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A Remark on BMW Algebra, q-Schur
Algebras and Categorification
Pedro Vaz and Emmanuel Wagner

Abstract. We prove that the two-variable BMW algebra embeds into an algebra constructed from the
HOMFLY-PT polynomial. We also prove that the so2N -BMW algebra embeds in the q-Schur algebra of
type A. We use these results to suggest a schema providing categorifications of the so2N -BMW algebra.

1 Introduction

The most popular two-variable link polynomials nowadays are the HOMFLY-PT
polynomial [4, 22] and the Kauffman polynomial [5]. Recall that the HOMFLY-PT
polynomial P = P(a, q) is the unique invariant of oriented links satisfying

aP
( )

− a−1P
( )

= (q− q−1)P
( )

and taking the value a−a−1

q−q−1 on the unknot, and that the Kauffman polynomial F =

F(a, q) is the two-variable invariant uniquely defined on framed unoriented links by

F
( )

= a−2qF
( )

,

F
( )

− F
( )

= (q− q−1)
(

F
( )

− F
( ))

,

and taking the value a2q−1−a−2q
q−q−1 + 1 on the unknot.

These two polynomials are known to be distinct link invariants since they dis-
tinguish between different sets of links. Nevertheless there is a connection between
them, found by F. Jaeger in 1989 (see [6]). Jaeger gives a state expansion of the Kauff-
man polynomial of a link L in terms of HOMFLY-PT polynomials of certain links
associated to L. Unfortunately Jaeger passed away before including it in an article,
but this result appears in Kauffman’s book [6]. Jaeger’s formula can be roughly stated
as follows.

Theorem (Jaeger’s Theorem, 1989) For each unoriented link L there is a family of
oriented link diagrams {Di}∈I and coefficients {ci(a, q)}i∈I in C(a, q) such that

F(L) =
∑
i∈I

ci(a, q)P(Di).
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The coefficient ci(a, q) is determined from the combinatorial data of Di . We recall
the family of link diagrams and compute the corresponding coefficients in Section 3.

The polynomials mentioned above have algebraic counterparts. The algebra un-
derlying the Kauffman polynomial was found by J. Birman and H. Wenzl in [1] and
independently by J. Murakami in [21] and became known as Birman–Murakami–
Wenzl algebra (BMW algebra). Later Kauffman and Vogel [7] gave algebraic con-
structions of the Kauffman and HOMFLY-PT polynomials in terms of diagrams
modulo relations. We call the latter HOMFLY-PT skein algebras. This motivates the
following.

Problem 1 Is there a version of Jaeger’s theorem for the algebras underlying the re-
spective polynomials? In other words, can we extend Jaeger’s theorem to a statement
between the BMW and HOMFLY-PT skein algebras?

We answer this question affirmatively (see Theorem 3.2 for the details).

Theorem 1 There is an injective homomorphism of algebras from the BMW alge-
bra to the HOMFLY-PT skein algebra inducing Jaeger’s formula for polynomials.

This homomorphism has a positivity property, it gives a standard basis element
of the BMW algebra as a linear combination of elements of the HOMFLY-PT skein
algebra with coefficients in N(a, q). In face of the categorifications of the HOMFLY-
PT polynomial available [9, 14] it seems natural to ask the following question.

Problem 2 Can Jaeger’s theorem be used to produce a link homology categorifying
the two-variable Kauffman polynomial of links?

We find a partial answer to this question. The first difficulty we encounter is that in
none of the categorifications of the HOMFLY-PT polynomials are there sufficiently
many direct sum decompositions to guarantee we obtain the BMWn(a, q). This is
explained in Section 5.1 and is related with the problem of producing a link homol-
ogy categorifying the HOMFLY-PT polynomial for tangles. As a matter of fact such
a strategy has been applied by Wu to obtain a categorification of the (one-variable)
so6-Kauffman polynomial [26].

It turns out that a consequence of this difficulty is a new result about the BMW al-
gebra. The aforementioned direct sum decompositions do exist for the one-variable
specializations a = qN and give a categorification of the one-variable specialization
of the BMW algebra. Moreover, in the one-variable picture we can also bring an-
other algebra into the play, the q-Schur algebra Sq(n, d) (regarding q-Schur algebras
we follow the definitions and conventions of [16]). In this setting the specialized
HOMFLY-PT skein algebra Skeinq(n,N) is related with the representation theory of
quantum slN and we use this to prove it embeds in the Schur algebra. More precisely,
in the one-variable picture the HOMFLY-PT skein algebra describes the algebra of
intertwiners between tensor products of the fundamental representation of Uq(slN )
(which is V = Qn) and its dual. The isomorphism between V ∗ and the wedge power∧N−1 V induces an injection of the HOMFLY-PT skein algebra into the q-Schur al-
gebra and the composite with the Jaeger homomorphism results in the following (see
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Proposition 4.13 for the details):

Theorem 1.1 There is an injective homomorphism of algebras from the BMW algebra
to the q-Schur algebra.

One of the consequences is that we can use the tools of the q-Schur categorification
to produce another categorification of the one-variable specialization BMWq(n,N)
(another categorification, different in flavour from this one, comes from applying the
results of [13] to Skeinq(n,N)).

The plan of the paper is the following. In Section 2 we introduce two of the alge-
bras involved in Jaeger’s theorem, the BMW algebra and the HOMFLY-PT skein alge-
bra. They are introduced diagrammatically from algebras of tangles induced from the
corresponding link polynomials. In Section 3 we state Jaeger’s theorem connecting
the Kauffman and the HOMFLY-PT link polynomials, explain the proof, and state
and prove a version of Jaeger’s theorem for the underlying algebras. In Section 4 we
set a = qN and start working with the one-variable specialization of the algebras
mentioned above. This specialization allows the introduction of the q-Schur algebra
Sq(n, d). We prove in this section that BMWq(n,N) embeds in a certain direct sum
of q-Schur algebras. Finally in Section 5 we explain how to combine the results of
the previous sections with the categorifications of Skeinq(n,N) and Sq(n, d) to ob-
tain categorifications of BMWq(n,N). These categorifications do not have the Krull–
Schmidt property though, which is a desirable property for reasons we explain later.
Nevertheless we propose an extension of these categorifications which we conjecture
to have this property.

We have tried to make the paper self-contained, with the exception of Sections 5.1
and 5.2 where we assume familiarity with the papers [13, 14, 16].

2 BMW and Skein Algebras

2.1 The Birman–Murakami–Wenzl Algebra BMWn(a, q)

Let R = C(a, q) be the field of rational functions in two variables and n a positive
integer. We give two different presentations of the Birman–Murakami–Wenzl algebra
BMWn(a, q) over R. Both of them have a diagrammatic description. The first one
is usually known in the literature as the Kauffman tangle algebra [5] and consists
of a quotient of the framed tangle algebra by local relations which come from the
Kauffman polynomial.

Definition 2.1 Define BMWτ
n(a, q) as the free algebra over R generated by (n, n)-

framed unoriented tangles up to regular isotopies modulo the local relations (1) be-
low.

