 1,
xj otherwise,

(39)

and

si(ωj) =
{
ωi + (xi − xi+1)ωi+1 if j = i,
ωj otherwise, (40)

and si(fg) = si(f)si(g).
With this Sn-action, the action of ∂i satisfies the usual Leibnitz rule for the Demazure

operator, ∂i(fg) = ∂i(f)g + si(f)∂i(g). Moreover, this action coincides with the one defined
before since

∂i(f)g + f∂i(g) − (xi − xi+1)∂i(f)∂i(g) =
(f − si(f))g + f(g − si(g)) − (f − si(f))(g − si(g))

xi − xi+1

=
fg − si(fg)
xi − xi+1

.

8.4. The action of An(k + m) on Ωm
k,k+n.

We have already observed in § 6.2 that the ring Ωm,m+n can be written as

Ωm,m+n
∼= Ωm,m+1 ⊗m+1 . . .⊗m+n−1 Ωm+n−1,m+n.

We therefore get an action of An(m) on Ωm,m+n given by

This action agrees with the one defined in § 8.2 and this can be generalized to get an action of
An(k + m) on Ωm

k,k+n.
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8.5. Categorification

We define

A(m) =
⊕
n�0

An(m).

The usual inclusion An(m) ↪→ An+1(m) that adds a strand at the right of a diagram from
An(m) gives rise to induction and restriction functors F and E on A(m) -smodlfg that satisfy
the sl2-relations. Our results in §§ 4–6 imply that An(m) -smodlfg categorifies the (λqm−1−2n)-
weight space of M(λqm−1), and that A(m) -smodlfg categorifies the Verma module M(λqm−1).
This is explained in details in [41]. The categorification of the Verma modules with integral
highest weight using specializations of the superalgebras An(m) follows as a consequence of
our results in § 6.

8.6. Cyclotomic quotients

We can turn An(N + 1) into a DG-algebra, equipping it with a differential of degree (0,−2)
defined by

dN (xi) = 0, dN (∂i) = 0, dN (ωi) = (−1)ihN−i+1(xi),

together with the parity graded Leibniz rule (as before, the parity is the cohomological degree
of dn). We stress that we take the complete homogeneous symmetric polynomial on only the
first i variables, and therefore it commutes with ∂j for all j �= i and respects (37) for ∂i (recall
that Yi,k = (−1)ihi(ξk)).

Proposition 8.3. The DG-algebra (An(N + 1), dN ) is quasi-isomorphic to the cyclotomic
quotient of the nilHecke algebra NHN

n = NHn /(xN
1 ),

(An(N + 1), dN ) ∼= NHN
n .

Proof. It suffices to see that dN (ω1) = hN (x1) = xN
1 since dN (ωi) lies in the ideal generated

by xN
1 (see, for example, [17, Proposition 2.8]). �

Appendix. Topological Grothendieck groups

Recall that the Grothendieck group (respectively, split Grothendieck group), denoted G0

(respectively, K0), is defined in general for abelian (respectively, additive) categories as the
free group generated by the classes of objects up to isomorphism quotiented by

[B] = [A] + [C],

whenever there exists a short exact sequence 0 → A → B → C → 0 (respectively, an isomor-
phism B ∼= A⊕ C). We call distinguished triplet (A,B,C) these short exact sequences and
decompositions into direct sums. In the case of abelian categories with finite length objects
(respectively, Krull–Schmidt categories), they are given by the free Z-module generated by the
classes of simple objects (respectively, indecomposable objects).

If C has a (not necessarily strong) Z/2Z-action Π : C → C, then G0(C) and K0(C) become
modules over Zπ = Z[π]/(π2 − 1) with π[M ] = [ΠM ]. When the category is strictly Z-graded,
namely A〈k〉 �∼= A for all A ∈ C and k ∈ Z0 , then K0(C) (respectively, G0(C)) becomes as
Z[q, q−1]-module freely generated by the classes of indecomposable objects (respectively, simple
objects), up to shift. The action is given by a shift in the degree

q[M ] = [M〈1〉], q−1[M ] = [M〈−1〉].
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This means the action of a polynomial p ∈ Z[q, q−1] can be viewed as (cf. § 3.3)

p(q, q−1)[M ] =
[
M⊕p
]
.

This story generalizes in the obvious way to the case of multigraded categories.
We look for similar results when working with objects admitting infinite filtrations or that

decompose into infinitely many indecomposables, such that the Grothendieck groups become
modules over Z�q�[q−1]. This will allow us making sense of expressions like

[X] = (1 + q2 + q4 + · · · + q2i + · · · )[S] =
1

1 − q2
[S],

for some objects X and S such that (X〈2〉, X, S) is a distinguished triplet. In general this
procedure fails and one can see easily that the Grothendieck group collapses using Eilenberg
swindle arguments. To avoid this outcome in our construction, we work with categories where
these decompositions and filtrations are controlled and essentially unique.

Most of the arguments are sensibly similar to the ones used in the finite case, which can be
found, for example, in [39, Appendix].

A.1. Topological split Grothendieck group K0. The aim of this section is to define a notion
of Krull–Schmidt categories admitting infinite decompositions. For the split Grothendieck
group not to collapse, we need to control the occurrences of the indecomposables in these
decompositions and they should be essentially unique. That is for every other possible
decomposition, the indecomposables are in bijection and have the same grading. Since we
are working in a graded context, we require that in each decomposition the indecomposables
are in a finite number in each degree and the degrees are bounded from below.