= a−2q = a2q−2

− = (q− q−1)
(

−
)

(1)

As usual in the presentation of algebras by diagrams the product is given by stack-
ing one tangle over another. We always read diagrams from bottom to top and this
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means the product ab corresponds to stacking the diagram for a on the top of the
diagram for b. We will always assume this throughout this paper. Notice the unusual
normalization we are using (this is forced by Jaeger’s theorem and will be clear later).

To give the next presentation, due to Kauffman and Vogel [7], we need to intro-
duce some concepts. An (n, n) 4-graph is a planar graph with 2n univalent vertices
and the rest of the vertices are 4-valent. It can be embedded in a rectangle with n
of the univalent vertices lying on the bottom segment and n lying on the top one.
We think of an (n, n) 4-graph as the singularization of an (n, n) unoriented tangle
diagram, which is the graph obtained by applying the transformation

7−→ 7−→

to all its crossings.
We also introduce some shorthand notation in order to simplify many of the ex-

pressions that we will have to handle. For a formal parameter a and for n, k ∈ Z

we denote [an, k] := anq−k−a−nqk

q−q−1 . We allow a further simplification by writing [an]
instead of [an, 0]. Moreover, when dealing with one-variable specializations we use

[m + k] for [qm, k] = qm+k−q−m−k

q−q−1 , which is the usual quantum integer.

Definition 2.2 Define BMWn(a, q) as the free algebra over R generated by (n, n)
4-graphs up to planar isotopies fixing the univalent vertices modulo the following
local relations:

= [a](q2a−1 + q−2a)

= (q + q−1) +
(

[a3,−3] + 1
)

+ + + + [a2,−4]

= + + + + [a2,−4]

= δ

= δ

where δ = [a2,−1] + 1.

We remark that the special elements

ρi = . . . . . .

1 i i + 1 n

(i = 1, . . . , n− 1)(2)
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ei = . . . . . .

1 i i + 1 n

(i = 1, . . . , n− 1)

together with

1 = . . . . . .(3)

generate BMWn(a, q) and can be used to give a presentation of BMWn(a, q) by gen-
erators and relations (see [19]).

The algebras BMWτ
n(a, q) and BMWn(a, q) are isomorphic; this follows directly

from the results in [7].

Lemma 2.3 The homomorphism φ : BMWτ
n(a, q)→ BMWn(a, q) given by

7−→ q − + q−1

and
7−→

is an isomorphism of algebras.

The homomorphism φ is the basis of Kauffman and Vogel’s state-sum model for
the Kauffman polynomial [7].

2.2 The HOMFLY-PT Skein Algebra Skeinn(a, q)

In this subsection we define another algebra, denoted Skeinn(a, q), which we call the
HOMFLY-PT skein algebra [7] and is very similar in spirit to BMWn(a, q). As in
the previous subsection we give two presentations, one of as the free algebra over R
generated by (n, n) oriented tangles up to isotopies modulo the HOMFLY-PT skein
relations, and another one using 4-valent oriented graphs.

Definition 2.4 Define Skeinτn(a, q) as the free algebra over R generated by isotopy
classes of (n, n)-oriented tangles modulo the (HOMFLY-PT) local relation (4).

(4) a − a−1 = (q− q−1)

Paralleling the unoriented case we define an oriented (n, n) 4-graph to be an ori-
ented planar 4-valent graph with 2n univalent vertices such that the graph can be
embedded in a rectangle with n of the univalent vertices lying on the bottom seg-
ment and n on the top one. In addition, we require the orientation near a 4-valent
vertex to be as

.

In other words, an oriented (n, n) 4-graph is the singularization of an (n, n) oriented
tangle diagram. All the oriented 4-valent graphs we consider are of this type.
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Definition 2.5 Define the algebra Skeinn(a, q) as the free algebra over R generated
by (n, n) oriented 4-valent graphs up to planar isotopies modded out by the following
relations:

= [a,−1](5)

= (q + q−1)(6)

= + [a,−2](7)

+ = +(8)

= [a] = [a]

= [a](9)

As before the product structure is given by stacking one graph over the other, and
being zero if the orientations do not match. In addition,

(10) + [a,−3] = + [a,−3]

is a consequence of the previous relations.
Similarly to Lemma 2.3, we have (see [7]) the following.

Lemma 2.6 The algebras Skeinτn(a, q) and Skeinn(a, q) are isomorphic.

We say an intersection ` of a diagram D ∈ Skeinn(a, q) with a horizontal line is
generic if it does not cross any singularity of the height function. Let ` be a sequence
of +’s and −’s in one-to-one correspondence with the orientation of the arcs of D in
the neighborhood of the points in `, where + (resp. −) corresponds to an upward
(resp. downward) orientation. For example, for the generic intersection

we have ` = (− + +). Let n+(`) (resp. n−(`)) be the number of +’s (resp. −’s) in `.
The quantity n+(`) − n−(`) is the same for all generic intersections and therefore
gives an invariant of the diagram D itself which we denote n±(D). Given an element
of Skeinq(n,N)n± one can express it as a linear combination of elements such that
n+ + n− is at most equal to n. In the sequel we will also assume that the elements of
Skeinq(n,N)n± are of this form.1 We have a direct sum decomposition of algebras

(11) Skeinn(a, q) =
n⊕

n±=−n

(
Skeinn(a, q)

)
n±

1We thank A-L. Thiel for pointing this out.
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where
(

Skeinn(a, q)
)

n±
consists of all diagrams D with n±(D) = n±.

For each `with |`| = n there is an idempotent e` given by n parallel vertical strands
with orientations matching `. We have

1Skeinn(a,q) =
∑

`∈{+,−}n

e`.

We write e(+)n in the special case of n plus signs, ` = (+, . . . ,+),

(12) e(+)n = . . . .

2.3 The Iwahori–Hecke Algebra Hn(q)

The algebras BMWn(a, q) and Skeinn(a, q) introduced above share the Iwahori–
Hecke algebra Hn(q) as a quotient. Recall that Hn(q) is a q-deformation of the group
algebra of the symmetric group on n letters.

Definition 2.7 The Iwahori–Hecke algebra Hn(q) is the unital associative Q(q)-
algebra generated by the elements Ti , i = 1, . . . , n− 1, subject to the relations

T2
i = (q2 − 1)Ti + q2

TiT j = T jTi if |i − j| > 1

TiTi+1Ti = Ti+1TiTi+1.

For q = 1 we recover the presentation of Q[Sn] in terms of the simple transposi-
tions si . For any element s ∈ Sn we can define Ts = Ti1 · · ·Tik , choosing a reduced
expression s = si1 · · · sik . The relations above guarantee that all reduced expressions
of s give the same element Ts. The elements Ts, for s ∈ Sn, form a linear basis of
Hn(q).

There is a change of generators that is convenient for us. Writing bi = q−1(Ti + 1),
the relations above become

b2
i = (q + q−1)bi

bib j = b jbi if |i − j| > 1

bibi+1bi + bi+1 = bi+1bibi+1 + bi .

These generators are the simplest elements of the Kazhdan–Lusztig basis [8]. Al-
though the change of generators is simple, the whole change of linear bases is very
complicated.

The Iwahori–Hecke algebra Hn(q) can be obtained as a quotient of BMWn(a, q)
and of Skeinn(a, q); see for instance [1] and [7]. Let[ ]

and
[

, , ,
]

denote the two-sided ideals of BMWn(a, q) and Skeinn(a, q) respectively, generated
by the elements inside the brackets.
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Lemma 2.8 We have isomorphisms

Hn(q) ∼= BMWn(a, q)
/[ ]∼= e(+)n Skeinn(a, q)e(+)n

/[
, , ,

] .
In these quotients we identify and with the generator bi of Hn(q).

3 Jaeger’s Model for the BMW Algebras

3.1 Jaeger’s Theorem for the Kauffman Polynomial

Given any unoriented link L, Jaeger found a beautiful formula computing the two-
variable Kauffman polynomial F of L as a weighted sum of HOMFLY-PT polynomials
P of certain oriented links associated with L. We now explain how to obtain a family
of oriented links diagrams to which we compute the HOMFLY-PT polynomial and
recall Jaeger’s formula.

The HOMFLY-PT link polynomial P = P(a, q) is the unique invariant of oriented
links satisfying the skein relation

aP
( )

− a−1P
( )

= (q− q−1)P
( )

and taking the value [a] on the unknot,

P
( )

= [a]

(recall [a] = a−a−1

q−q−1 was defined in Section 2.1).
The two-variable Kauffman polynomial F = F(a, q) is the unique invariant of

framed unoriented links satisfying the relations

F
( )

= a−2qF
( )

F
( )

− F
( )

= (q− q−1)

(
F
( )

− F
( ))

and taking the value δ = [a2,−1] + 1 on the unknot,

F
( )

= δ.

We now recall the definition of the rotational number of an oriented link diagram.
Given an oriented link diagram D, smooth all its crossings as follows:

−→ ←− .

The result is a collection of oriented circles embedded in the plane. Define the
rotational number rot(D) of D to be the sum over all resulting circles of the contri-
bution of each circle, where a circle contributes−1 if it is oriented clockwise, and +1
otherwise,

rot
( )

= −1 rot
( )

= +1.
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Given an unoriented diagram D of L, we resolve each of its crossings in six different
ways,

7→ , , , , , .

Choosing a resolution for each crossing is called a complete resolution. A com-
plete resolution resulting in a coherently oriented link diagram is called an oriented
complete resolution of D. Denote by res(D) the set of all oriented complete resolu-
tions. Notice that if there is no crossing there are two resolutions which consist in
the two possible orientations of an unoriented circle. We next define a weight w as-
sociated to each oriented complete resolution. It is computed as a product of local
weights associated to each crossing of D and its oriented resolution. The local weights
are

w
(

,
)

= q− q−1, w
(

,
)

= q−1 − q,

w
(

,
)

= 1, w
(

,
)

= 1,

w
(

,
)

= 1, w
(

,
)

= 1.

Jaeger’s formula [6] is given in the following.

Theorem 3.1 Let D be an unoriented diagram of a link L. The formula

(13) F(D)(a, q) =
∑

−→
D∈res(D)

(a−1q)
rot(
−→
D )

w(
−→
D )P(

−→
D )

is a HOMFLY-PT expansion of the Kauffman polynomial of L.

The proof of this formula follows by direct computation checking that the right-
hand side of the equality is invariant under the second and the third Reidemeister
moves, satisfies the two-variable Kauffman skein relation and the change of framing
relations, as well as the value on the unknot. We do not detail the proof here (see [6]),
because it will follow from our algebraic setting in the next section.

3.2 Jaeger’s BMW

We now reformulate Jaeger’s formula in terms of an algebra homomorphism between
the BMW algebra and the HOMFLY-PT skein algebra. To this end we use the graph-
ical calculus of Kauffman and Vogel described in Section 2. We give explicitly the
algebra homomorphisms in terms of 4-valent graphs and derive a proof of Jaeger’s
theorem in this context (see Proposition 3.3). Such a reformulation of the Jaeger
expansion for graph polynomials was also explored by Wu [26].

Given an (n, n) 4-valent graph Γ, we can resolve each of its vertex in eight different
ways,

7→ , , , , , , , .

The graph obtained by choosing a resolution for each vertex is called a complete
resolution. A complete resolution resulting in a coherently oriented (n, n) graph is
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called an oriented complete resolution. Denote by res(Γ) the set of all oriented com-
plete resolutions of Γ. Notice that if there is no 4-valent vertex (i.e., Γ consists of an
embedding of n arcs) there are 2n resolutions consisting in choosing an orientation
for each arc.

We now extend the concept of rotation number to 4-valent oriented graphs of the
type under consideration. Given an oriented (n, n) 4-valent graph Γ we can apply
the transformation

7−→

to smooth all 4-valent vertices of Γ and obtain a disjoint union of oriented circles
and n oriented arcs embedded in the plane. Define the rotational number rot(Γ) of Γ
to be the sum over all resulting circles and arcs of the contribution of each circle and
each arc, where a circle contributes −1 if it is oriented clockwise and +1 otherwise,
and arcs contribute±1 or zero according to the following rules:

rot
( )

= +1, rot
( )

= 0, rot
( )

= +1,

rot
( )

= −1, rot
( )

= 0, rot
( )

= −1.

In addition the rotational number of a strand going up or down is zero. This set of
rules allows extending the concept of rotation numbers to tangle diagrams.

The rotational number is additive with respect to the multiplicative structure of
(n, n) 4-valent graphs given by concatenation. For example,

rot
(

◦
)

= rot
( )

= rot
( )

+ rot
( )

= 0.

The last concept needed in this section is the weight w associated to each oriented
complete resolution. This is an extension to oriented resolutions of the local weights
of link diagrams from the last subsection, which justifies the use of the same notation
as before. It is computed as a product of local weights associated to each 4-valent
vertex of Γ and an oriented resolution of it. The local weights are described below.

w
(

,
)

= w
(

,
)

= q−1,

w
(

,
)

= w
(

,
)

= q,

w
(

,
)

= w
(

,
)

= w
(

,
)

= w
(

,
)

= 1.

For any (n, n) 4-valent graph Γ, we define the Jaeger homomorphism as

(14) ψ(Γ) =
∑

−→
Γ ∈res(Γ)

(a−1q)
rot(
−→
Γ )

w(
−→
Γ )
−→
Γ .
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The content of the next theorem is to prove that the previous expression defines a
well-defined injective morphism of algebras from BMWn(a, q) to Skeinn(a, q).

Theorem 3.2 The map ψ from BMWn(a, q) to Skeinn(a, q) is a well-defined injective
morphism of algebra.

Proof We first prove thatψ is well defined. Notice that the expressionψ(Γ) is invari-
ant on the isotopy class of Γ. This follows from the observations that the rotational
factor and the local weights are invariant by planar isotopies. Secondly we have to
check that the relations in Definition 2.2 are in the kernel of ψ. In order to simplify
the computations we consider some symmetries of the relations in Definition 2.2 as
well as some symmetries of the local weights. All relations are invariant by reflec-
tions as well as by simultaneous changes of variables from a to a−1 and q to q−1. In
addition, the rotational factor and the local weights are invariant by simultaneously
applying a reflection of the plane and the previous changes of variables. This implies
that for any (n, n) 4-valent graph Γ, ψ(Γ) is invariant by simultaneously applying
a reflection of the plane and the previous changes of variables. Hence in order to
check that the relations in Definition 2.2 are sent to zero by ψ we can restrict our
verifications to some cases depending on fixing the orientations of the boundary of
the graphs involved. In addition, notice also that by the locality of the relations in
Skeinn(a, q), two elements of Skeinn(a, q) that do not have the same orientations on
the endpoints are linearly independent.