Definition A.1. We say that a coproduct in a strictly Z-graded category C is locally finite
if it is finite in each degree. By this we mean the coproduct is of the form∐

i∈Z

(A⊕k1,i
1 ⊕ · · · ⊕A⊕kn,i

n )〈i〉,

for some A1, . . . , An ∈ C and kj,i ∈ N. Moreover, we say that it is left-bounded, or bounded
from below, if there is some m ∈ Z such that kj,i = 0 for all i < m.

An additive category admits all finite products and coproducts, and those are equivalent and
called biproducts. In the same spirit, we define the stronger notion of right complete locally
additive category.

Definition A.2. We say that an additive, strictly Z-graded category C is locally additive
if all its locally finite coproducts are biproducts, that is, they are isomorphic to their product
counterparts. We write them with a

⊕
sign and sometimes call them direct sums. Moreover,

we say that C is right complete if it admits all left-bounded locally finite coproducts.

We illustrate this notions in the working example below, that will be developed further
throughout this section.

Example A.3. Let R be a unital graded k-algebra, with k being a field. Suppose
R =
⊕

i�0 Ri is locally finite-dimensional with positive dimension and R0 = k. We call locally
finitely generated R-module a graded R-module M that can be written as M =

⊕
i∈I Rxi with

xi ∈ M and X = {xi}i∈I is finite in each degree.
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It is left-bounded if there is some m ∈ Z such that deg(xi) > m for all i ∈ I. The category
R -modlfg of left-bounded locally finitely generated R-modules with degree zero morphisms is
right complete and locally additive.

We clearly have all left-bounded locally finite coproducts. We show that they are biproducts.
Let

M =
⊕
i>m

(A⊕k1,i
1 ⊕ · · · ⊕A⊕kn,i

n )〈i〉 ∈ R -modlfg

be a coproduct and Z be an object in R -modlfg with morphisms fj,i : Z → A
kj,i

j (note that

A
⊕kj,i

j are biproducts). If i is bounded, then it is a finite coproduct and thus a biproduct, so
we suppose without losing generality that for all m ∈ Z there exist i, j ∈ Z with i > m such
that kj,i > 0. By the universal property of the direct product, there is a canonical map (in the
category of all R-modules, but not in R -modlfg)

r : M →
∏
i∈Z

(A⊕k1,i
1 ⊕ · · · ⊕A⊕kn,i

n )〈i〉.

We want to show that the map of R-modules∏
i,j

fj,i : Z →
∏
i∈Z

(A⊕k1,i
1 ⊕ · · · ⊕A⊕kn,i

n )〈i〉

factors through r. This is equivalent to show that for homogeneous x ∈ Z fixed, fi,j(x) = 0 for
almost all i, j. Suppose this does not hold. Then there is a j ∈ Z such that for each m ∈ Z

there exist some i ∈ Z with i > m and fi,j(x) �= 0. Thus deg(fj,i(x)) = deg(x) − i. But fj,i(x)
is an homogeneous element of Aj which is left-bounded and that is absurd. By construction∏

i,j fj,i is the unique morphism satisfying the universal property of the product and thus M
is a biproduct.

Remark A.4. In a locally additive category, there is a canonical bijection

Hom

(
X,
⊕
k∈I

Yk

)
∼=
∏
k∈I

Hom(X,Yk).

Definition A.5. An object A in a category C is small if every map f : A →∐i⊂I Bi factors
through

∐
j∈J Bj for a finite subset J ⊂ I.

Example A.6. In a category of modules, finitely generated modules are small [48, § 2].

Definition A.7. We say that a locally additive category is locally Krull–Schmidt if every
object decomposes into a locally finite direct sum of small objects having local endomorphisms
rings.

Remark A.8. Note that a locally Krull–Schmidt category must be idempotent complete.
Moreover, an object with local endomorphism ring must be indecomposable, and has only 0
and 1 as idempotents.

It appears the condition of being small allows us to mimic the classical proof of the
Krull–Schmidt property of a Krull–Schmidt category. There exists some other results about
Krull–Schmidt properties for infinite decompositions [48], where the indecomposables are not
necessarily small. However they require the category to admit kernels, which we do not have
in our construction. For example, we want to use the category of projective modules which
certainly does not admit all kernels.
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Lemma A.9 [3, Lemma 3.3, p. 18]. In an additive category C, for all A,B and C in C, if A
is indecomposable with local endomorphism ring, then

A⊕B

f=

⎛
⎝ fAA fAB

fCA fCB

⎞
⎠

∼= A⊕ C

with fAA being an unit, implies that B ∼= C.

We now prove that each object in a locally Krull–Schmidt category decomposes into an
essentially unique direct sum of indecomposables. The idea of the proof is essentially the same
as for the classical Krull–Schmidt theorem (see, for example, [39, Theorem A6]), with only the
smallness property of the indecomposable objects allowing us to restrict the infinite sums of
morphisms into finite ones such that we can extract units from them. Also the locally finiteness
of the direct sums allows us to use inductive arguments.

Theorem A.10. In a locally Krull–Schmidt category, given an isomorphism⊕
i∈Z

(A⊕k1,i
1 ⊕ · · · ⊕A⊕kn,i

n )〈i〉 ∼=
⊕
i∈Z

(B
⊕k′

1,i
1 ⊕ · · · ⊕B

⊕k′
m,i

m )〈i〉,

where the objects Aj are indecomposables with Aj � Aj′〈i〉 for all j �= j′ and i ∈ Z, and the
same for the objects Bj , then m = n, As

∼= Bjs〈αs〉 for all s, and ks,i = k′js,i+αs
, with js �= js′

if s �= s′.

Proof. Denote M =
⊕

i∈Z(A⊕k1,i
1 ⊕ · · · ⊕A

⊕kn,i
n )〈i〉. Let

fj,i,k : Bj〈i〉 → M, qj,i,k : M → Bj〈i〉,

be the injection and projection morphisms given by the biproduct structure, with 1 � k � k′j,i.
Fix i0 ∈ Z. We have IdM =

∏
j,i,k fj,i,kqj,i,k. Thus IdA1 = π(

∏
j,i,k fj,i,kqj,i,k)ı ∈ End(A1〈i0〉)

for each copy of A1〈i0〉 in A
⊕k1,i0
1 〈i0〉, with π and ı the projection and inclusion of A1〈i0〉 in

M . Since A1 is a small object, we can restrict this sum to a finite one. Thus we can write
π(
∏

j,i,k fj,i,kqj,i,k)ı as a finite sum over j and k. By local property of End(A1〈i0〉), there
exists j, i, k ∈ Z such that x = πfqı is a unit, with f = fj,i,k and q = qj,i,k. Take qıx−1πf ∈
End(Bj〈i〉) which is an idempotent, and thus is 0 or IdBj〈i1〉. Since it factors through IdA1〈i0〉,
it cannot be zero. Thus qıx−1 is an isomorphism with inverse πf such that A1〈i0〉 ∼= Bj〈i〉,
hence A1

∼= Bj〈i− i0〉. We apply the same reasoning for each Aj〈i〉. Since the argument can
be applied for the objects Bj as well, we get n = m and As

∼= Bjs〈αs〉 for some αs ∈ Z. Now
using Lemma A.9 to cancel each As〈i〉 with Bjs〈i + αs〉 we conclude that ks,i = k′js,i+αs

. �

Corollary A.11. A locally Krull–Schmidt category C possesses the cancelation property
for direct sums, namely for all A,B and C in C, A⊕B ∼= A⊕ C implies B ∼= C.

Let K ′
0(C) be the free Z�q�[q−1]-module generated by the classes of indecomposable objects in

C, up to shift. We equip it with the (q)-adic topology. The (usual) split Grothendieck group of a
right complete locally Krull–Schmidt category C has a canonical structure of Z�q�[q−1]-module
with action of a series p(q, q−1) =

∑
i>m kiq

i given by

p(q, q−1)[M ] =
[
M⊕p
]
.
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Since each object M ∈ C admits an essentially unique decomposition into indecomposable
objects M ∼=⊕i>m(A⊕k1,i

1 ⊕ · · · ⊕A
⊕kn,i
n )〈i〉 we get a canonical surjective Z�q�[q−1]-module

map

f : K0(C) � K ′
0(C).

This induces a topology on K0(C), which in general is not Hausdorff as we can have

0 �= [M ] −
∑
i>m

k1,iq
i[A1] + · · · + kn,iq

i[An] ∈
⋂
n�0

f−1((q)n).

Definition A.12. We define the topological split Grothendieck group as

K0(C) = K0(C)/ ∩n�0 f
−1((q)n) = K0(C)/ ker f.

The topological split Grothendieck group possesses a canonical (q)-adic topology given by
the quotient topology, making it a topological module over the topological ring Z�q�[q−1]. From
the definition we see that we have an homeomorphism K0(C) ∼= K ′

0(C). Therefore, we have the
following theorem.

Theorem A.13. The topological split Grothendieck group of a right complete locally Krull–
Schmidt category equipped with the (q)-adic topology is a free Z�q�[q−1]-module generated by
the classes of indecomposables (up to shifts).

Example A.14. The category R -modlfg from Example A.3 and its subcategory given by
the projective modules are both right complete locally Krull–Schmidt.

A.2. Grothendieck group G0. Recall that an object X in an abelian category C has finite
length if there exists a finite filtration, called a composition series,

X = X0 ← X1 ← · · · ← Xn = 0,

where each Xi/Xi+1 is a simple (non-zero) object. If it exists, it is unique up to permutation
thanks to the Jordan–Hölder theorem.

In general this result does not hold for infinite filtrations. In this section, we present some
conditions that are sufficient to have uniqueness of such filtrations in a non-artinian category.

Definition A.15. Let X be an object in an abelian category C. A Z-filtration is a sequence
of subobjects Xi ⊂ X indexed by i ∈ Z such that Xi+1 ⊂ Xi and X0 = X or X0 = 0. We can
write this as

X = X0 ← X1 ← X2 ← · · · or X ← · · · ← X−2 ← X−1 ← X0 = 0.

Such a filtration is called exhaustive if the direct limit lim−→i
Xi

∼= X, and Hausdorff if the inverse
limit lim←−i

Xi
∼= 0. We say that it has simple quotients if all quotients Xi/Xi+1 are either 0 or

simple.

As for the coproducts in strictly Z-graded category, we can define a notion of locally finiteness
for the Z-filtrations.