We check the first relation, which is

= [a](q2a−1 + q−2a) .

The image of the left-hand side by ψ contains 6 terms; in three of them the orienta-
tion is upwards. By the previous considerations, we can restrict attention to the case
for instance where the orientation is upwards. The three graphs involved are

(15) q−1 + q2a−1 + aq−1 .

It is a matter of a short computation (using relations (5) and (9)) to check that (15)
is equal to

[a](q2a−1 + q−2a) ,

which is exactly the part of the image by ψ of the right-hand side with orientation
upward. This concludes the proof of the fact that the first relation is annihilated by ψ.

For the second relation, there are the following three different cases to consider up
to symmetry:

, , .

For each case one computes the contribution of each of the three terms involved in
the relation. For the first case, there are only two terms that contribute, and one ob-
tains immediately the relation (6) of the HOMFLY-PT skein algebra. For the second
case the contributions of each term are

: q−2 + a−1q + a−1q + + a−2q4
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(q + q−1) : (q + q−1)a−1q2 + q−1(q + q−1)

([a2,−3] + 1) :
(

[a2,−3] + 1
)

a−1q

It is easy to check that

+ a−2q4 = (a−1q3 + [a2,−3]a−1q) +

using the relations (7) and (9) in the HOMFLY-PT skein algebra. The third case goes
the same way, using only the relation (5) of the HOMFLY-PT skein algebra.

For the last relation, there are also up to symmetry three different cases to consider,
namely

, , .

The first case is exactly given by the relation (8) of the HOMFLY-PT skein algebra.
We detail now the second case. The contributions of each term in the equality are

the following ones:

: q + aq−2 + aq−2 + a2q−5

+ a−1q4 + q + q

+ aq−2 +

: q−1 + a−1q2 + a−1q2 + a−2q5

+ aq−4 + q−1 + q−1

+ a−1q2 +

: aq−2 + q

: a−1q2 + q−1

: aq−2 + q

: a−1q2 + q−1

: aq−2 + q
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: a−1q2 + q−1

[a2,−4] : aq−1[a2,−4]

[a2,−4] : a−1q[a2,−4] .

Among them, many cancel directly and we are left to check that

+ a2q−5 + a−1q4 + a−1q[a2,−4]

= + a−2q5 + aq−4 + aq−1[a2,−4] .

The equality follows from additional relation (10) in HOMFLY-PT skein algebra. The
third case goes the same way using only the relation (5) of the HOMFLY-PT skein al-
gebra. Hence ψ is well defined. The fact that ψ is an algebra homomorphism follows
from the fact that the rotational number is additive with respect to the multiplicative
structure of Skeinn(a, q) and the weight is multiplicative with respect to the multi-
plicative structure of Skeinn(a, q).

We are left to prove ψ is injective. Consider first the morphism of algebra ψ̂ which

is the same as ψ but defined on the free algebras. In other words ψ̂ goes from the
R-algebra Fn generated by isotopy classes of unoriented (n, n) 4-valent graphs to the
R-algebra Gn generated by isotopy classes of oriented (n, n) 4-valent graphs. We now

show that ψ̂ is injective and descends to an injective morphism between the quo-
tients BMWn(a, q) and Skeinn(a, q). To this end we assume that it is injective on the
subalgebra of Fn generated by the diagrams in Fn containing less than m vertices and

consider a linear combination
∑k

i=1 aiΓi of elements of Fn, with each term having m

4-valent vertices. Then, for each Γi , consider the projection Γ̂i of ψ̂(Γi) to the sub-
vector space of Gn generated by (n, n) 4-valent graphs with exactly m vertices. Notice
that Γ̂i consists of a weight direct sum of graphs which are obtained by choosing
an orientation for each arc in Γi , each of these graphs being linearly independent of
the others. In addition, for any given choice of an orientation of the endpoints of

the Γi ’s, the graphs are linearly independent. It follows that if
∑k

i=1 aiΓi = 0 then

ai = 0 for all i = 1, . . . , k, hence ψ̂ sends linearly independent elements of Fn to
linearly independent elements of Gn and hence is injective. Consider now the mor-

phism from ψ̂(Fn) to BMWn(a, q) using the projection π of Fn to BMWn(a, q). The
previous proof of the fact that ψ is well defined implies that the kernel of π is exactly

the intersection of the relations in Skeinn(a, q) with ψ̂(Fn). The image through ψ̂
of the relations defining BMWn(a, q) are exactly the relations of Skeinn(a, q). This
concludes the proof of the injectivity of ψ.

In the sequel we will make use of the explicit form of Jaeger’s homomorphism,
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given on the generators of BMWn(a, q) by

ψ
7−→ + + a−1q + aq−1

ψ
7−→ q−1

(
aq−1 +

)
+ q
(

a−1q +
)

+ + + +

ψ
7−→ + .

Notice that all the coefficients of the expansion of the generators of BMWn(a, q) are
in N(a, q). From the description of the HOMFLY-PT skein algebra in Section 2.2
we conclude that, under ψ, any diagram in BMWn(a, q) can be written as a linear
combination of diagrams in Skeinn(a, q) with coefficients in N(a, q).

Jaeger’s homomorphism from equation (14) induces the Jaeger’s formula for poly-
nomials of equation (13) in the following sense. The maps fBMW : BMWτ

n(a, q) →
BMWn(a, q) given by

7→ q − + q−1

and fSkein : Skeinτn(a, q)→ Skeinn(a, q) given by

7→ a−1q − a−1 and 7→ aq−1 − a

can be used to obtain a version of Jaeger’s homomorphism in terms of the tangle
algebras BMWτ

n(a, q) and Skeinτn(a, q) using the following procedure. Inverting fSkein,

f−1
Skein

7−−→ q − a = q−1 − a−1

we define ψτ := f−1
Skeinψ fBMW : BMWτ

n(a, q)→ Skeinτn(a, q).
The relations imposed on the BMW and HOMFLY-PT skein algebras imply that

closed diagrams in BMWτ
n(a, q) and Skeinτn(a, q) reduce to polynomials, which coin-

cide with the Kauffman or HOMFLY-PT polynomials respectively.

Proposition 3.3 For a closed tangle diagram D, we have that ψτ (D) coincides with
the Jaeger expansion for link polynomials in Theorem 3.1.

4 Setting a = qN : Embeddings and Projections

4.1 The q-Schur Algebra Sq(n, d)

Another algebra that enters the play is the q-Schur algebra Sq(n, d). In this subsection
we briefly review Sq(n, d) following the exposition in [16] (see [16] and the references
therein for more details). The q-Schur algebra appears naturally in the context of
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(polynomial) representations of Uq(gln), which is the starting point of this subsec-
tion.

Let εi = (0, . . . , 1, . . . , 0) ∈ Zn, with 1 being on the i-th coordinate for i =
1, . . . , n. Let also αi = εi − εi+1 ∈ Zn and (εi , ε j) = δi, j be the Euclidean inner
product on Zn.

Definition 4.1 The quantum general linear algebra Uq(gln) is the associative unital
Q(q)-algebra generated by Ki ,K

−1
i , for i = 1, . . . , n, and E±i , for i = 1, . . . , n − 1,

subject to the relations

KiK j = K jKi KiK
−1
i = K−1

i Ki = 1,

EiE− j − E− jEi = δi, j
KiK

−1
i+1 − K−1

i Ki+1

q− q−1
,

KiE± j = q±(εi ,α j )E± jKi ,

E2
±iE± j − (q + q−1)E±iE± jE±i + E± jE

2
±i = 0 if |i − j| = 1,

E±iE± j − E± jE±i = 0 if |i − j| < 1.

Let V be the natural n dimensional representation of Uq(gln) and d a non-negative
integer. There is a natural action of Uq(gln) on V⊗d with weights being the elements
in

Λ(n, d) =
{
λ ∈ Nn :

∑
i
λi = d

}
and highest weights the elements in

Λ+(n, d) = {λ ∈ Λ(n, d) : λ1 ≥ λ2 ≥ · · · ≥ λn},

the latter corresponding exactly to the irreducibles Vλ that show up in the decompo-
sition of V⊗d. We denote by ψn,d the representation above.

We can then define Sq(n, d) as follows.

Definition 4.2 The q-Schur algebra Sq(n, d) is the image of the representation ψn,d,

Sq(n, d) = ψn,d

(
Uq(gln)

)
.

It is well known that there is an action of the Iwahori–Hecke algebra Hd(q) on
V⊗d commuting with the action of Uq(gln). As a matter of fact, we have

Sq(n, d) ∼= EndHd(q)(V
⊗d),

and this may also be used to define the q-Schur algebra as a centralizer algebra.
For each λ ∈ Λ+(n, d), the Uq(gln)-action on Vλ factors through the projec-

tion ψn,d : Uq(gln) → Sq(n, d). This way we obtain all irreducible representations of
Sq(n, d). Note that this also implies that all representations of Sq(n, d) have a weight
decomposition. It is well known that

Sq(n, d) ∼=
∏

λ∈Λ+(n,d)
End(Vλ),
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and therefore Sq(n, d) is a finite-dimensional split semi-simple unital algebra.
Since we are only interested in weight representations we can restrict our attention

to the Beilinson–Lusztig–MacPherson idempotented version of Uq(gln). It can be
obtained from Uq(gln) by adjoining orthogonal idempotents 1λ, for λ ∈ Zn. We have
the extra relations

1λ1ν = δλ,ν1ν , E±i1λ = 1λ±αi E±i , Ki1λ = qλi 1λ.

Note that U̇ (gln) ∼=
⊕

λ,µ∈Zn 1λUq(gln)1µ is not unital because 1 =
∑

λ∈Zn 1λ is an
infinite sum. In this setting the q-Schur algebra occurs naturally as a quotient of
idempotented Uq(gln), which happens to be very easy to describe. Since V⊗d is a
weight representation, ψn,d factors through U̇q(gln) and we have

Sq(n, d) ∼= Ṡq(n, d) := ψn,d

(
U̇q(gln)

)
.

The kernel of ψn,d is of course the ideal generated by all idempotents 1λ such that
λ /∈ Λ(n, d). Thus we arrive at the following finite presentation of Sq(n, d).

Definition 4.3 Sq(n, d) is the associative unital Q(q)-algebra generated by 1λ, for
λ ∈ Λ(n, d), and E±i , for i = 1, . . . , n− 1, subject to the relations

1λ1µ = δλ,µ1λ,
∑

λ∈Λ(n,d)
1λ = 1, E±i1λ = 1λ±αi E±i ,

EiE− j − E− jEi = δi j
∑

λ∈Λ(n,d)
[λi]1λ,

where λi = λi − λi+1. We use the convention that 1µX1ν = 0, if µ or ν is not
contained in Λ(n, d).

The Iwahori–Hecke algebra can be obtained as a quotient of Sq(n, d) for d ≤ n.
Let (1)d denote the weight (1, . . . , 1, 0, . . . , 0) with d ones followed by n− d zeros.

Proposition 4.4 (Doty, Giaquinto [3]) For every d ≤ n, the map

Hd(q)→ 1(1)d Sq(n, d)1(1)d

given by bi 7→ 1(1)d EiE−i1(1)d is an isomorphism.

Recall the quantum factorial and quantum binomial which are defined by

[κ]! = [κ][κ− 1] · · · [2][1] and

[
κ

κ ′

]
=

[κ]!

[κ− κ ′]![κ ′]!

respectively, for κ ≥ κ ′ ≥ 0. To establish a connection between the BMW algebra
and the q-Schur algebra we need the divided powers which are defined as

E(κ)
±i :=

Eκ±i

[κ]!
.



A Remark on BMW Algebra, q-Schur Algebras and Categorification 17

Lemma 4.5 The divided powers satisfy the relations

E(κ)
±i 1λ = 1λ±κiX E(κ)

±i 1λ,

E(κ)
±i E(`)
±i1λ =

[
κ + `

κ

]
E(κ+`)
±i 1λ,

E(κ)
i E(`)
−i1λ =

min(κ,`)∑
t=0

[
κ− ` + λi

t

]
E(`−t)
−i E(κ−t)

i 1λ,

E(`)
−iE

(κ)
i 1λ =

min(κ,`)∑
t=0

[
−κ + `− λi

t

]
E(κ−t)

i E(`−t)
−i 1λ,

and

E(κ)
i E(`)

j 1λ = E(`)
j E(κ)

i 1λ |i − j| 6= 0, 1,

E(κ)
±i E(`)
∓ j1λ = E(`)

∓ jE
(κ)
±i 1λ i 6= j.

We denote by Sq(n, d)Z the Z[q, q−1]-subalgebra of Sq(n, d) spanned by products

of elements in the set {E(κ)
±i 1λ} (see [3, Thm. 2.3]).

We are also interested in algebras which are certain direct sums of q-Schur algebras
Sq(n, d), for various specific values of d.

Definition 4.6 For ∆ a finite subset of N define the set of n-levels of ∆ as

Ln(∆) =
{∑

i

µi , µ ∈ ∆n
}
.

This concept allows the introduction of the special direct sum q-Schur algebras.

Definition 4.7 We define the ∆-q-Schur algebra as

Sq(n,∆) :=
⊕

d∈Ln(∆)
Sq(n, d)Z.

The identity in Sq(n,∆) is
∑

µ∈∆n 1µ and the idempotents

(16) ed :=
∑

λ∈Λ(∆,d)

1λ,

where Λ(∆, d) := ∆n ∩ Λ(n, d), have the property that

Sq(n, d)Z = edSq(n,∆)ed.