Definition A.16. If C is strictly Z-graded, we say that a Z-filtration is locally finite if there
is some finite set {Sj}j∈J of objects in C such that for all i ∈ Z

Xi/Xi+1
∼= Sji{pi}, or Xi/Xi+1

∼= 0,
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for some ji, pi ∈ Z, and for each Sj{p} there is a finite number kj,p of such i:

kj,p = #{i ∈ Z|Xi/Xi+1
∼= Sj〈p〉} ∈ N.

We call kj,p the degree p multiplicity of Sj in the filtration. We say the filtration is left-bounded
if there exists m ∈ Z such that kj,p = 0 for all p < m and j ∈ J .

The infinite counterpart of a composition series for a Z-filtration we choose is defined as the
following.

Definition A.17. We say an object X ∈ C has a Z-composition series if it admits a locally
finite, exhaustive, Hausdorff, Z-filtration with simple quotients.

Example A.18. Let R = Q[x] with deg(x) = 2 and let S = R/Rx be a simple object in the
category of (graded) R-modules with degree zero morphisms. Let M be a module isomorphic
to R. Then M admits a Z-composition series

M ∼= R ← Rx ← Rx2 ← · · ·
with R/Rx ∼= S, Rx/Rx2 ∼= S〈2〉, etc. Note that in general, for a module category and the Ai ⊂
X being submodules, then lim←−i

Ai =
⋂

i Ai ⊂ X and lim−→i
Ai =

⋃
i Ai ⊂ X, and thus lim←−i

Rxi =⋂
i Rxi = 0. Another example is R = Q[x, y], deg(x) = n, deg(y) = m which has Z-composition

series given by ‘aliased diagonals’ in N2.

Example A.19. More generally, for R a positively graded k-algebra having locally finite
graded dimension as a k-vector space, one can define a Z-composition series for R viewed
as a module over itself. Indeed we can write R =

⊕
i�0 R

i, with each Ri =
⊕ni

j=1 kvij being
finite-dimensional vector space in degree i and R0 ∼= k. Then we get a filtration

R ←
⊕
i�1

Ri ←
⊕
i�2

Ri ← · · · ← 0,

that can be refined into a filtration with simple quotients if we insert

←
⊕

i�k+1

Ri ⊕
ni−1⊕
j=1

kvkj ←
⊕

i�k+1

Ri ⊕
ni−2⊕
j=1

kvkj ← · · · ←
⊕

i�k+1

Ri ⊕ kvk1 ←

between each
⊕

i�k R
i ←⊕i�k+1 R

i. The simple quotients are given by {S0}, with S0
∼= k,

and multiplicities k0,i = ni.

As a composition series of a finite-length object is essentially unique, we want to establish
that up to some mild hypothesis a Z-composition series is also essentially unique. One possible
choice of such hypothesis is given by the following.

Definition A.20. An object X with a Z-composition series is said to be stable for the
filtrations if

• for all pair of Hausdorff filtrations X ← A1 ← · · · ← 0 and X ← B1 ← · · · ← 0, for each
i � 0 there exists k such that Bk ⊂ Ai;

• for all pair of exhaustive filtrations X ← · · · ← A−1 ← 0 and X ← · · · ← B−1 ← 0, for
each i � 0 there exists k such that Bi ⊂ Ak.

Example A.21. The rings and modules from the previous examples are stable for the
filtrations. In general, a k-algebra as R in Example A.19, viewed as module over itself, is stable
for the filtrations, and also are its left-bounded locally finite-dimensional modules. This comes
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from the fact that such modules are k-vector spaces, and therefore a filtration of modules
yields a filtration of subspaces. For example, suppose Bk �⊂ Ai for all k. Then Ai � Ai ∪Bk.
In addition X/Xi must be a finite-dimensional vector space and we get an infinite filtration

X ← B1 + Ai ← B2 + Ai ← · · · ← Ai.

Since, as vector spaces, Bj = Bj+1

⊕
Hj for some Hj , and Hj �⊂ Ai for arbitrary large j (if

not, we would have a Bk ⊂ Ai since Bk

⊕
j�k Hk). It means that X = Ai

⊕
j Hj where j runs

over {j ∈ Z|Hj �⊂ Ai}, which contradicts the fact that X/Xi is finite-dimensional.

Example A.22. The ring Z view as a module over itself is not stable for the filtrations.
Consider a sequence of non-equal prime numbers p0, p1, p2, . . . and the following Hausdorff
filtrations:

Z ← p0Z ← p0p2Z ← · · · ← p0 . . . p2kZ ← · · · ← 0,

Z ← p1Z ← p1p3Z ← · · · ← p1 . . . p2k+1Z ← · · · ← 0.

It is clear that p1 . . . p2k+1Z �⊂ p0Z for all k and thus Z is not stable for the filtrations. As a
matter of fact, the filtrations have simple quotients but are not equivalent. Indeed the quotients
are, respectively, given by Z/p2kZ and Z/p2k+1Z.

We now proceed to prove that all Z-composition series of an object X which is stable for
the filtrations are essentially the same. Since a Z-filtration can take two forms, reaching 0 or
X, there are three cases to consider. But first we introduce some useful lemmas.

Lemma A.23. Suppose there is an object X with two subobjects M and N such that
M �= N , and X/M and X/N are simple, then

M/(M ∩N) ∼= X/N.

Proof. X = M ∪N and thus X/N = (M ∪N)/N ∼= M/(M ∩N) by the second isomor-
phism theorem. �

Lemma A.24. Let M and A be subobjects of X such that A admits a Z-composition series

A = A0 ← A1 ← · · · ← 0, or A ← · · · ← A−1 ← A0 = 0.

Then we get a Z-composition series

A ∩M ← A1 ∩M ← · · · ← 0, or A ∩M ← · · · ← A−1 ∩M ← 0.

Proof. For all j we have

Aj ∩M

Aj+1 ∩M
∼= Aj ∩M

Aj+1 ∩ (Aj ∩M)
∼= Aj+1 ∪ (Aj ∩M)

Aj+1
.

If Aj ∩M ⊂ Aj+1 then we get 0. If not we have Aj+1 � Aj+1 ∪ (Aj ∩M) ⊂ Aj , thus Aj
∼=

Aj+1 ∪ (Aj ∩M). Therefore (Aj ∩M)/(Aj+1 ∩M) ∼= (Aj)/(Aj+1) and this concludes the
proof. �

We begin with the case where the two filtrations reach X.

Proposition A.25. Let X be a stable for the filtrations object in a strictly Z-graded abelian
category. If X admits two Z-composition series of the following form:

X ← A1 ← A2 ← · · · ← 0,

X ← B1 ← B2 ← · · · ← 0,
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with respective multiplicities kj,p, k′j,p and simple quotients {Sj}j∈J , {S′
j}j∈J ′ , then for

each s, Ss
∼= S′

js
{αs} for some js, αs and ks,p = k′js,p+αs

for all p ∈ Z. In other words, the
Z-composition series have the same quotients and multiplicities.

Proof. Fix s and p. The finiteness condition implies that we can reach all Ai such that
Ai/Ai+1

∼= Ss{p} in a finite number of steps. So we can take some minimal subfiltration

X ← A1 ← A2 ← · · · ← An

containing all simple quotients Ss{p}. We prove by induction on n that k′js,p+αs
� ks,p for

some js, αs such that Ss
∼= S′

js
{αs}, and by symmetry of the argument we get the equality.

By the hypothesis on X there exists some r such that Br ⊂ A1. We can suppose r minimal,
such that Br−1 �⊂ A1. Consider the filtration

A1 ← A1 ∩B1 ← A1 ∩B2 ← · · · ← A1 ∩Br−1 ← Br ← Br+1 ← · · · ← 0.

We claim that Br−1/Br
∼= X/A1 and that the filtration is in fact a Z-composition series with

quotients given by

X/B1, B1/B2, . . . , Br−2/Br−1, 0, Br/Br+1, . . . ,

and thus can be rewritten as

A1 ← A1 ∩B1 ← A1 ∩B2 ← · · · ← A1 ∩Br−1 ← Br+1 ← · · · ← 0.

Since this filtration has the same quotients as the one given by the Bi at the exception of
Br/Br+1

∼= X/A1, we can apply the recursion on X ′ = A1 with the filtration above together
with

A1 ← · · · ← An ← · · · ← 0.

We now prove our claim. First observe that if A1 ∩Br−1 �= Br then Br ⊂ A1 ∩Br−1 ⊂ Br−1

are strict inclusions and thus Br−1/Br would not be simple, which is absurd. So we get
A1 ∩Br−1

Br
= 0.

Now by the lemma above, since we can suppose A1 �= B1, we have
A1

A1 ∩B1

∼= X

B1
,

which is simple. Again, if A1 ∩B1 �= B2 (if not, then r = 2 and we are finished) the lemma
gives

A1 ∩B1

A1 ∩B2
=

A1 ∩B1

(A1 ∩B1) ∩B2

∼= B1

B2
.

Suppose now that Bi−1
A1∩Bi−1

∼= X/A1 is simple. We have for i < r

Bi

A1 ∩Bi
=

Bi

(A1 ∩Bi−1) ∩Bi

∼= Bi−1

A1 ∩Bi−1
,

and thus it is simple. Then in particular, since Br = A1 ∩Br−1, we have

Br−1

Br
=

Br−1

A1 ∩Br−1

∼= X

A1
.

Moreover, in general for i < r − 1 we have

A1 ∩Bi

A1 ∩Bi+1
=

A1 ∩Bi

(A1 ∩Bi) ∩Bi+1

∼= Bi

Bi+1
.

This finishes the proof. �
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The case with the filtrations reaching 0 is similar.

Lemma A.26. Suppose there is an object X with two simple subobjects M and N such
that M �= N , then

(M ∪N)/M ∼= N.

Proof. M ∩N = 0 and thus M ∪N = M
⊕

N . �

Proposition A.27. Let X be a stable for the filtrations object in a strictly Z-graded abelian
category. If X admits two Z-composition series of the following form:

X ← · · · ← A−2 ← A−1 ← 0,

X ← · · · ← B−2 ← B−1 ← 0,

with respective multiplicities kj,p, k
′
j,p and simple quotients {Sj}, {S′

j}, then the Z-composition
series have the same quotients and multiplicities.

Proof. The argument is similar to the one from Proposition A.25. �

Finally, the case with one filtration reaching X and the other 0 follows easily from
Lemma A.24.

Proposition A.28. Let X be a stable for the filtrations object in a strictly Z-graded abelian
category. If X admits two Z-composition series

X ← A1 ← A2 ← · · · ← 0,

X ← · · · ← B−2 ← B−1 ← 0,

with respective multiplicities kj,p, k′j,p and simple quotients {Sj}, {S′
j}, then they have the

same quotients and multiplicities.