Recall that the irreducible modules Vλ(d), for λ ∈ Λ+(n, d), called Weyl modules,
can be constructed as subquotients of Sq(n, d). Let < denote the lexicographic order
on Λ(n, d).
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Lemma 4.8 For any λ ∈ Λ+(n, d), we have

Vλ(d) ∼= Sq(n, d)1λ/[µ > λ].

Here [µ > λ] is the ideal generated by all elements of the form 1µX1λ, for any X ∈
Sq(n, d) and µ > λ.

The Sq(n,∆)-module V is irreducible if and only if edV is an irreducible Sq(n, d)-
module for exactly one d ∈ Ln(∆), while ed ′V = 0 for the remaining elements
d ′ of Ln(∆). Therefore the irreducibles of Sq(n,∆) are exactly the Vλ(d), where d
runs over Ln(∆), and the highest weights of Sq(n,∆) are precisely the elements in⋃

d∈Ln(∆) Λ+(n, d).

4.2 MOY Algebras and Ramifications

In this subsection we describe a graphical calculus introduced in [20] by H. Mu-
rakami, T. Ohtsuki and S. Yamada to obtain a state-sum-formula for the quantum
slN link polynomial. We relate this graphical calculus with the Skein and q-Schur
algebras described before. The calculus in [20] can be roughly defined as a graphic
description of the algebra of intertwiners between tensor products of higher funda-
mental representations of Uq(slN ).

An element µ = (µ1, . . . , µk) ∈ Nk is a composition of d if
∑

i µi = d, it is
denoted µ � d. Let W be the N dimensional fundamental representation of Uq(slN )
and consider ⊕

µ�d

µ∧
W

where
µ∧

W :=
µ1∧

W ⊗
µ2∧

W ⊗ · · · ⊗
µn∧

W.

For any a, b ∈ {1, . . . ,N} we have the intertwiners

a,b

�
a+b

:
a+b∧

W →
a∧

W ⊗
b∧

W and
a+b

�
a,b

:
a∧

W ⊗
b∧

W →
a+b∧

W.

Since any general intertwiner can be obtained as a composition of the various inter-
twiner maps above we see that it can be described by compositions of the diagrams

a + b

a b

and

a + b

a b

.

The diagrams are read from bottom to top. For any general intertwiner we obtain
a trivalent graph whose edges are coloured from {1, . . . ,N}. The product of two
intertwiner maps corresponds to composition of diagrams, i.e., the product a.b cor-
responds to stacking the diagram associated to a on top of the diagram associated
to b. We write MOYn for the collection of all these graphs containing less than n in-
going and less than n outgoing strands and such that sum of the colours of the edges
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at the bottom (or the top) is equal to d. The MOY algebra MOYq(n, d,N) is the as-
sociative, unital algebra over Z[q, q−1] generated by all the MOYn diagrams modulo
some relations, which can be found in [20]. Notice that the product a · b is zero if
the labels along the edges where the diagrams are to be glued do not match. As a
matter of fact the relations given in [20] do not form a complete set (a complete set
of relations is conjectured in [18] and proved in [2]). The authors of [20] defined
an evaluation of closed diagrams and derived only the relations which are enough to
prove invariance of the corresponding link polynomial.

The following lemma relates the q-Schur and the MOY algebras.

Lemma 4.9 We have a homomorphism of algebras f : Sq(n, d) → MOYq(n, d,N)
given by

1λ 7→

λ1 λi λi+1 λn

· · · · · · ,

E+i1λ 7→

λ1 λi + 1 λi+1 − 1 λn

1

λi λi+1

· · · · · · ,

E−i1λ 7→

λ1 λi − 1 λi+1 + 1 λn

1

λi λi+1

· · · · · · .

This is the decategorification of the functor FBim from [16, Section 4]. From the
results of [16, Section 4] we have that the assignment above is well defined and defines
a map of algebras.

This map generalizes to divided differences, yielding

E(κ)
+i 1λ 7→

λ1 λi + κ λi+1 − κ λn

κ

λi λi+1

· · · · · · ,

E(κ)
−i 1λ 7→

λ1 λi − κ λi+1 + κ λn

κ

λi λi+1

· · · · · · .

We now turn to a 1-parameter specialization of the Skein algebra of Section 2.2.
Let a = qN and consider Skeinq(n,N) := Skeinn(qN , q). The grading in Skeinn(a, q)
descends to Skeinq(n,N) and we have (compare with equation (11))

Skeinq(n,N) =
n⊕

n±=−n

(
Skeinq(n,N)

)
n±
.
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From now on we take ∆N = {1,N − 1} and for this particular ∆ we denote the
∆-q-Schur algebra by Sq(n,∆N ).

The rest of this section is devoted to prove the following.

Proposition 4.10 There is an injective homomorphism of algebras

α : Skeinq(n,N)→ Sq(n,∆N ).

This result will follow from the lemma below.

Lemma 4.11 For each pair (n+, n−) with n+ + n− = n there is an injective homo-
morphism of algebras

α(n±) : Skeinq(n,N)n± → Sq

(
n, n+ + (N − 1)n−

)
.

Proof The algebra Skeinq(n,N) has an interpretation as a diagrammatic descrip-
tion of the algebra of intertwiners between tensor products of the fundamental rep-
resentation V of slN and its dual V ∗ [20]. The isomorphism of representations

Φ :
∧k V ∗

∼=
−→
∧N−k V induce injections

φ(n±) : Skeinq(n,N)n± ↪→ MOYq

(
n, n+ + (N − 1)n−,N

)
,

which is given on generators by

7−→
1

, 7−→

N − 1

,

7−→qN−1

0 N

1 N − 1

1 , 7−→
N 0

N − 1 1

1 ,

7−→q−N+1

N − 1 1

N 0

1 , 7−→
1 N − 1

0 N

1 ,

7−→
1N − 1

N − 11

N − 2
↓

, 7−→
1 N − 1

N − 1 1

N − 2
↓

,

7−→
1 1

1 1

2 0, 7−→
N − 1 N − 1

N − 1 N − 1

N N − 2 .

It is clear that imφ(n±) ⊂ im f .



A Remark on BMW Algebra, q-Schur Algebras and Categorification 21

We next define homomorphisms

α(n±) : Skeinq(n,N)n± → Sq

(
n, n+ + (N − 1)n−

)
that make the following diagram commute:
(17)

Skeinq(N, n)n±

φ(n±)
//

α(n±) ''OO
OOO

OOO
OOO

MOYq

(
n, n+ + (N − 1)n−,N

)

Sq

(
n, n+ + (N − 1)n−

) f

55kkkkkkkkkkkkkk

First define λ(`) ∈ Nn as

λi(`) =

{
1 if `i = +

N − 1 if `i = −.

We also denote ı(a,b)λ(`) the sequence obtained from λ(`) by a translation λ j(`) 7→
λ j+2(`) followed by taking λi(`) = a and λi+1(`) = b.
• A diagram in Skeinq(N, n) consisting of n vertical strands is sent to 1λ(`).
• For the remaining generators we assume that there are i − 1 vertical strands on

the left of the Skeinn-diagram depicted and that ` intersects generically the diagram
under consideration in the neighborhood of its bottom boundary.

7−→qN−1Ei1ı(0,N)λ(`), 7−→ E−i1ı(N,0)λ(`),

7−→q−N+1Ei1λ(`), 7−→ E−i1λ(`),

7−→ E(N−2)
−i 1λ(`), 7−→ E(N−2)

i 1λ(`),

7−→ E−iEi1λ(`), 7−→ E−iEi1λ(`).

Notice that due to the particular form of the λ(`)’s involved in the upward pointing
and downward pointing vertices we also have

α
( )

= EiE−i1λ(`) and α
( )

= EiE−i1λ(`).

This ends the definition of α(n±).
It is immediate that the diagram in equation (17) commutes. Therefore we con-

clude that the homomorphism α(n±) is injective.

Proof of Proposition 4.10 Define α as the sum of all the α(n±). The claim now
follows from the fact that the images of the α(n±) are disjoint for distinct values
of n±.
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Although f is not known to be injective nor surjective the collection of MOY
diagrams is useful when dealing with q-Schur algebras. To keep working diagram-
matically with Sq(n, d) we need a more precise version of the MOY algebra, i.e., an
algebra generated by the set of MOY diagrams modulo a set of complete relations. To
this end we define the following.

Definition 4.12 AMOY(d,N) is the algebra generated by the MOY diagrams in im f
modulo the relations coming from Sq(n, d).

Unless otherwise stated all the MOY diagrams occurring from now on will refer
to generators of AMOY(d,N).

4.3 The BMW-embedding in q-Schur

Denote BMWq(n,N) the specialization BMWn(qN , q). This specialization is related
with the representation theory of the quantum group Uq(so2n) (see for instance [6]).

Composing the qN -specialization of Jaeger’s homomorphismψ : BMWq(n,N)→
Skeinq(n,N) with the homomorphism α : Skeinq(n,N) → Sq(n,∆N ) of Section 4.2
we obtain a homomorphism θ : BMWq(n,N)→ Sq(n,∆N ).

In terms of the generators of BMWq(n,N) the homomorphism θ reads

θ
7−→

N − 1 1

1 N − 1

N 0 +

1 N − 1

N − 1 1

N 0 + q−N+1

N − 1 1

N − 1 1

N 0 + qN−1

1 N − 1

1 N − 1

0 N,

θ
7−→ qN−2

1 N − 1

1 N − 1

0 N + q−1

N − 1 1

+ q−N+2

N − 1 1

N − 1 1

N 0 + q

1 N − 1

+

1 1

1 1

2 0 +

1 N − 1

N − 1 1

N − 2
↓

+

1N − 1

N − 11

N − 2
↓

+

N − 1 N − 1

N − 1 N − 1

N N − 2 ,

θ
7−→

1

+

N − 1

.

Notice that

j i

i j

i + j 0 =

j i

i j

0 i + j .
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Notice also that EF1a,a = FE1a,a for all a ∈ N or, in pictures,

N − 1 N − 1

N − 1 N − 1

N
N − 2 =

N − 1 N − 1

N − 1 N − 1

N − 2
N .

We see that θ preserves the symmetry under the operation that simultaneously sends
q to q−1 and reflects the diagram around a vertical axis passing through the middle.

In this language, it is easy to check by direct computation that

θ

( )
= ([N]q−N+1 + [N]qN−1)θ

( )
= ([2N − 1] + 1)θ

( )
.

For the following we define

1̂(i)a,b =
∑

jk∈{1,N−1}

1 j1,..., ji−1,a,b, ji+2,..., jn

and

1̂(i) =
∑

jk∈{1,N−1}

1 j1,..., jn .

For the sake of completeness we give the homomorphism θ in algebraic terms,
which reads

i i + 1

θ
7−→ E(N−1)

−i Ei 1̂(i)N−1,1 + E−iE
(N−1)
i 1̂(i)1,N−1

+ q−N+1E−iEi 1̂(i)N−1,1 + qN−1EiE−i 1̂(i)1,N−1,

i i + 1

θ
7−→ qN−2EiE−i 1̂(i)1,N−1 + q−11̂(i)N−1,1 + qN−2E−iEi 1̂(i)N−1,1

+ q1̂(i)1,N−1 + E−iEi 1̂(i)1,1 + E(N−2)
i 1̂(i)1,N−1

+ E(N−2)
−i 1̂(i)N−1,1 + E−iEi 1̂(i)N−1,N−1,

i

θ
7−→ 1̂(i).

Theorem 3.2 and Proposition 4.10 together imply the following.

Proposition 4.13 The homomorphism θ is injective.
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Recall the Iwahori–Hecke algebra can be obtained as a quotient of the BMW and
Schur algebras. The following are easy consequences of the results in the previous
section. Recall the idempotents e(+)n and ed ∈ Sq(n,∆N ) defined in equations (12)
and (16).

Proposition 4.14 We have isomorphisms

Hn(q) ∼= e(+)nψ
(

BMWq(n,N)
)

e(+)n ∼= 1(1)n Sq(n,∆N )1(1)n ,

BMWq(n,N) ∼= θ
(

BMWq(n,N)
) ∼= ⊕

d∈Ln(∆)
edθ
(

BMWq(n,N)
)

ed.

Proposition 4.15 The projection of BMWq(n,N) onto Hq(d) factors through
Sq(n,∆N ):

BMWq(n,N) //

&&MM
MMM

MMM
MM

Hd(q)

Sq(n,∆N )

::uuuuuuuuu

5 Categorifications, Loose Ends and Speculations

In this section we explain how the Jaeger’s homomorphism can be used to produce
categorifications of the BMWq(n,N). Although not strictly necessary to understand
the main ideas in this section, some familiarity with [13] and [16] would be desirable.

We can think of the one-variable specialization of the Jaeger’s homomorphism as
targeting two algebras, the a = qN -specialization of the HOMFLY-PT skein algebra
of Section 2.2 on one side, and the ∆N -q-Schur algebra of Section 4.1 on the other
(denoted ψ and θ there). Both these algebras have been categorified, and in more
than one way. Below in Sections 5.1 and 5.2 we give the main idea of the categorifi-
cations of the algebras Skeinq(n,N) and Sq(n, d) leaving the details to [13] and [16]
respectively.

Let us first recall the philosophy of categorification. The split Grothendieck
group K0 of an additive category C is the free abelian group generated by the isomor-
phism classes [M] of objects M of C modulo the relation [C] = [A] + [B] whenever
C ∼= A⊕B. When C has a monoidal structure the Grothendieck group is a ring, with
multiplication given by [A ⊗ B] = [A][B]. Moreover, if C is a graded category, then
K0(C) has a structure of Z[q, q−1]-module, where [M{k}] = qk[M].

Let R be a commutative ring with 1, A and algebra over R and {ai}i∈I a basis of A.
By a (weak) categorification of (A, {ai}i∈I) we mean an additive monoidal category
A together with an isomorphism

(18) γ : R⊗Z K0(C)→ A

sending the class of each indecomposable object of C to a basis element of A (see [12]
for a detailed discussion).
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5.1 Matrix Factorizations and the Skeinq(n,N) Categorification

In [13], Khovanov and Rozansky constructed a link homology theory categorify-
ing the quantum slN -invariant PN of links. The starting point is the diagrammatic
MOY state-sum model [20] of PN , whose underlying algebraic structure is exactly
Skeinq(n,N) (this was the main motivation for the presentation given in Defini-
tion 2.5). The procedure consists of expanding a link diagram D in an alternating
sum in Skeinq(n,N), each term being evaluated to a polynomial in Z[q, q−1] using
the defining rules of Skeinq(n,N) from Definition 2.5.