Proof. We prove by induction that all quotients from the first filtration appear as quotients
of the second. A similar reasoning shows the converse.

Case 1: Suppose Bi ⊂ A1 for some i ∈ Z. Take i minimal such that Bi−1 �⊂ A1. Then Bi−1 ∩
A1

∼= Bi and

Bi−1

Bi

∼= Bi−1

Bi−1 ∩A1

∼= Bi−1 ∪A1

A1

∼= X

A1
.

We now apply the proof on

A1 ← A2 ← A3 ← · · · ← 0,

X ∩A1 ← · · · ← Bi−2 ∩A1 ← Bi−1 ∩A1
∼= Bi ← · · · ← B−2 ← B−1 ← 0.

All quotients but Bi−1/Bi appears in this filtration since for all j < i we have Bj−1 ∩A1 �⊂ Bj .
Case 2: Suppose B−1 �⊂ A1. Then X = B−1

⊕
A1 and X/A1

∼= B−1. We then apply the
argument recursively on

A1 ← A2 ← · · · ← 0,

A1
∼= X/B−1 ← · · · ← B−2/B−1 ← 0,

and this concludes the proof. �
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Now we introduce some tools and we prove that given a subobject M of X admitting a
Z-composition series, then the quotients in the filtration of M and X/M are essentially the
same as the ones in the filtration of X.

Lemma A.29. Let M ⊂ X. Suppose we have Z-composition series

X ← X1 ← X2 ← · · · ← 0,

M ← M1 ← M2 ← · · · ← 0.

Then we get a Z-composition series

X/M ← X1 ∪M

M
← X2 ∪M

M
← · · · ← 0.

Proof. First observe that for all i, thanks to the third isomorphism theorem, we have

(Xi ∪M)/M
(Xi+1 ∪M)/M

∼= Xi ∪M

Xi+1 ∪M
.

Then we get

Xi ∪M

Xi+1 ∪M
∼= Xi ∪ (Xi+1 ∪M)

Xi+1 ∪M
∼= Xi

Xi ∩ (Xi+1 ∪M).

If Xi ⊂ Xi+1 ∪M , it is 0. If not, we have Xi+1 ⊂ Xi ∩ (Xi+1 ∪M) � Xi and thus
(Xi ∪M/Xi+1 ∪M) ∼= (Xi/Xi+1). �

Remark A.30. Also note that if M is a subobject of X such that there are Z-composition
series

M ← M1 ← · · · ← 0,

X/M ← Z1 ← · · · ← 0,

then there is a filtration with simple quotients

X ← X1 ← · · · ← M ← M1 ← · · · ← 0.

Proof. Define Xi as the pull-back

where ı is a monomorphism and thus so is ı′. We clearly have lim←−i
Xi = M . Moreover the

following diagram has 3 exact column and 2 exact rows

and by the 3 × 3 lemma the third row must be exact too. This means Xi

Xi+1
∼= Zi

Zi+1
. �
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Proposition A.31. Let M ⊂ X. Suppose X,M and X/M are stable for the filtrations. If
we have Z-composition series

X ← X1 ← X2 ← · · · ← 0, (A.1)

M ← M1 ← M2 ← · · · ← 0, (A.2)

X/M ← X1 ∪M

M
← X2 ∪M

M
← · · · ← 0, (A.3)

then all simple quotients of (A.1) appears has quotients with the same multiplicities in (A.2)
plus (A.3).

Proof. Consider the filtrations

M = M ∩X ← M ∩X1 ← M ∩X2 ← · · · ← 0, (A.4)

X/M ← X1 ∪M

M
← X2 ∪M

M
← · · · ← 0. (A.5)

We claim that together they contain exactly all the quotients of (A.1) with the same
multiplicities. Indeed, note that Xj ∩ (Xj+1 ∪M) ∼= Xj+1 ∪ (Xj ∩M) such that we must have
Xj

∼= Xj ∩ (Xj+1 ∪M) or Xj+1
∼= Xj ∩ (Xj+1 ∪M) and thus

Xj ∩M

Xj+1 ∩M
∼= Xj

Xj+1
or

Xj ∩M

Xj+1 ∩M
= 0

Xj ∪M

Xj+1 ∪M
∼= 0

Xj ∪M

Xj+1 ∪M
=

Xj

Xj+1
.

Then we conclude the proof using the Proposition A.25 on (A.2) with (A.4), and on (A.3)
with (A.5). �

All the above can also be proved for all combinations of the two types of Z-composition
series, using similar arguments.

Remark A.32. Restricting the filtrations to only Z-filtrations is too strong for what we
want to do. Indeed, suppose we have a non-split short exact sequence

A → B →
⊕
i�0

X〈2i〉,

where X and A are simple, then using Remark A.30 we can construct a filtration

B ← B1 ← B2 ← · · · ← A ← 0

which is not a Z-composition series, despite the fact that Bi/Bi+1
∼= X〈2i〉 and lim←−i

Bi
∼= A.

Thus we want to be able to glue Z-filtrations together.