The main ingredient of [13] is the use of Matrix Factorizations. Let R be a com-
mutative ring and W ∈ R. A matrix factorization of W consists of a free Z/2Z-graded
R-module M together with a map D ∈ End(M) of degree 1 satisfying D2 = W. IdM .

In [13], Khovanov and Rozansky associated to each graph Γ in Skeinq(n,N) a cer-
tain graded matrix factorization M(Γ) and show that for each relation Γ =

∑
i Γi

in Definition 2.5 (with a = qN ) we have a direct sum decomposition M(Γ) ∼=⊕
i M(Γi). To a link diagram they associate a complex of matrix factorizations and

prove that the direct sum decompositions they obtain are sufficient to have topolog-
ical invariance up to homotopy.

The reader now may ask why not use the bigraded matrix factorizations from [14]
to obtain a categorification of the two-variable BMW algebra. Unfortunately the
matrix factorization from [14] associated to the left-hand side of equation (7) is not
isomorphic to the direct sum of the matrix factorizations associated to the right-hand
side. This is the main reason why the HOMFLY-PT homologies that exist are defined
only for braids and closures of braids and not for tangles.

5.2 The q-Schur Categorification

In [16] a diagrammatic categorification of the q-Schur algebra was constructed us-
ing a quotient of Khovanov and Lauda’s categorified quantum groups from [10, 11].
Khovanov and Lauda’s categorified quantum sln consists of a 2-category U̇(sln) de-
fined from the following data. The objects are weights λ ∈ Zn−1. The 1-morphisms
are products of symbols λ ′E±iλ (with λ ′j = λ j − 1 if j = i ± 1, λ ′j = λ j + 2 if
j = i, and λ ′j = λ j otherwise) with the convention that says that λ ′E±iµνE±iλ is

zero unless µ = ν. The 2-morphism of U̇(sln) are given by planar diagrams in a strip
generated by oriented arcs that can intersect transversely and can be decorated with
dots (closed oriented 1 manifolds are allowed). The boundary of each arc is deco-
rated with a 1-morphism. These 2-morphisms are subject to a set of relations which
we do not give here (see [10, 16] for details).

The main insight of [16] was to upgrade Khovanov and Lauda’s categorified quan-
tum sln to a categorification ˙U(gln) of quantum gln (taking Khovanov and Lauda’s
diagrams and relations of ˙U(sln) with gln-weights) and define the categorification of
Sq(n, d) as the quotient of U̇(gln) by 2-morphisms factoring through a weight not in
Λ(n, d). The main result of [16] is that K0

(
U̇(gln)/∼

)
is isomorphic to Sq(n, d) from

Section 4.1. It is not hard to guess how to combine the results of [25] to lift divided
powers and therefore obtain a categorification of the integral form Sq(n, d)Z. Going
from there to the ∆N -q-Schur algebra Sq(n,∆N ) is an obvious step.
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5.3 The General Picture

We now explain abstractly our procedure. We use the symbol Y to refer to both the
categorifications of Skeinq(n,N) and of Sq(n,∆N ) and symbols {Y j} j∈ J to denote
its indecomposable objects. Each of these categorifications has the Krull–Schmidt
property, meaning that each object decomposes into direct sum of indecomposable
objects which is unique up to permutation (see [23, Section 2.2]). This implies that
the classes of the indecomposables in K0(Y) form a basis of K0(Y). In addition this
basis is positive, that is, all the multiplication coefficients in this basis are nonnegative
since they count multiplicities in direct sum decompositions.

As explained before we expand every element x of BMWq(n,N) as a linear com-
bination of elements of another algebra, the latter admitting a categorification. We
write it abstractly as

x =
∑
j∈ J

c j y j ,

where each y j is a basis element of Skeinq(n,N) or Sq(n,∆N ) and c j ∈ N[q, q−1].
Homomorphism γ (18) sends [Y j] to y j and therefore we think of the object Y j as

the lift to Y of the basis element y j . This results in a well-defined object X of Y given
by

(19) X =
⊕
j∈ J

Y j{c j},

where we use the notation Y{qi1 + · · · + qik} = Y{i1} ⊕ · · · ⊕ Y{ik}.
We now define an additive monoidal category X from this data.

Definition 5.1 Category X is the (monoidal) full subcategory of Y generated by
products of the objects X given by equations (19) which are images under Jaeger’s
homomorphism of the generators of BMWq(n,N) from equations (2)–(3). The mor-
phisms of X are the obvious ones from Y.

Given a basis (xi)i∈I of BMWq(n,N) consider the element Xi constructed above
for each xi . Since the relations in BMWq(n,N) lift to relations in Y, it follows that
the {[Xi]}i∈I generates the Grothendieck ring K0(X). Recall that the BMWq(n,N)
is naturally equipped with a non-degenerate bilinear form given by the Kauffman
polynomial. It follows that if there was non-trivial relations satisfied by the Xi ’s in Y

it would contradict the non-degeneracy of this bilinear form. Hence we can deduce
that the [Xi]’s are linearly independent in K0(X) and form a basis of K0(X). Using
this remark and the results of [13] and [16] it is not hard to prove the following.

Proposition 5.2 We have an isomorphism K0(X) ∼= BMWq(n,N).

Unfortunately category X does not have the Krull–Schmidt property, which is a
desirable property for the reason explained above. To get a categorification with the
Krull–Schmidt property we need to add some objects to X. This yields another cate-
gory X ′ as follows.
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Definition 5.3 An object A of Y is an object of X ′ if there are objects B and C of X
such that A⊕ B ∼= C .

The construction of category X ′ resembles the construction of the category of
special bimodules in [24] (see also [17, Section 3.1]). Notice we still have K0(X ′) ∼=
K0(X). We were able to prove by hand that X ′ has indeed the Krull–Schmidt property
in the cases up to BMWq(3,N).

Conjecture 1 In the case of the categorifications of Skeinq(n,N) and Sq(n,∆N ), the
category X ′ has the Krull–Schmidt property.

One could feel tempted to take the Karoubi envelope of X so as to guarantee the
Krull–Schmidt property. Recall that the Karoubi envelope of a category C consists
of adding more objects to C which are images of idempotents. In the Karoubi en-
velope every idempotent splits and consequently we have the Krull–Schmidt prop-
erty [23]. It is easy to see that this procedure would add too many objects, making
the Grothendieck ring too large to be isomorphic to BMWq(n,N).

This suggests a category having the Krull–Schmidt property that is not Karoubian. Note: Rephrased for line
breaking.

Such categories are known to exist. For example, the category of super-vector spaces
with odd dimension and even dimension both equal is not Karoubian but has the
Krull–Schmidt property.

It would be interesting to relate the lift of the 4-vertex using matrix factorizations
with the one Khovanov and Rozansky did in [15] using convolutions of matrix fac-
torizations.
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