Write if there exists a Z-filtration

X ← X1 ← · · · ← A, or X ← · · · ← X−1 ← A,

inducing a Z-composition series on X/A.
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Definition A.33. We say that X has locally finitely many composition factors if there is
a finite filtration

and each Xi/Xi+1 admits a Z-composition series. We can consider the set {Sj}j∈J of all
quotients of the filtrations for all the Xi/Xi+1, up to isomorphism and grading shift, which we
call composition factors of X. Each of the composition factor has a finite degree p multiplicity
for each p ∈ Z, which is given by the sum of the multiplicities in the Z-composition series of
all the quotients Xi/Xi+1. Moreover, we say that X is stable for the filtrations if for all such
filtrations, the quotients Xi/Xi+1 are stable for the filtrations.

We have now all the tools to prove the main result in this subsection.

Theorem A.34. Let X be a stable for the filtrations object having locally finitely many
composition factors. If there are two filtrations

(A.6)

(A.7)

with all Ai/Ai+1 and Bi/Bi+1 having Z-composition series, then the composition factors are
in bijection and have the same multiplicities.

Proof. We can suppose m � n. The proof follows by a double induction on n and m. If
n = 1 and m = 1, then the result is given by Propositions A.25 , A.27 or A.28. If n = 1, then
by Lemma A.24 we can construct

which has the same composition factors as thanks to Proposition A.31. Then we
can split this filtration and (A.7) into two parts at the level of B1, on which we can apply the
argument recursively. Suppose now n > 1. We can construct

(A.8)

(A.9)

By splitting (A.8) at the level of A1 we can apply the reasoning recursively to prove it has
the same composition factors as (A.6). It is important to note that (A.8) and (A.9) have the
same tail after A1 ∩B1 and it is given by n which is smaller than m. This allows us to use the
induction hypothesis. By the same arguments, (A.9) has the same composition factors as (A.7).
Now by splitting (A.8) and (A.9) at the level of A1 ∩B1 and using the induction hypothesis,
these two must have the same composition factors as well. This concludes the proof. �

Definition A.35. We say that a strictly Z-graded abelian category has local Jordan–
Hölder property if every object has locally finitely many composition factors and is stable for
the filtrations.

Let C be a strictly Z-graded, right complete, locally additive category with the local Jordan–
Hölder property and every Z-composition series being left-bounded. Following the same path
as in the previous subsection, define G′

0(C) to be the free Z�q�[q−1]-module generated by the
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classes of simple objects, up to shift. By Theorem A.34 there is a surjective Z�q�[q−1]-module
map

g : G0(C) � G′
0(C),

inducing a topology on G0(C). We make it Hausdorff by the following.

Definition A.36. We define the topological Grothendieck group of C as

G0(C) = G0(C)/ ∩n�0 g
−1((q)n).

Again, the topological Grothendieck group forms a topological module over Z�q�[q−1] with
the (q)-adic topology and we get the following theorem.

Theorem A.37. The topological Grothendieck group G0(C) of a right complete category C,
with the local Jordan–Hölder property and every Z-composition series being left-bounded, is
a topological Z�q�[q−1]-module freely generated by the classes of simple objects (up to degree
shift).

An exact, graded functor Φ: C → C′ gives rise to a Z�q�[q−1]-linear map G0(C) → G0(C′).
Also, there is an obvious Z�q�[q−1]-linear injection G0(C) ↪→ G0(C). We define [Φ] : G0(C) →
G0(C′) as the composition G0(C) ↪→ G0(C) → G0(C′) � G0(C′).

Example A.38. Let R be a k-algebra as in the Example A.3. Consider the category R -modlf

of locally finite-dimensional R-modules, with the dimensions left-bounded and degree zero
morphisms. It has the local Jordan–Hölder property and every Z-composition series is left-
bounded. Moreover, we have the following inclusions of full subcategories

R -pmodlfg ⊂ R -modlf ⊂ R -modlfg .

Moreover, if the category has enough projectives, then projective resolutions of the simple
objects can give a change of basis, such that the topological Grothendieck group becomes also
freely generated by the projective objects.

Example A.39. Take R = Q[x, y]/(y2), with deg(x) = deg(y) = 2, and its topological
Grothendieck group G0(R -modlf) is generated either by the classes of the simple object S = Q

or the projective object R, with change of basis given by

[R] =
1 + q2

1 − q2
[S] = (1 + q2)(1 + q2 + q4 + · · · )[S],

[S] =
1 − q2

1 + q2
[R] = (1 − q2)(1 − q2 + q4 − · · · )[R].

Remark A.40. Likely it is possible to adapt the results in [1], which allows to define a
notion of topological Grothendieck group capable of handling infinite relations coming from
infinite projective resolution. Probably one can weaken the artinian assumption to locally
Jordan–Hölder and mixing it with our results. The local Jordan–Hölder property gives for
each object a unique weight filtration, bounded from above (the weight is the opposite of the
Z-grading, thus this a Z-filtration bounded from below), with all quotients being finite. This
should be usable to compute the topological Grothendieck group of D∇(C) and get a continuous
isomorphism K(D∇(C)) ∼= G0(C).
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A.3. Multigrading and field of formal Laurent series. We now investigate the case of
multigrading. But first we need to choose a construction of the field of formal Laurent series
Q((x1, . . . , xp)).

A.3.1. Field of formal Laurent series. We follow the description given in [2]. We fix a
grading by Zp with p ∈ N, and we choose an additive order ≺ on it. That is, a ≺ b implies
a + c ≺ b + c, for every a, b, c ∈ Zp.

Definition A.41. We call cone a subset C ⊂ Rp such that

C = {α1v1 + · · · + αpvp|α1, . . . , αp � 0},
for some generating elements v1, . . . , vp ∈ Zp. Moreover we say C is compatible with the order
≺ if 0 ≺ vi for all i ∈ {1, . . . , p}.

Remark A.42. Usually the definition of cone is more general, but we are interested only in
these ones for our discussion.

Example A.43. If p = 1, then there are only two possible orders:

• if 0 ≺ 1, then there is only one (non-zero) compatible cone given by [0,∞[,
• if 0 ≺ −1, then the only compatible cone is ] −∞, 0].

Let C ⊂ Rp be a cone compatible with ≺ and define

QC�x1, . . . , xp� =

⎧⎨⎩ ∑
k=(k1,...,kp)∈Np

akx
k1
1 . . . xkp

p |ak = 0 if k /∈ C

⎫⎬⎭ .

Proposition A.44 [2, Theorem 10]. The set QC�x1, . . . , xp� together with the natural
addition and multiplication forms a ring.

Proof (Sketch). The important point in the proof of this proposition is that the restriction
to cones compatible with the order ensures we only have to multiply a finite number of elements
to define each coefficient in a product. �

The next definition is [2, Definition 14].

Definition A.45. We put

Q≺�x1, . . . , xp� =
⋃
C

QC�x1, . . . , xp�,

where the union is over all cones compatibles with ≺, and we define the field of formal Laurent
series as

Q≺((x1, . . . , xp)) =
⋃

e=(e1,...,ep)∈Zp

xe1
1 . . . xep

p Q≺�x1, . . . , xp�.

Theorem A.46 [2, Theorem 15]. The set Q≺((x1, . . . , xp)) together with the natural
addition, multiplication and division forms a field.

Proof (Sketch). There are three main ideas in the proof of this theorem. First, given any pair
of cones C1, C2 compatible with ≺, their sum yields a cone C3 = C1 + C2, also compatible with
≺. Hence we can define a product QC1�x1, . . . , xp� ⊗ QC2�x1, . . . , xp� → QC3�x1, . . . , xp�, which
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in turns define a product on Q≺�x1, . . . , xp�. Second, given f(x) ∈ QC�x1, . . . , xp� such that
f(0) �= 0, one can define recursively a unique g(x) ∈ QC�x1, . . . , xp� such that g(x)f(x) = 1.
Finally, taking the union of all Q≺�x1, . . . , xp� shifted by a monomial allows to write any f(x) ∈
Q≺((x1, . . . , xp)) as xeh(x) where h(x) ∈ QC�x1, . . . , xp� is such that h(0) �= 0. Therefore, we
have x−eh−1(x)xeh(x) = 1, which concludes the proof. �

Example A.47. Again, if p = 1, we have two possible ways to construct Q((x)):

• if 0 ≺ 1, then we get Q≺((x)) = Q�x�[x−1] and 1
x−x−1 = −x(1 + x2 + · · · ),

• if 0 ≺ −1, then Q≺((x)) = Q�x−1�[x] and 1
x−x−1 = x−1(1 + x−2 + · · · ).

Example A.48. Take p = 2, then we have six ways to construct Q((x1, x2)). In this case we
abuse the notation and say, for example, that we choose the order 0 ≺ x1 ≺ x2 for the order
induced by the choice (0, 0) ≺ (1, 0) ≺ (0, 1), where we suppose (1,0) corresponds to x1 and
(0,1) to x2. Then we get

1
1 − x−2

1 x2
2

= (1 + x−2
1 x2

2 + x−4
1 x4

2 + · · · ).

A.3.2. Grothendieck groups for multigrading. We fix a multigrading and an additive order
on it. Every definition in §§A.1 and A.2 extends naturally to the multigraded case, except for
left-bounded.

Definition A.49. We say that a locally finite coproduct (or filtration) is cone-bounded if
all its non-zero coefficients are contained in some cone compatible with ≺, up to a shift.

It is then straightforward to adapt all results from §§A.1 and A.2 to the multigraded case,
replacing ‘left-bounded’ by ‘cone-bounded’. In accordance to this denomination, we will also
say cone complete for a category which admits all cone-bounded, locally finite coproducts.

The next example represents the classical case that will be used later on.

Example A.50. As in Example A.19, we can construct filtrations for some multigraded
k-algebras. Suppose R is a unital Zp-graded k-algebra, having locally finite dimension. Also
suppose its graded dimension is contained in a cone compatible with the chosen order on Zp,
and suppose it is isomorphic to k in degree zero. Then the additive order on Zp restricts to
a total order 0 = i0 ≺ i1 ≺ · · · on the homogeneous components of R =

⊕
k R

ik , which allows
us to construct a filtration of submodules

R =
⊕
i�i0

Ri ←
⊕
i�i1

Ri ← · · · ← 0,

where each subquotient is an homogeneous component Rij , and thus finite-dimensional. Then
we can apply the same arguments as in Example A.21 to show locally finite, cone-bounded
(that is, its graded dimension is contained in a cone compatible with ≺, up to a shift), left R-
modules are stable for the filtrations, and thus R -modlf has the local Jordan–Hölder property.
Therefore G0(R -modlf) is a free Z≺((x1, . . . , xp))-module generated by the classes of simple
modules.

The hypothesis in the example above can be weakened a bit by only requiring R to admits
a finite collection of indecomposable projective modules, up to isomorphism and shift, each
having their dimension locally finite and contained in a cone compatible with ≺.
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